×
25.08.2017
217.015.97f8

Результат интеллектуальной деятельности: ФАЗОМЕТР КОГЕРЕНТНО-ИМПУЛЬСНЫХ РАДИОСИГНАЛОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов. Фазометр когерентно-импульсных радиосигналов содержит блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти, синхрогенератор, первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти, осуществляющие межпериодную обработку исходных отсчетов с целью однозначного измерения доплеровской (радиальной) скорости движущегося объекта. Технический результат заключается в возможности получения требуемого диапазона однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности. 10 ил.

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) неэквидистантных когерентно-импульсных радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения доплеровской скорости летательных аппаратов.

Известен фазометр среднего значения сдвига фазы [1], содержащий последовательно соединенные фазометр мгновенного значения, блок памяти, блок вычитания, второй вход которого соединен с выходом фазометра мгновенного значения, блок свертки, тригонометрический преобразователь, два выхода которого соединены с двумя одинаковыми каналами, состоящими из последовательно соединенных перемножителя и блока усреднения, выходы блока усреднения каждого канала соединены с соответствующими входами блока вычисления фазы, вторые входы перемножителя через блок вычисления модуля соединены с входом фазометра мгновенного значения, являющимся входом устройства. Однако это устройство из-за двойного тригонометрического преобразования обладает большой аппаратурной погрешностью, имеет малые пределы измерения фазы [-π/2, π/2].

Известен также фазометр [2], содержащий два сумматора, входы которых являются входами фазометра, к ним также подключены детекторы огибающих, выходы сумматоров соединены через последовательно включенные усилители с автоматической регулировкой усиления (АРУ), линии задержки и ключи со вторыми входами сумматоров, вторые входы ключей соединены с выходами детекторов огибающих, а вторые входы усилителей с АРУ подключены к выходам источника опорных напряжений, выходы сумматоров соединены с входами смесителей, выходы которых через последовательно соединенные фильтры нижних частот и избирательные усилители подключены к входам фазоиндикатора, выход одного из фильтров нижних частот соединен с входом системы фазовой автоматической подстройки частоты (ФАПЧ), выходы которой соединены со вторыми входами смесителей. Однако данное устройство имеет низкую точность измерения и, кроме того, из-за наличия в нем ФАПЧ обладает повышенной инерционностью.

Наиболее близким к изобретению является фазометр доплеровского сдвига фазы когерентно-импульсных радиосигналов [3], выбранный в качестве прототипа, содержащий блок задержки, выходы которого соединены с входами блока комплексного сопряжения (на основе инвертора), выходы блока комплексного сопряжения соединены с первыми входами блока комплексного умножения, вторые входы которого объединены с входами блока задержки, являющимися входами фазометра, а также блок усреднения, блок вычисления модуля и блок вычисления фазы, выход которого соединен с первым входом блока коррекции пределов измерения, входы блока вычисления фазы соединены со вторыми входами блока коррекции пределов измерения, выход блока коррекции пределов измерения соединен с входом ключа, управляющий вход которого через пороговый блок подключен к выходу блока памяти. Однако данное устройство обладает ограниченным диапазоном измерения доплеровской (радиальной) скорости.

Задачей, решаемой в изобретении, является расширение диапазона однозначно измеряемых радиальных скоростей за счет применения дополнительной обработки неэквидистантных когерентно-импульсных сигналов.

Для решения поставленной задачи в фазометр когерентно-импульсных радиосигналов, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти и синхрогенератор, введены первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти.

