×
25.08.2017
217.015.9b31

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНОГО СПЛАВА АЛЮМИНИЙ-БОР

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению лигатурного сплава на основе алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов. Способ получения лигатурного сплава алюминий-бор включает алюмотермическое восстановление борсодержащего компонента в расплаве, содержащем алюминий и смесь фторидов натрия, калия и алюминия, при температуре расплава выше температуры плавления алюминия и температуры плавления смеси фторидов и ниже температуры разложения борсодержащих компонентов. В качестве смеси фторидов используют смесь KF-AlF, или смесь NaF-AlF, или смесь KF-NaF-AlF, в качестве борсодержащего компонента используют BO, или KBF, или NaBF, или NaBO. Изобретение направлено на получение лигатурного сплава алюминий-бор с содержанием до 10,0 мас.% бора с высокой степенью усвоения бора алюминием, низкими потерями бора в виде летучего BF и возможностью корректировки и регенерации расплавленной смеси фторидов натрия, калия и алюминия для поддержания параметров синтеза. 6 з.п. ф-лы, 4 пр., 1 ил.

Изобретение относится к области металлургии цветных металлов, в частности к получению лигатурного сплава алюминия, который может быть использован для очистки алюминия, получаемого электролизом, от переходных элементов, повышая его чистоту и улучшая эксплуатационные характеристики (электропроводность и др.). Благодаря высокой электропроводности и высоким прочностным характеристикам, сплавы алюминий-бор могут использоваться в качестве относительно недорогого электропроводящего армирующего материала, например в аэрокосмической промышленности.

Известен способ получения сплава алюминий-бор-титан (RU 2466202, публ. 10.11.2012) [1]. Способ включает плавление первичного алюминия, порционное введение в расплав алюминия титансодержащего и борсодержащего компонентов, перемешивание алюминия и его разливку, охлаждение и термическую обработку, при этом в качестве борсодержащего компонента используют H3BO3, который порционно вводят в алюминий с температурой 950-1050°С, отливку лигатуры подвергают термической обработке по следующему режиму: нагрев до 460-490°С, выдержка при этой температуре в течение 11-15 ч, разогрев до 520-550°С, выдержка при этой температуре в течение 8-12 ч и последующее охлаждение на воздухе со скоростью 200-250°С/мин.

Недостатками известного способа являются относительно высокая температура синтеза, сложность управления параметрами синтеза, сложность конструкции реактора, подразумевающая наличие устройства для отвода паров воды при 950-1050°С для обеспечения безопасности процесса и, как следствие, высокие энергозатраты. Получаемый сплав содержит титан и не более 2.0 мас.% бора.

Известен также способ получения сплава алюминий-бор (Известия ВУЗов. Цветная металлургия, 1987, №2, с. 32-36) [2]. Способ включает плавление смеси алюминия с борсодержащим компонентом (В2О3) в криолитовом расплаве (смесь фторидов натрия и алюминия) при температуре 950-1000°С. Преимуществом способа является простота конструкции реактора, при этом способ обладает такими недостатками как относительно высокая температура процесса, низкое, до 0.3-0.4 мас.%, содержание бора в сплаве и низкая степень извлечения бора ввиду нестабильности борсодержащих соединений в криолитовом расплаве при температуре 950-1000°С.

Попытка повышения степени извлечения бора в алюминий из расплавленного криолита произведена за счет ведения электролиза данного расплава в известных способах получения сплава алюминий-бор при температуре 950-1000°С (Proc. Int. Symposium on production, refining, fabrication and recycling of light metals: Hamilton. Ontario. Aug. 26-30, 1990, p. 49-57 / Известия ВУЗов. Цветная металлургия, 1979, №14, с. 22-24) [3, 4]. Однако с использованием дополнительных энергозатрат максимальное содержание бора в получаемых сплавах алюминий-бор составило 0.12 мас.%.

Наиболее близким к заявляемому способу является способ получения сплава алюминий-бор (Transactions Nonferrous Metal Society of China, 2013, Vol. 23, p. 294-300) [5]. Способ включает порционное введение борсодержащего компонента KBF4 в расплавленный алюминий при 800°С, который перемешивают со скоростью 700 об/мин. Содержание бора в получаемых сплавах алюминий-бор составляет 3 мас.%.

