×
24.08.2017
217.015.95cf

Результат интеллектуальной деятельности: КАТОДНАЯ ФУТЕРОВКА ЭЛЕКТРОЛИЗЕРА ПРОИЗВОДСТВА ПЕРВИЧНОГО АЛЮМИНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к футеровке катодного устройства электролизера для производства алюминия. Футеровка катодного устройства содержит подовые и бортовые блоки, соединенные между собой холоднонабивной подовой массой, огнеупорный и теплоизоляционный слои из неформованных материалов. Огнеупорный слой выполнен из алюмосиликатного материала, а теплоизоляционный слой из неграфитированного углерода или его смеси с порошком алюмосиликатного или глиноземистого состава. Теплоизоляционный и огнеупорный слои состоят не менее чем из двух подслоев, при этом пористость теплоизоляционного и огнеупорного слоев увеличивается от верхнего подслоя к нижнему, а соотношение толщин огнеупорного и теплоизоляционного слоев составляет 1:(1-3). Обеспечивается снижение содержания цианидов в верхних слоях теплоизоляции и обеспечиваются условия для повторного использования теплоизоляционного материала. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области цветной металлургии, в частности к электролитическому производству алюминия, а именно к конструкции катодного устройства электролизера для производства алюминия.

Известно катодное устройство электролизера для получения алюминия, содержащее металлический кожух, футерованный боковыми углеграфитовыми блоками, цоколь из сыпучего материала выполненный из отсева кварцита фракции 2-20 мм, являющегося продуктом отхода от производства кристаллического кремния, подовые углеграфитовые блоки с токоподводящими стержнями и межблочные швы (Патент RU 2061796, МПК С25С 3/08, опубл. 10.06.1996).

Недостатками такой конструкции катодного устройства электролизера являются большие энергозатраты в процессе работы электролизеров вследствие высоких значений коэффициентов теплопроводности слоев из отсева кварцита фракции 2-20 мм, нестабильности температурных полей в катоде из-за взаимодействия слоев кварцита с парами натрия и образованием высокотеплопроводного стекла - бисиликата натрия. Кроме того, после окончания срока службы отработанная футеровка, пропитанная фторсолями, подлежит безопасному захоронению или эффективной утилизации, что требует дополнительных затрат.

Наиболее близкой к заявляемой катодной футеровке по технической сущности и достигаемому результату является футеровка катодного устройства электролизера для получения алюминия, состоящая из подовых и бортовых блоков, огнеупорного слоя из порошка алюмосиликатного состава, уплотненного до пористости не более 17%, и слоя теплоизоляции, выполненного из неграфитированного углерода или его смеси с порошком алюмосиликатного или глиноземистого состава (патент RU 2385972, МПК С25С 3/08, опубл. 10.04.2010).

Недостатком прототипа является формирование цианидов натрия в верхних слоях теплоизоляции, содержащих неграфитированный углерод, что не позволяет осуществить повторное использование футеровочного материала и представляет экологическую угрозу при демонтаже электролизеров.

В основу изобретения положена задача разработки конструкции катодного устройства электролизера, обеспечивающей экологически безопасное использование отработанного футеровочного материала.

Технический результат заключается в снижении содержания цианидов натрия в верхних слоях теплоизоляции.

Технический результат достигается за счет того, что в футеровке катодного устройства алюминиевого электролизера с катодным кожухом и угольными подовыми блоками, включающей в себя подовые и бортовые блоки, соединенные между собой холоднонабивной подовой массой, причем огнеупорный слой выполнен из алюмосиликатного материала, а теплоизоляционный слой из неграфитированного углерода или его смеси с порошком алюмосиликатного или глиноземистого состава, теплоизоляционный и огнеупорный слои состоят не менее чем из двух подслоев, при этом пористость теплоизоляционного и огнеупорного слоев увеличивается от верхнего подслоя к нижнему, а соотношение толщин огнеупорного и теплоизоляционного слоев составляет 1:(1-3).

Предлагаемый способ дополняют частные отличительные признаки, способствующие достижению указанного технического результата. Увеличение пористости огнеупорного слоя от верхнего подслоя к нижнему может составлять от 17 до 40%, а увеличение пористости теплоизоляционного слоя от верхнего подслоя к нижнему - от 60 до 90%. В качестве одного из подслоев огнеупорного слоя могут использовать природный материал, например порцелланит. Между подслоями огнеупорного слоя может быть установлена графитовая фольга.

Сопоставительный анализ признаков заявляемого решения и признаков аналога и прототипа свидетельствует о соответствии решения критерию «новизна».

Предлагаемая конструкция катодного устройства по сравнению с прототипом позволяет снизить содержание цианидов в верхних слоях теплоизоляции, обеспечить повторное использование теплоизоляционного материала.