Дополнительные блоки, введенные в предлагаемое устройство, являются известными. Так, соединенные вместе блок задержки, блок комплексного сопряжения и блок комплексного умножения позволяют выделить доплеровский набег фазы за интервал между соседними импульсами. Однако неизвестно совместное применение блока задержки, блока комплексного сопряжения, блока комплексного умножения, первого и второго двухканальных ключей, блока управления, дополнительного блока задержки, дополнительного блока комплексного сопряжения и дополнительного блока комплексного умножения. Новыми являются связи первого и второго двухканальных ключей с блоком комплексного умножения и блоком управления, блока усреднения с первым двухканальным ключом и дополнительным блоком задержки, дополнительного блока усреднения со вторым двухканальным ключом и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с дополнительным блоком задержки и дополнительным блоком комплексного сопряжения, дополнительного блока комплексного умножения с блоком вычисления фазы и блоком вычисления модуля, блоком вычисления модуля и пороговым блоком, дополнительного умножителя с блоком вычисления фазы и ключом, что обеспечивает расширение диапазона однозначно измеряемых радиальных скоростей. Связи между синхрогенератором и всеми блоками фазометра когерентно-импульсных радиосигналов обеспечивают согласованную обработку неэквидистантной когерентно-импульсной последовательности радиоимпульсов.

Сравнение с техническими характеристиками, известными из опубликованных источников информации, показывает, что заявляемое решение обладает новизной и имеет изобретательский уровень.

Заявляемое решение носит технический характер, осуществимо, воспроизводимо и, следовательно, является промышленно применимым.

На фиг. 1 представлена структурная электрическая схема фазометра когерентно-импульсных радиосигналов; на фиг. 2 - блока задержки; на фиг. 3 - блока комплексного сопряжения; на фиг. 4 - блока комплексного умножения; на фиг. 5 - блока усреднения; на фиг. 6 - блока вычисления фазы; на фиг. 7 - блока присвоения знака; на фиг. 8 - блока вычисления модуля; на фиг 9 - двухканального ключа; на фиг. 10 - блока управления.

Фазометр когерентно-импульсных радиосигналов (фиг. 1) содержит блок 1 задержки, блок 2 комплексного сопряжения, блок 3 комплексного умножения, блок 4 усреднения, блок 5 вычисления фазы, ключ 6, блок 7 вычисления модуля, пороговый блок 8, блок 9 памяти, синхрогенератор 10, первый двухканальный ключ 11, второй двухканальный ключ 12, дополнительный блок 13 усреднения, блок 14 управления, дополнительный блок 15 задержки, дополнительный блок 16 комплексного сопряжения, дополнительный блок 17 комплексного умножения, дополнительный умножитель 18 и дополнительный блок 19 памяти, при этом выходы блока 1 задержки соединены с входами блока 2 комплексного сопряжения, выходы которого соединены с первыми входами блока 3 комплексного умножения, вторые входы которого объединены с входами блока 1 задержки, выход порогового блока 8 соединен с управляющим входом ключа 6, первый вход порогового блока 8 соединен с выходом блока 9 памяти, выходы блока 3 комплексного умножения соединены с объединенными входами первого 11 и второго 12 двухканальных ключей, управляющие входы которых соединены соответственно с первым и вторым выходами блока 14 управления, выходы первого двухканального ключа 11 соединены с входами блока 4 усреднения, выходы которого соединены с входами дополнительного блока 15 задержки, выходы второго двухканального ключа 12 соединены с входами дополнительного блока 13 усреднения, выходы которого соединены с входами дополнительного блока 16 комплексного сопряжения, выходы дополнительного блока 15 задержки соединены с первыми входами дополнительного блока 17 комплексного умножения, вторые входы которого соединены с выходами дополнительного блока 16 комплексного сопряжения, выходы дополнительного блока 17 комплексного умножения соединены с объединенными входами блока 5 вычисления фазы и блока 7 вычисления модуля, выход которого соединен со вторым входом порогового блока 8, выход блока 5 вычисления фазы соединен с первым входом дополнительного умножителя 18, второй вход которого соединен с выходом дополнительного блока 19 памяти, выход дополнительного умножителя соединен с основным входом ключа 6, выход синхрогенератора 10 соединен с синхровходами блока 1 задержки, блока 2 комплексного сопряжения, блока 3 комплексного умножения, блока 4 усреднения, блока 5 вычисления фазы, ключа 6, блока 7 вычисления модуля, порогового блока 8, блока 9 памяти, первого 11 и второго 12 двухканальных ключей, дополнительного блока 13 усреднения, дополнительного блока 15 задержки, дополнительного блока 16 комплексного сопряжения, дополнительного блока 17 комплексного умножения, дополнительного умножителя 18 и дополнительного блока 19 памяти, причем входами фазометра когерентно-импульсных радиосигналов являются входы блока 1 задержки, а первым и вторым выходами - соответственно выходы ключа 6 и порогового блока 8.