Преимуществами способа являются низкая температура синтеза и относительно высокое содержание бора в получаемом сплаве алюминий-бор. В качестве недостатков стоит отметить низкую термическую устойчивость используемого борсодержащего компонента и вызванные этим высокие потери бора. Помимо этого известный способ получения сплава алюминий-бор, как и выше описанные способы, характеризуются накоплением отходов солей.

При этом необходимо отметить, что стремление к повышению степени извлечения и содержания бора в лигатурном сплаве алюминий-бор обусловлено экономическими факторами. Поскольку лигатурные сплавы представляют собой полупродукт, который для получения сплавов алюминий-бор с необходимым содержанием бора и определенными физико-механическими свойствами разбавляют жидким алюминием, то для получения одинакового объема такого сплава потребуется меньше того лигатурного сплава алюминий-бор, в котором содержание бора выше. При этом стоимость лигатурного сплава от содержания бора мало зависит.

Задачей изобретения является получение лигатурного сплава с содержанием бора, обеспечивающим экономичность способа, возможность вести синтез в температурном диапазоне термической устойчивости используемых борсодержащих компонентов, а также исключение отходов солей с борсодержащим компонентом.

Для этого предложен способ получения лигатурного сплава алюминий-бор, включающий алюмотермическое восстановление борсодержащего компонента в расплаве алюминия, отличающийся тем, что алюмотермическое восстановление осуществляют в расплаве, содержащем алюминий и смесь фторидов натрия, калия и алюминия, при температуре расплава выше температуры плавления алюминия и температуры плавления смеси фторидов и ниже температуры разложения борсодержащих компонентов.

В качестве смеси фторидов используют смесь KF-AlF3, или смесь NaF-AlF3, или смесь KF-NaF-AlF3.

В качестве борсодержащего компонента используют B2O3, или KBF4, или NaBF4, или Na2B4O7.

В процессе алюмотермического восстановления содержание в смеси борсодержащего компонента, алюминия и смеси фторидов поддерживают постоянным.

При использовании в качестве борсодержащего компонента B2O3 или Na2B4O7 расплавленную смесь алюминия и фторидов, содержащую борсодержащий компонент, подвергают электролизу.

При использовании в качестве борсодержащего компонента KBF4 в смесь борсодержащего компонента и алюминия добавляют смесь фторидов NaF и AlF3.

При использовании в качестве борсодержащего компонента NaBF4 или Na2B4O7 в смесь борсодержащего компонента и алюминия добавляют смесь фторидов KF и AlF3.

Сущность заявленного способа заключается в следующем. При контакте алюминия с борсодержащим компонентом из числа В2О3, KBF4, NaBF4, Na2B4O7 происходит алюмотермическое восстановление перечисленных борсодержащих компонентов с образованием бора в алюминии, накоплением оксида алюминия и фторидов натрия и калия в расплавленной смеси фторидов натрия, калия и алюминия. Помимо того, что борсодержащие компоненты В2О3, KBF4, NaBF4, Na2B4O7 являются наиболее доступными, они, в отличие, например, от H3BO3, являются безопасными при использовании.

Для поддержания высокой скорости синтеза, снятия возможных диффузионных и пассивационных затруднений образующиеся побочные продукты отводят от фронта реакции алюмотермического восстановления использованием расплавленной смеси фторидов натрия, калия и алюминия в соотношении, позволяющем синтезировать сплав алюминий-бор при температуре выше температуры плавления алюминия (около 680°С) и ниже температуры разложения борсодержащих компонентов в расплавленной смеси (около 850°С). Соотношения фторидов натрия, калия и алюминия в расплавленной смеси подбираются на основании известных данных по температурам ликвидуса соответствующих смесей (J. Chem. Eng. Data, 2010, V. 55, р. 4549 / Электрохимия, 2010, Т. 46, с. 672-678) [6, 7].