Предлагаемые параметры являются оптимальными. Если толщина огнеупорного слоя по отношению к теплоизоляционному будет менее 1/3, то содержание цианидов в углеродном теплоизоляционном материале будет достаточно велико и это создает экологические угрозы при демонтаже катодного устройства и повторном использовании теплоизоляционного материала

где ΔG - изменение энергии Гиббса, позволяющее судить о принципиальной возможности осуществления процесса при температуре 973 K.

Увеличение толщины огнеупорного алюмосиликатного слоя обеспечивает связывание проникающего натрия в устойчивые соединения

ΔGo1123K = -587460 Дж

ΔGo1123K = -464210 Дж

Однако, если толщина огнеупорного слоя будет больше толщины теплоизоляционного слоя, то снижается тепловая эффективность работы катодного устройства, поскольку тепловое сопротивление слоев алюмосиликатных огнеупоров меньше, чем слоев из неграфитированного углерода. Следствием этого является формирование на рабочей поверхности подовых блоков нетокопроводящих осадков, которые вызывают увеличение температурной неравномерности в подовых блоках и их преждевременный выход из строя.

Необходимость разделения огнеупорного слоя, выполняемого из алюмосиликатных материалов на два и более подслоев с увеличением пористости от верхнего подслоя к нижнему обусловлено следующими обстоятельствами. Основное предназначение верхних подслоев - предотвратить проникновение жидкофазных компонентов электролита в нижерасположенные подслои. Проблема, возникающая при использовании в качестве барьерных подслоев неформованных материалов, заключается в том, что они являются гетерогенными веществами, твердая составляющая которых хорошо смачивается фтористыми солями, проникающим по открытым порам. Количество проникающих через барьер фторсолей зависит от гранулометрического состава исходного порошка смеси, метода уплотнения, условий последующего теплового и химического воздействия.

В соответствии с законом Дарси движущей силой процесса проникновения расплавленных фтористых солей является градиент давления по высоте барьерного материала.

где q - объемный расход расплавленных фтористых солей через поперечное сечение, м3/(м2с).

k - коэффициент проницаемости, м2;

dP/dx - градиент давления по высоте барьерного материала, Па;

μ - динамическая вязкость, Па⋅с.

Для крупных пор (более 100 мкм) градиент давления обусловлен преимущественно гидростатическими и гравитационными силами. Для средних канальных пор (размерами 5…25 мкм) за счет потенциальной энергии поля капиллярных сил, градиент давления гораздо выше, чем для крупных пор, и такие капилляры способны интенсивно впитывать расплавленные фторсоли. Для самых мелких пор гидравлическое сопротивление движению жидкости очень велико, их заполнение идет чрезвычайно медленно и количество проникающих фторсолей минимально. При правильно подобранном гранулометрическом состоянии и хорошем уплотнении возможно формирование огнеупорных подслоев с низкой пористостью и очень мелкими размерами пор.

Входящий в уравнение (1) коэффициент проницаемости зависит от размеров и количества пор и может быть оценен по структурным параметрам: величине открытой пористости, распределению пор по размерам и коэффициенту извилистости пор. Для пористых материалов с равномерно распределенными и взаимно не пересекающимися порами в виде цилиндрических каналов малого сечения коэффициент проницаемости может быть определен по зависимости

где П - пористость;

d - размер пор, м.

Как следует из представленных зависимостей, с увеличением пористости и размеров пор растет количество проникающих компонентов электролита и, наоборот, при уменьшении пористости (а, следовательно, уменьшении размеров пор) проникновение фторсолей в барьерный материал замедляется и реакция взаимодействия протекает в его верхних поверхностных подслоях. При наличии в составе неформованных алюмосиликатных барьерных материалов комплексных ионов кремнезема, которые повышают вязкость внедряющегося расплава и соответственно снижают скорость его проникновения, химическое взаимодействие компонентов фторсолей с барьерным материалом и его растворение замедляют просачивание компонентов электролита.

Поэтому важно получение как можно более плотного барьерного подслоя с тщательно подобранным гранулометрическим составом. Обычно максимальное уплотнение и минимально возможное значение открытой пористости таких засыпных подслоев составляет ~15%. Однако рост плотности барьерного материала обуславливает его больший расход и более высокие значения коэффициента теплопроводности, в результате чего снижается тепловое сопротивление катодного устройства и растут тепловые потери, что снижает экономическую эффективность катодной футеровки.