Блок 1 задержки и дополнительный блок 15 задержки (фиг. 2) содержат две цифровые линии задержки 20, входами блоков задержки являются входы цифровых линий задержки 20, выходы которых являются выходами блоков задержки.

Блок 2 комплексного сопряжения и дополнительный блок 16 комплексного сопряжения (фиг. 3) содержат инвертор 21, первый вход блока комплексного сопряжения является его первым выходом, вторым входом является вход инвертора, выход которого является вторым выходом блока комплексного сопряжения.

Блок 3 комплексного умножения и дополнительный блок 17 комплексного умножения (фиг. 4) содержат два канала (I, II), каждый из которых включает первый перемножитель 22, последовательно включенные второй перемножитель 23 и сумматор 24, выход первого перемножителя 22 одного канала соединен со вторым входом сумматора 24 другого канала, а первыми и вторыми входами блока комплексного умножения соответственно являются объединенные между собой первые входы первого и второго перемножителей 22, 23 каждого из каналов, объединенные вторые входы вторых перемножителей 23 и объединенные вторые входы первых перемножителей 22, а выходами блока комплексного умножения являются выходы сумматоров 24 каждого из каналов.

Блок 4 усреднения (фиг. 5) содержит два канала (I, II), каждый из которых состоит из (N-3)/2 последовательно включенных цифровых линий задержки 25 и (N-3)/2 сумматоров 26, входами блока усреднения являются объединенные входы первой линии задержки 25 и первого сумматора 26 каждого канала (I, II), а выход k-й [k=1…(N-3)/2] линии задержки 25 соединен со вторым входом k-го [k=1…(N-3)/2] сумматора 26 каждого канала (I, II), выходами блока усреднения служат выходы [(N-3)/2]-x сумматоров.

Блок 5 вычисления фазы (фиг. 6) состоит из последовательно включенных делителя 27, функционального преобразователя 28, модульного блока 29, сумматора 30, блока 31 присвоения знака и первого ключа 32, выход функционального преобразователя 28 соединен с входом второго ключа 33, второй вход сумматора 30 соединен с выходом блока 35 памяти, управляющие входы первого и второго ключей 32, 33 соединены с входом делителя 27, соответствующим входу действительной части комплексного числа, второй вход блока 31 присвоения знака соединен с входом делителя 27, соответствующим входу мнимой части комплексного числа, выходы первого и второго ключей 32, 33 соединены с входами сумматора 34, выход которого является выходом блока вычисления фазы, входами блока вычисления фазы являются входы делителя 27.

Блок 31 присвоения знака (фиг. 7) содержит блоки 36, 39 умножения, блок 37 памяти и ограничитель 38, причем второй вход блока присвоения знака является первым входом блока 36 умножения, второй вход которого соединен с выходом блока 37 памяти, выход блока 36 умножения соединен с входом ограничителя 38, выход которого соединен с первым входом блока 39 умножения, второй вход которого является первым входом блока присвоения знака, выходом блока присвоения знака служит выход блока 39 умножения.

Блок 7 вычисления модуля (фиг. 8) содержит два блока 40 умножения, сумматор 41 и блок 42 извлечения квадратного корня, входами блока вычисления модуля являются входы блоков 40 умножения, выходы которых соединены с первым и вторым входами сумматора 41, выход которого соединен с входом блока 42 извлечения квадратного корня, выход которого является выходом блока вычисления модуля.