Постоянство состава расплавленной смеси фторидов натрия, калия и алюминия в заявляемом способе обеспечивают путем подбора соотношения добавляемых борсодержащих компонентов (добавка KBF4 - для повышения доли фторида калия; добавки NaBF4 и Na2B4O7 - для повышения доли фторида натрия) либо путем добавления фторидов натрия, калия и алюминия. При использовании в качестве борсодержащего компонента B2O3 или Na2B4O7 расплавленную смесь фторидов натрия, калия и алюминия подвергают электролизу, обеспечивая его регенерацию от накапливаемого оксида алюминия путем его электролитического разложения по суммарной реакции 2Al2O3=4Al+3O2.

Для повышения степени усвоения бора и более равномерного его распределения в алюминии последний подвергают механическому или магнитогидродинамическому перемешиванию при температуре не ниже температуры синтеза сплава алюминий-бор. По окончании готовый лигатурный сплав сливают в изложницу, а расплавленную смесь фторидов натрия, калия и алюминия используют для дальнейшего получения сплава алюминий-бор. Полученный охлажденный лигатурный сплав представляет собой твердый раствор элементарного бора и боридов алюминия в алюминиевой матрице и предназначен для приготовления сплавов алюминий-бор с необходимым содержанием бора путем его разбавления жидким алюминием.

Технический результат, достигаемый заявленным способом, заключается в получении лигатурного сплава алюминий-бор с содержанием до 10.0 мас.% бора с высокой степенью усвоения бора алюминием, низкими потерями бора в виде летучего BF3 и возможностью корректировки и регенерации расплавленной смеси фторидов натрия, калия и алюминия для поддержания параметров синтеза.

Заявленный способ иллюстрируется изображением поперечного среза лигатурного сплава алюминий-бор с содержанием компонентов в разных точках и примерами получения лигатурного сплава, осуществляемого в графитовом тигле.

Пример 1.

Для получения лигатурного сплава алюминий-бор использовали:

- алюминий гранулированный электротехнической чистоты - 50 г

- борсодержащий компонент KBF4 - 7.5 г

- смесь фторидов (мас.%) - 52KF-48AlF3 - 50 г.

Полученную смесь из алюминия, борсодержащего компонента и смеси фторидов доводили до плавления и выдерживали при температуре 700°С в течение 120 мин в условиях механического перемешивания. По окончании синтеза полученный сплав алюминий-бор сливали в изложницу и охлаждали. По результатам химического анализа наблюдали повышение доли KF в солевом флюсе до 54 мас.%. С целью дальнейшего использования в охлажденную и измельченную смесь фторидов калия и алюминия добавляли AlF3, доводя состав смеси до исходного (мас.%: 52KF-48AlF3).

Суммарное содержание бора в алюминии по результатам химического и микрорентгеноструктурного анализов составило около 2.7 мас.%, при этом часть бора представлена в виде интерметаллидных образований с содержанием бора 20-25 мас.%. (см. изображение поперечного среза сплава алюминий-бор и содержание компонентов в разных точках).

Пример 2.

Для получения лигатурного сплава алюминий-бор использовали:

- алюминий гранулированный электротехнической чистоты - 50 г

- борсодержащий компонент B2O3 - 5 г

- смесь фторидов (мас.%) - 39KF-10NaF-51AlF3 - 50 г.

Полученную смесь из алюминия, борсодержащего компонента и смеси фторидов доводили до плавления при температуре 820°С, после чего в реакционную смесь каждые 30 мин добавляли 5 г борсодержащего компонента - оксида бора (В2О3). Для разложения образовавшегося оксида алюминия расплавленную смесь фторидов калия, натрия и алюминия подвергали гальваностатическому электролизу (ток - 1.5 А, напряжение - 2.2-2.4 В), при этом анодом служил графитовый стержень, а катодом - алюминий на дне тигля. Токоподвод к алюминию был выполнен из графита и одновременно служил механической мешалкой. Общее время синтеза составило 120 мин. По окончании синтеза полученный сплав алюминий-бор сливали в изложницу и охлаждали.