Пропитка барьерных материалов компонентами электролита увеличивает их коэффициент теплопроводности и вызывает перестройку полей температур, в результате чего изотерма ликвидус фторсолей перемещается вниз. Чем менее плотен материал барьерного подслоя, тем сильнее изотерма смещается вниз и тем большее количество барьерного материала оказывается в зоне высоких температур и подвергается химическому воздействию по всему объему, результатом чего могут быть объемные изменения, оказывающие вертикальное воздействие на подовые блоки. Последнее негативно сказывается на сроке службы катодных устройств электролизеров.

Дополнительной возможностью для замедления проникновения жидкой фазы является установка графитовой фольги под верхним подслоем огнеупорного слоя. Под фольгой размещен менее дорогой алюмосиликатный огнеупорный материал с более низким содержанием оксида алюминия и более высокой, чем в верхнем подслое пористостью. Это обусловлено необходимостью поглощения натрия. В качестве второго подслоя огнеупорного слоя предлагается использовать природный материал порцелланит (естественно жженные глины), которые содержат оксид кремния (~65%) и оксид алюминия (~20%). Компоненты горелой земли могут вступать в реакции с парообразным натрием с образованием прочных соединений - альбита и нефелина. Более пористый огнеупорный материал имеет низкий коэффициент теплопроводности, что обеспечивает высокий градиент температур и снижение температур в нижерасположенном теплоизоляционном слое, состоящем из неграфитированных материалов. Это обеспечит снижение содержания цианидов. Однако пористость большая, чем 40% нежелательна по причине возможной усадки нижнего подслоя огнеупорного слоя.

Верхний подслой теплоизоляционного слоя выполнен из неграфитированного углерода, например полукокса бурого угля. Он имеет малую плотность и низкие значения коэффициента теплопроводности, обусловленную наличием закрытой пористости. Общая пористость верхнего подслоя теплоизоляционного слоя должна быть не менее 60% по причине недопустимости утраты теплоизоляционных свойств, а нижнего подслоя - не более 90% по соображениям недопустимости сильной усадки.

Сущность изобретения поясняется графическим материалом. На фиг. 1 изображена катодная футеровка электролизера, состоящая из нижнего теплоизоляционного неграфитированного углеродного подслоя 1 пористостью до 90%, расположенного над ним теплоизоляционного подслоя 2 с пористостью до 60%, над которыми располагается нижний подслой 3 алюмосиликатного огнеупорного слоя, имеющий пористость до 40%, покрытый верхним подслоем барьерных огнеупоров 4, имеющим пористость до 17% и высокое сопротивление к проникновению компонентов электролита, проникающим через подину, состоящую из углеродных блоков 5. По периметру внутренней боковой поверхности металлического кожуха установлены бортовые блоки 6. Блюмс 7 соединен с углеродным блоком 5. По периметру кожуха выполнена кладка кирпичной бровки 8. Подовая масса 9 заполняет пространство между углеродными блоками 5 и бортовым блоком 6. Под верхним подслоем огнеупора установлена графитовая фольга 10.

На изображенном графике расчетного распределения температур по высоте цокольной части футеровки (фиг. 2), на горизонтальной оси которого представлено расстояние по глубине цоколя, отсчитываемая вертикально вниз от подошвы подового блока, а на вертикальной оси - расчетные значения температуры, расчеты выполнены для катодной футеровки электролизера производства первичного алюминия трех различных вариантов исполнения.

В первом варианте при общей высоте подкатодного пространства 425 мм толщина огнеупорного слоя составляла 100 мм, а толщина теплоизоляционного - 325 мм. Соотношение толщин огнеупорного и теплоизоляционного слоев составляла ~ (1:3,25).

Во втором варианте толщина огнеупорного слоя составляла 155 мм, а толщина теплоизоляционного - 280 мм. Соотношение толщин огнеупорного и теплоизоляционного слоев составляет ~ (1:1,8).

В третьем варианте толщина огнеупорного слоя составляла 200 мм, а толщина теплоизоляционного - 215 мм. Соотношение толщин огнеупорного и теплоизоляционного слоев составляла ~ (1:1,1).

На вертикальной оси отмечены два значения температуры. Первая температура - это температура плавления карбоната натрия, равная 852°С, а вторая - температура кристаллизации натрия в условиях подкатодного пространства, равная 542°С. Как видно из представленных данных для первого варианта карбонат натрия образуется на глубине 120-125 мм. Толщина алюмосиликатного огнеупора (барьерной смеси) для данной смеси составляла 100 мм. Поэтому в теплоизоляции на глубине 20-25 мм формируется порошкообразный материал, насыщенный цианидами. В нижерасположенном материале цианиды располагаются в монолитоообразном карбонате натрия и экологическая угроза минимальна, поскольку в подовых блоках всегда формируются цианиды натрия, однако случаев поражения не было. Для третьего варианта с максимальной толщиной огнеупора - 200 мм карбонат натрия в теплоизоляции формируется ниже слоя и угрозы распространения цианидов в пылеобразном состоянии нет. Однако при этом тепловая и экономическая эффективность катодного устройства наиболее низка по причине высокого коэффициента теплопроводности и стоимости огнеупора по сравнению с углеродным материалом. Поэтому вариант 2 с толщиной огнеупорного слоя, равной 155 мм, является более предпочтительным по сравнению с вариантами 1 и 3.