Первый 11 и второй 12 двухканальные ключи (фиг. 9) содержат два ключа 43, входами двухканальных ключей являются входы ключей 43, выходы которых являются выходами двухканальных ключей.

Блок 14 управления (фиг. 10) содержит триггер 44 и элемент НЕ 45, входом блока управления является вход триггера 44, выход которого соединен с входом элемента НЕ 45, первым выходом блока 14 управления является выход триггера 44, а вторым выходом - выход элемента НЕ 45.

Фазометр когерентно-импульсных радиосигналов работает следующим образом.

В заявляемом фазометре обрабатывается неэквидистантная когерентно-импульсная последовательность N радиоимпульсов с чередующимися периодами повторения T1 и Т2, причем T12=ΔT. При отражении радиоимпульсов от движущейся цели их несущие частоты в соответствующих периодах приобретают доплеровские сдвиги фазы

где - доплеровская частота, νr - радиальная скорость цели, - несущая частота радиоимпульсов, с - скорость распространения радиоволн.

Отраженные от цели радиоимпульсы поступают на вход приемника, в котором усиливаются, в квадратурных фазовых детекторах переносятся на видеочастоту, а затем подвергаются аналого-цифровому преобразованию (соответствующие блоки на фиг. 1 не показаны). На вход фазометра в одном элементе разрешения по дальности поступают цифровые отсчеты комплексной огибающей

k=1…N,

где u1k, u2k - цифровые коды действительной и мнимой частей отсчетов Uk.

Входные отсчеты Uk фазометра (фиг. 1) в блоке 1 задержки (фиг. 2) под управлением синхронизирующих импульсов, вырабатываемых синхрогенератором 10, поочередно задерживаются на интервалы T1 и Т2, что обеспечивает синхронность последующего комплексного умножения отсчетов по дальности. Синхрогенератор 10 управляется импульсами синхронизатора радиолокатора (на фиг. 1 не показан), следующими поочередно с интервалами T1 и Т2. В блоке 2 комплексного сопряжения (фиг. 3) осуществляется комплексное сопряжение задержанного отсчета . Далее в блоке 3 комплексного умножения (фиг. 4) реализуется попарное умножение отсчетов в соответствии с алгоритмом

Попарные произведения раздельно для каждого интервала T1 и Т2 соответственно через первый 11 и второй 12 двухканальные ключи раздельно поступают в блок 4 усреднения и в дополнительный блок 13 усреднения (фиг. 5). Поочередная коммутация первого 11 и второго 12 двухканального ключей осуществляется импульсами соответственно первого и второго выходов блока 14 управления, синхронизируемого также импульсами синхронизатора радиолокатора.

В блоке 4 усреднения (фиг. 5) с помощью линий задержки 25 на интервал T12 и сумматоров 26 в каждом элементе разрешения по дальности осуществляется скользящее вдоль азимута когерентное суммирование (накопление) соответствующих интервалу T1 попарных произведений, что приводит к образованию на выходе блока 4 усреднения при нечетном N величины

В дополнительном блоке 14 усреднения (фиг. 5) осуществляется аналогичное суммирование соответствующих интервалу Т2 попарных произведений, что приводит к образованию на его выходе величины

Величина Y1 на выходе блока 4 усреднения (фиг. 5) по времени предшествует величине Y2 на интервал Т2, что компенсируется соответствующей данному интервалу задержкой Y1 в дополнительном блоке 15 задержки (фиг. 2). В дополнительном блоке 16 комплексного сопряжения (фиг. 3) инвертируется знак мнимой части величины Y2.