Изменения долей компонентов солевого флюса практически не изменились (в пределах погрешности измерения). Суммарное содержание бора в алюминии составило около 8.0 мас.%, при этом часть бора представлена в виде интерметаллидных образований с содержанием бора 30-50 мас.%.

Пример 3.

Для получения лигатурного сплава алюминий-бор использовали:

- алюминий гранулированный электротехнической чистоты - 70 г

- борсодержащий компонент NaBF4 - 7.0 г

- смесь фторидов (мас.%) - 40KF-8NaF-52AlF3 - 100 г.

Полученную смесь из алюминия, борсодержащего компонента и смеси фторидов доводили до плавления и выдерживали при температуре 800°С в течение 60 мин в условиях механического перемешивания. По окончании синтеза полученный сплав алюминий-бор сливали в изложницу и охлаждали. По результатам химического анализа наблюдали повышение доли NaF в расплавленной смеси фторидов натрия, калия и алюминия до 8.5 мас.%. Для корректировки состава с целью дальнейшего использования в смесь (охлажденную и измельченную) добавляли KF и AlF3.

Суммарное содержание бора в алюминии составило около 1.5 мас.%, при этом часть бора представлена в виде интерметаллидных образований с содержанием бора 10-20 мас.%.

Пример 4.

Для получения лигатурного сплава алюминий-бор использовали:

- алюминий гранулированный электротехнической чистоты - 75 г

- борсодержащий компонент Na2B4O7 - 3.0 г

- смесь фторидов (мас.%) - 40NaF-60AlF3 - 75 г.

Полученную смесь из алюминия, борсодержащего компонента и смеси фторидов доводили до плавления при температуре 825°С после чего в реакционную смесь каждые 15 мин добавляли борсодержащий компонент - буру (Na2B4O7). Для разложения образовавшегося оксида алюминия расплавленную смесь подвергали гальваностатическому электролизу (ток - 2.0 А, напряжение - 2.3-2.6 В), при этом анодом служил графитовый стержень, а катодом - алюминий на дне тигля. Токоподвод к алюминию был выполнен из графита и одновременно служил механической мешалкой. Общее время синтеза составило 90 мин. По окончании синтеза полученный сплав алюминий-бор сливали в изложницу и охлаждали.

Изменения долей фторидов натрия, калия и алюминия в расплавленной смеси практически не изменились (в пределах погрешности измерения). Суммарное содержание бора в алюминии составило около 4.5 мас.%, при этом часть бора представлена в виде интерметаллидных образований с содержанием бора 20-25 мас.%.

Заявленный способ позволяет реализовать получение лигатурного сплава алюминий-бор с содержанием до 10.0 мас.% бора с высокой степенью усвоения бора алюминием, низкими потерями бора в виде летучего BF3 и возможностью корректировки и регенерации расплавленной смеси фторидов натрия, калия и алюминия для поддержания параметров синтеза.


СПОСОБ ПОЛУЧЕНИЯ ЛИГАТУРНОГО СПЛАВА АЛЮМИНИЙ-БОР
Источник поступления информации: Роспатент

Показаны записи 101-110 из 110.
21.11.2019
№219.017.e46c

Способ изготовления единичной многослойной ячейки твердооксидного топливного элемента

Изобретение относится к изготовлению единичных многослойных ячеек с тонкослойным электролитом, которые могут быть использованы в качестве твердооксидных топливных элементов (ТОТЭ) или твердооксидных электролизеров (ТОЭ). Способ включает формирование ячейки из слоев функциональных материалов:...
Тип: Изобретение
Номер охранного документа: 0002706417
Дата охранного документа: 19.11.2019
22.11.2019
№219.017.e4d4

Батарея элементов тепловых химических источников тока

Изобретение относится к области электротехники, а именно к термоактивируемым химическим источникам тока (ТХИТ), и может быть использовано в качестве источника электропитания силовых электрических агрегатов. Батарея содержит корпус, состоящий из двух герметичных оболочек с теплоизоляцией...
Тип: Изобретение
Номер охранного документа: 0002706728
Дата охранного документа: 20.11.2019
21.12.2019
№219.017.f02a