Величины Y1 и одновременно поступают соответственно на первые и вторые входы дополнительного блока 17 комплексного умножения (фиг. 4), на выходе которого вычисляется величина

Величины ν1 и ν2 поступают на соответствующие входы блока 5 вычисления фазы (фиг. 6), где на основе блока 27 деления и функционального преобразователя 28 вычисляется оценка

Последующие преобразования оценки зависят от знака величины ν1. При ν1>0 открыт второй ключ 33, и оценка через сумматор 34 непосредственно поступает на выход блока 5 вычисления фазы. При ν1<0 открыт первый ключ 32, а второй ключ 33 закрыт. При этом в модульном блоке 29 образуется |argV|, вычитаемый в блоке 30 из величины π, поступающей от блока 35 памяти. Полученной разности в блоке 31 присваивается знак величины ν2.

Блок 31 присвоения знака (фиг. 7) работает следующим образом. На второй вход блока присвоения знака поступает величина ν2, где в блоке 36 умножения производится ее умножение на постоянный множитель из блока 37 памяти с целью масштабирования и дальнейшего ограничения в ограничителе 38 по уровню ±1. Таким образом, после ограничения величина на выходе ограничителя 38 имеет смысл знака величины ν2, который, поступая на первый вход блока 39 умножения, присваивается разности π-|argV|, поступающей с выхода блока 30 на первый вход блока 31 присвоения знака, т.е. на второй вход блока 39 умножения.

Рассмотренные операции позволяют в блоке 5 вычисления фазы сначала найти оценку доплеровского сдвига фазы, находящуюся в интервале [-π/2, π/2], а затем при помощи последующих логических преобразований расширить пределы ее однозначного измерения до интервала [-π, π] в соответствии с алгоритмом

Дополнительный блок 18 умножения (фиг. 1) осуществляет умножение найденной оценки сдвига фазы на весовой коэффициент а, хранящийся в дополнительном блоке 19 памяти, что позволяет найти однозначную оценку радиальной скорости в соответствии с алгоритмом

где - весовой коэффициент.

Выигрыш в диапазоне однозначного измерения вытекает из сравнения интервалов однозначности доплеровских частот предложенного устройства [-1/2ΔT, 1/2ΔT] и известного (прототипа) [-1/2T, 1/2T]. При этом интервал однозначного измерения радиальной скорости расширяется в Т/ΔT раз, что соответствует решению поставленной задачи изобретения. Если в соответствии с условием и с учетом для максимально возможной скорости цели выбрать интервал , то во всем диапазоне реальных скоростей цели может быть осуществлено их однозначное измерение. При этом сохраняется однозначность измерения дальности, которая обеспечивается соответствующим выбором меньшего периода повторения импульсов Т2.

Для уменьшения вероятности работы устройства по шумам в нем исключается выдача полученной оценки на выход в отсутствие отраженного от цели сигнала. В блоке 7 вычисления модуля (фиг. 8) вычисляется величина

которая поступает на второй вход порогового блока 8, в котором сравнивается с пороговым уровнем z0, записанным в блоке 9 памяти. Если происходит превышение порогового уровня z0, то с выхода порогового блока 8 поступает сигнал разрешения на прохождение результата вычисления с выхода дополнительного блока 18 умножения через ключ 6 на первый выход фазометра когерентно-импульсных радиосигналов. В противном случае ключ 6 разомкнут. Кроме того, сигнал с выхода порогового блока 8, являющегося вторым выходом фазометра когерентно-импульсных радиосигналов, может быть использован для отсчета других координат цели, например дальности.

Синхронизация фазометра когерентно-импульсных радиосигналов осуществляется подачей на все блоки заявляемого устройства последовательности синхронизирующих импульсов, вырабатываемых синхронизатором 10 (фиг. 1) с периодом повторения tK, определяемым из условия требуемой разрешающей способности по дальности.

Таким образом, фазометр когерентно-импульсных радиосигналов позволяет получить требуемый диапазон однозначно измеряемых доплеровских скоростей при сохранении однозначного измерения дальности.

Библиография

1. А.С. 737860 (СССР), МПК G01R 25/00. Фазометр среднего значения набега фазы / Э.В. Арбенин, А.В. Касаткин и В.А. Острожинский. Опубл. 30.05.1980. - Изобретения. - 1980. - №20. - С. 226.

2. А.С. 1195279 (СССР), МПК G01R 25/00. Радиоимпульсный фазометр / В.Я. Суньян и Э.Е. Пашковский. Опубл. 30.11.1985. - Изобретения. - 1985. - №44. - С. 204.

3. А.С. 1748086 (СССР), МПК G01R 25/00. Фазометр доплеровского набега фазы радиоимпульсных сигналов / Д.И. Попов, С.В. Герасимов и Е.Н. Матаев. Опубл. 15.07.1992. - Изобретения. - 1992. - №26. - 6 с.

Фазометр когерентно-импульсных радиосигналов, содержащий блок задержки, блок комплексного сопряжения, блок комплексного умножения, блок усреднения, блок вычисления фазы, ключ, блок вычисления модуля, пороговый блок, блок памяти и синхрогенератор, при этом выходы блока задержки соединены с входами блока комплексного сопряжения, выходы которого соединены с первыми входами блока комплексного умножения, вторые входы которого объединены с входами блока задержки, выход порогового блока соединен с управляющим входом ключа, первый вход порогового блока соединен с выходом блока памяти, выход синхрогенератора соединен с синхровходами блока задержки, блока комплексного сопряжения, блока комплексного умножения, блока усреднения, блока вычисления фазы, блока вычисления модуля, порогового блока и блока памяти, отличающийся тем, что введены первый и второй двухканальные ключи, дополнительный блок усреднения, блок управления, дополнительный блок задержки, дополнительный блок комплексного сопряжения, дополнительный блок комплексного умножения, дополнительный умножитель и дополнительный блок памяти, при этом выходы блока комплексного умножения соединены с объединенными входами первого и второго двухканальных ключей, управляющие входы которых соединены соответственно с первым и вторым выходами блока управления, выходы первого двухканального ключа соединены с входами блока усреднения, выходы которого соединены с входами дополнительного блока задержки, выходы второго двухканального ключа соединены с входами дополнительного блока усреднения, выходы которого соединены с входами дополнительного блока комплексного сопряжения, выходы дополнительного блока задержки соединены с первыми входами дополнительного блока комплексного умножения, вторые входы которого соединены с выходами дополнительного блока комплексного сопряжения, выходы дополнительного блока комплексного умножения соединены с объединенными входами блока вычисления фазы и блока вычисления модуля, выход которого соединен со вторым входом порогового блока, выход блока вычисления фазы соединен с первым входом дополнительного умножителя, второй вход которого соединен с выходом дополнительного блока памяти, выход дополнительного умножителя соединен с основным входом ключа, выход синхрогенератора соединен с синхровходами первого и второго двухканальных ключей, дополнительного блока усреднения, дополнительного блока задержки, дополнительного блока комплексного сопряжения, дополнительного блока комплексного умножения, сумматора, дополнительного умножителя и дополнительного блока памяти, причем входами фазометра когерентно-импульсных радиосигналов являются входы блока задержки, а первым и вторым выходами - соответственно выходы ключа и порогового блока.
ФАЗОМЕТР КОГЕРЕНТНО-ИМПУЛЬСНЫХ РАДИОСИГНАЛОВ
ФАЗОМЕТР КОГЕРЕНТНО-ИМПУЛЬСНЫХ РАДИОСИГНАЛОВ
ФАЗОМЕТР КОГЕРЕНТНО-ИМПУЛЬСНЫХ РАДИОСИГНАЛОВ
ФАЗОМЕТР КОГЕРЕНТНО-ИМПУЛЬСНЫХ РАДИОСИГНАЛОВ
Источник поступления информации: Роспатент

Показаны записи 11-20 из 104.
27.10.2013
№216.012.7b4c

Способ образования двумерного линейного высокочастотного электрического поля и устройство для его осуществления