Твердооксидный электродный материал

Изобретение относится к высокопористым электродным материалам на основе никелата неодима, которые могут быть использованы в качестве воздушных электродов для электрохимических устройств на основе протонпроводящих электролитов, включая твердооксидные топливные элементы, сенсоры и электролизеры....
Тип: Изобретение
Номер охранного документа: 0002709463
Дата охранного документа: 18.12.2019
18.03.2020
№220.018.0ccc

Способ нанесения защитного покрытия на катоды электролизера для получения алюминия

Изобретение относится к способу нанесения защитного покрытия на катоды электролизера для получения алюминия из расплавленных электролитов, смачиваемого получаемым алюминием. Способ включает электроосаждение компонентов покрытия на катоды из расплавленного электролита, содержащего добавки,...
Тип: Изобретение
Номер охранного документа: 0002716726
Дата охранного документа: 16.03.2020
18.03.2020
№220.018.0cf5

Электролитический способ получения лигатур алюминия из оксидного сырья

Изобретение относится к способу электролитического получения лигатур алюминия из оксидного сырья. Способ включает электролиз оксидно-фторидного расплава, который ведут с использованием твердого катода при температуре выше 570 °С, а продукты электролиза с включениями компонентов расплава...
Тип: Изобретение
Номер охранного документа: 0002716727
Дата охранного документа: 16.03.2020
19.03.2020
№220.018.0d5c

Ячейка для исследования высокотемпературной проводимости твердых веществ

Ячейка для исследования высокотемпературной проводимости твердых веществ. Технический результат заключается в реализации внешнего воздействия оптического излучения на образец одновременно с воздействием температуры и газовой среды. Ячейка содержит кварцевую трубку, в которую помещен кварцевый...
Тип: Изобретение
Номер охранного документа: 0002716875
Дата охранного документа: 17.03.2020
24.03.2020
№220.018.0f15

Способ определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды и ячейка для осуществления способа

Изобретение относится к способу определения удельной скорости процессов на поверхности материала в реакции фотостимулированного электролиза воды, включающему использование трехзондовой электрохимической ячейки с индифферентными электродами. Способ характеризуется тем, что за удельную скорость...
Тип: Изобретение
Номер охранного документа: 0002717315
Дата охранного документа: 20.03.2020
05.06.2020
№220.018.2476

Электрохимический способ получения микродисперсных порошков гексаборидов металлов лантаноидной группы

Изобретение относится к электрохимическому способу получения микродисперсных порошков гексаборидов металлов лантаноидной группы. Способ включает синтез гексаборидов лантаноидов из хлоридсодержащего расплава, содержащего ионы бора и ионы лантаноида. В качестве хлоридсодержащего расплава...
Тип: Изобретение
Номер охранного документа: 0002722753
Дата охранного документа: 03.06.2020
14.05.2023
№223.018.552f

Амперометрический датчик для измерения концентрации метана и примеси водорода в анализируемой газовой смеси

Изобретение относится к аналитической технике и может быть использовано для измерения содержания в газовых смесях предельных углеводородов, таких как метан и этан, а также содержание в них примеси водорода. Амперометрический датчик для измерения концентрации метана и примеси водорода в...
Тип: Изобретение
Номер охранного документа: 0002735628
Дата охранного документа: 05.11.2020
16.06.2023
№223.018.7d6a

Способ определения содержания глинозема в криолит-глиноземном расплаве и электрохимическое устройство для его осуществления

Изобретение относится к способу и электрохимическому устройству для определения содержания глинозема в криолит-глиноземном расплаве при электролитическом производстве алюминия. Способ включает погружение электрохимического устройства в криолит-глиноземный расплав, поляризацию с использованием...
Тип: Изобретение
Номер охранного документа: 0002748146
Дата охранного документа: 19.05.2021
Показаны записи 131-140 из 143.
19.05.2023
№223.018.64bf