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных электрических полях и может использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Технический результат - усовершенствование...
Тип: Изобретение
Номер охранного документа: 0002497226
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98fe

Кмоп-транзистор с вертикальными каналами и общим затвором

Изобретение относится к области полупроводниковой электроники. В КМОП-транзисторе объединены два комплементарных транзистора в компактную структуру с вертикальными каналами с p- и n-типами проводимости, которые расположены параллельно друг другу и имеют общий затвор. Затвор изолирован от...
Тип: Изобретение
Номер охранного документа: 0002504865
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a35d

Обнаружитель-измеритель когерентно-импульсных сигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных периодических радиосигналов и измерения радиальной скорости объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости летательных...
Тип: Изобретение
Номер охранного документа: 0002507536
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a8fc

Способ контроля и коррекции ориентации деталей и устройство для его осуществления

Группа изобретений относится к области машиностроения, в частности к контролю и коррекции ориентации малоразмерных деталей, имеющих форму прутка с плющением на одном конце, при их обработке. При перемещении освещаемой детали по наклонной плоскости транспортного лотка осуществляют ее...
Тип: Изобретение
Номер охранного документа: 0002508975
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa40

Способ определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов...
Тип: Изобретение
Номер охранного документа: 0002509299
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa42

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины

Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с...
Тип: Изобретение
Номер охранного документа: 0002509301
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b34a

Электронная схема и/или микроэлектромеханическая система с радиационным источником подвижных носителей заряда

Изобретение относится к электронике и микроэлектромеханическим системам. Cхема электронная или микроэлектромеханическая с радиационным источником подвижных носителей заряда (изистор) содержит, по крайней мере, две области - первую и вторую. Первая область состоит из радиоизотопного материала,...
Тип: Изобретение
Номер охранного документа: 0002511614
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb2c

Полупроводниковый прибор с отрицательным сопротивлением (варианты)

Изобретение относится к области полупроводниковой электроники. В предлагаемом приборе объединены три полевых транзистора в единую вертикальную структуру с каналами n- и p-типами проводимости, между которыми образуется электрический переход, при этом исток p-канала расположен напротив стока...
Тип: Изобретение
Номер охранного документа: 0002513644
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb38

Фазометр когерентно-импульсных сигналов

Изобретение относится к измерительной технике и предназначено для измерения доплеровских сдвигов фаз (радиальной скорости объекта) когерентно-импульсных периодических радиосигналов на фоне шума; может быть использовано в радиолокационных и навигационных системах для однозначного измерения...
Тип: Изобретение
Номер охранного документа: 0002513656
Дата охранного документа: 20.04.2014
20.04.2014
№216.012.bb3e

Способ изготовления фотоэмиттера с отрицательным электронным сродством для инфракрасного диапазона

Изобретение относится к области эмиссионной и наноэлектроники и может быть использовано в разработке и в технологии производства фотоэлектронных преобразователей второго поколения, эмиттеров с отрицательным электронным сродством для приборов ИК-диапазона. Способ изготовления фотоэмиттера с...
Тип: Изобретение
Номер охранного документа: 0002513662
Дата охранного документа: 20.04.2014
Показаны записи 11-20 из 132.
27.10.2013
№216.012.781c

Устройство для дистанционной регистрации процессов сердцебиения и дыхания пациента

Изобретение относится к медицинской технике и может быть использовано в медицинской практике для дистанционной регистрации процессов дыхания и сердечной деятельности пациента в реальном времени. Устройство для дистанционной регистрации процессов сердцебиения и дыхания пациента содержит в...
Тип: Изобретение
Номер охранного документа: 0002496410
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7896

Способ формирования магнитотерапевтического воздействия и устройство для его осуществления

Изобретение относится к медицинской технике, а именно к средствам для комплексной магнитотерапии. Способ заключается в размещении по всему телу пациента в два слоя, над и под ним, идентичных модулей в виде формирователей электромагнитного поля, подаче на них электрических сигналов регулируемой...
Тип: Изобретение
Номер охранного документа: 0002496532
Дата охранного документа: 27.10.2013
27.10.2013
№216.012.7b4c

Способ образования двумерного линейного высокочастотного электрического поля и устройство для его осуществления

Изобретение относится к области фокусировки, энерго и масс-анализа заряженных частиц в линейных высокочастотных электрических полях и может использовано для улучшения конструкторских и коммерческих характеристик приборов для микроанализа вещества. Технический результат - усовершенствование...
Тип: Изобретение
Номер охранного документа: 0002497226
Дата охранного документа: 27.10.2013
20.01.2014
№216.012.98fe

Кмоп-транзистор с вертикальными каналами и общим затвором

Изобретение относится к области полупроводниковой электроники. В КМОП-транзисторе объединены два комплементарных транзистора в компактную структуру с вертикальными каналами с p- и n-типами проводимости, которые расположены параллельно друг другу и имеют общий затвор. Затвор изолирован от...
Тип: Изобретение
Номер охранного документа: 0002504865
Дата охранного документа: 20.01.2014
20.02.2014
№216.012.a35d

Обнаружитель-измеритель когерентно-импульсных сигналов

Изобретение относится к радиолокации и предназначено для обнаружения когерентно-импульсных периодических радиосигналов и измерения радиальной скорости объекта; может быть использовано в радиолокационных системах управления воздушным движением для обнаружения и измерения скорости летательных...
Тип: Изобретение
Номер охранного документа: 0002507536
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.a8fc

Способ контроля и коррекции ориентации деталей и устройство для его осуществления

Группа изобретений относится к области машиностроения, в частности к контролю и коррекции ориентации малоразмерных деталей, имеющих форму прутка с плющением на одном конце, при их обработке. При перемещении освещаемой детали по наклонной плоскости транспортного лотка осуществляют ее...
Тип: Изобретение
Номер охранного документа: 0002508975
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa40

Способ определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников

Использование: для определения зарядового состояния атомов в субнанослойных пленках на поверхности металлов и полупроводников. Сущность: заключается в том, что поверхность анализируемого объекта облучают ионами инертных газов низких энергий, регистрируют энергетический спектр отраженных ионов...
Тип: Изобретение
Номер охранного документа: 0002509299
Дата охранного документа: 10.03.2014
10.03.2014
№216.012.aa42

Способ определения кристаллической фазы в аморфных пленках наноразмерной толщины

Использование: для определения кристаллической фазы в аморфных пленках наноразмерной толщины. Сущность заключается в том, что выполняют бомбардировку поверхности пучком ионов и регистрацию интенсивности отраженных ионов, при этом анализируемую поверхность бомбардируют ионами инертного газа с...
Тип: Изобретение
Номер охранного документа: 0002509301
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b34a

Электронная схема и/или микроэлектромеханическая система с радиационным источником подвижных носителей заряда

Изобретение относится к электронике и микроэлектромеханическим системам. Cхема электронная или микроэлектромеханическая с радиационным источником подвижных носителей заряда (изистор) содержит, по крайней мере, две области - первую и вторую. Первая область состоит из радиоизотопного материала,...
Тип: Изобретение
Номер охранного документа: 0002511614
Дата охранного документа: 10.04.2014
20.04.2014
№216.012.bb2c

Полупроводниковый прибор с отрицательным сопротивлением (варианты)

Изобретение относится к области полупроводниковой электроники. В предлагаемом приборе объединены три полевых транзистора в единую вертикальную структуру с каналами n- и p-типами проводимости, между которыми образуется электрический переход, при этом исток p-канала расположен напротив стока...
Тип: Изобретение
Номер охранного документа: 0002513644
Дата охранного документа: 20.04.2014
+ добавить свой РИД