Порошковый алюминиевый материал

Группа изобретений относится к металлургии и включает жаропрочный алюминиевый сплав, порошковый алюминиевый материал и изделие из него, изготовленное с использованием аддитивной технологии. Жаропрочный алюминиевый сплав содержит, мас.%: кремний 7,0-8,85, медь 1,0-3,0, магний 0,5-2,0, железо...
Тип: Изобретение
Номер охранного документа: 0002737902
Дата охранного документа: 04.12.2020
20.05.2023
№223.018.650f

Литейный алюминиевый сплав

Изобретение относится к области металлургии, в частности к сплавам на основе алюминия, и может быть использовано для получения тонкостенных отливок сложной формы литьем в металлическую форму, в частности для литья автокомпонентов, деталей электронных устройств и др. Литейный сплав на основе...
Тип: Изобретение
Номер охранного документа: 0002745595
Дата охранного документа: 29.03.2021
20.05.2023
№223.018.652b

Жаропрочный коррозионно-стойкий порошковый алюминиевый материал и изделие из него

Изобретение относится к порошковой металлургии, в частности к порошковому алюминиевому материалу для изготовления изделий с использованием аддитивных технологий. Может использоваться для изготовления изделий, применяемых в условиях повышенных рабочих температур и коррозионно-активных сред....
Тип: Изобретение
Номер охранного документа: 0002742098
Дата охранного документа: 02.02.2021
20.05.2023
№223.018.6572

Порошковый алюминиевый материал

Изобретение относится к области металлургии, а именно к составу жаропрочного сплава на основе алюминия и порошку из него, для использования при изготовлении деталей методами аддитивных технологий. Порошковый сплав на основе алюминия содержит, мас.%: медь 6,0-7,0, магний 0,2-0,8, марганец...
Тип: Изобретение
Номер охранного документа: 0002741022
Дата охранного документа: 22.01.2021
20.05.2023
№223.018.65f2

Сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, и может быть использовано для получения высокопрочных прессованных изделий и сварных конструкций пешеходных и автодорожных мостов, работающих под...
Тип: Изобретение
Номер охранного документа: 0002771396
Дата охранного документа: 04.05.2022
20.05.2023
№223.018.65f3

Сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым алюминиевым сплавам на основе системы алюминий-цинк-магний, и может быть использовано для получения высокопрочных прессованных изделий и сварных конструкций пешеходных и автодорожных мостов, работающих под...
Тип: Изобретение
Номер охранного документа: 0002771396
Дата охранного документа: 04.05.2022
20.05.2023
№223.018.66d5

Порошковый материал с высокой теплопроводностью

Изобретение относится к области металлургии, а именно к порошковым материалам на основе алюминиевых сплавов, применяемых для изготовления деталей методами аддитивных технологий, в том числе методом селективного лазерного сплавления. Порошковый алюминиевый материал для изготовления деталей с...
Тип: Изобретение
Номер охранного документа: 0002752489
Дата охранного документа: 28.07.2021
20.05.2023
№223.018.673b

Деформируемый сплав на основе алюминия и изделие из него

Изобретение относится к области цветной металлургии, в частности к термически упрочняемым сплавам на основе системы алюминий-магний-кремний, предназначенным для применения в элементах конструкций нефтегазовой отрасли, в частности для изготовления бурильных труб и цилиндрических полых слитков....
Тип: Изобретение
Номер охранного документа: 0002754541
Дата охранного документа: 03.09.2021
23.05.2023
№223.018.6e10

Способ электролитического синтеза гексахлоррената цезия

Изобретение относится к электролитическому получению гексахлоррената цезия, который может быть использован для приготовления электролитов, пригодных для электроосаждения рения. Синтез гексахлоррената цезия осуществляется путем электрохимической реакции ионизации металлического рения в растворе...
Тип: Изобретение
Номер охранного документа: 0002758363
Дата охранного документа: 28.10.2021
16.06.2023
№223.018.7c16

Порошковый алюминиевый материал

Изобретение относится к порошковой металлургии, в частности к порошковым алюминиевым материалам для изготовления деталей с использованием аддитивных технологий, в том числе методом селективного лазерного синтеза. Порошковый алюминиевый материал получен газовым распылением и содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002744075
Дата охранного документа: 02.03.2021
+ добавить свой РИД