Использование вышеописанной катодной футеровки позволит снизить содержание цианидов в верхних слоях теплоизоляции и обеспечить условия для повторного использование теплоизоляционного материала.


КАТОДНАЯ ФУТЕРОВКА ЭЛЕКТРОЛИЗЕРА ПРОИЗВОДСТВА ПЕРВИЧНОГО АЛЮМИНИЯ
КАТОДНАЯ ФУТЕРОВКА ЭЛЕКТРОЛИЗЕРА ПРОИЗВОДСТВА ПЕРВИЧНОГО АЛЮМИНИЯ
КАТОДНАЯ ФУТЕРОВКА ЭЛЕКТРОЛИЗЕРА ПРОИЗВОДСТВА ПЕРВИЧНОГО АЛЮМИНИЯ
Источник поступления информации: Роспатент

Показаны записи 151-160 из 239.
16.06.2018
№218.016.62b9

Способ приготовления галогенидсодержащего флюса для обработки алюминия и его сплавов

Изобретение относится к способу приготовления галогенидсодержащих флюсов. Способ включает взвешивание компонентов флюса, порционную загрузку в печь и плавление галогенидов, составляющих основу флюса, с последующим введением в расплав остальных галогенидов металлов, перемешивание расплава флюса,...
Тип: Изобретение
Номер охранного документа: 0002657680
Дата охранного документа: 14.06.2018
16.06.2018
№218.016.637a

Способ получения катанки из термостойкого сплава на основе алюминия

Изобретение относится к области металлургии, в частности к технологии получения алюминиевых сплавов, и может быть использовано для получения изделий электротехнического назначения, способных работать при повышенных температурах. Способ получения катанки из термостойкого сплава на основе...
Тип: Изобретение
Номер охранного документа: 0002657678
Дата охранного документа: 14.06.2018
04.07.2018
№218.016.6a35

Кристаллизатор для литья алюминиевых слитков

Изобретение относится к литейному производству и может быть использовано при непрерывном литье алюминиевых слитков. Кристаллизатор содержит корпус (1) и крышку (2). Внутри крышки выполнено устройство подачи смазки, состоящее из проточки (5), выполненной со стороны внешнего контура крышки, и...
Тип: Изобретение
Номер охранного документа: 0002659548
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a81

Литейный алюминиево-кремниевый сплав

Изобретение относится к области металлургии, конкретно к сплавам на основе алюминия, и может быть использовано при получении фасонных отливок различными методами литья, в частности дисков автомобильных колес методом литья под низким давлением. Литейный алюминиево-кремниевый сплав содержит, мас....
Тип: Изобретение
Номер охранного документа: 0002659514
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6abc

Термостойкий сплав на основе алюминия

Изобретение относится к технологии алюминиевых сплавов и может быть использовано при получении изделий, работающих при повышенных температурах. Алюминиевый сплав, содержащий цирконий и по меньшей мере один элемент, выбранный из группы, содержащей железо и никель, имеет структуру, представляющую...
Тип: Изобретение
Номер охранного документа: 0002659546
Дата охранного документа: 02.07.2018
08.07.2018
№218.016.6dfe

Электрод алюминиевого электролизера (варианты)

Изобретение относится к вертикальным или наклонным электродам электролизера для электролитического получения алюминия из оксида алюминия. Электрод содержит основу электрода и поверхностное покрытие на основе тугоплавкой керамики. По первому варианту изобретения основа электрода выполнена из...
Тип: Изобретение
Номер охранного документа: 0002660448
Дата охранного документа: 06.07.2018
28.08.2018
№218.016.800e

Способ литья алюминиевых плоских слитков

Изобретение относится к металлургии. Расплав алюминия подготавливают в миксере. Дегазируют и подают в расплав алюминия прутковую лигатуру состава AlTiB 5/1 в объеме не более 3 кг/т расплава, при этом температуру расплава алюминия в кристаллизаторе поддерживают 700-710°С. Осуществляют фильтрацию...
Тип: Изобретение
Номер охранного документа: 0002665026
Дата охранного документа: 24.08.2018
09.09.2018
№218.016.8537

Способ получения восстановителя для производства технического кремния

Изобретение относится к технологии производства восстановителей для металлургии. Предложен способ переработки углеродсодержащего сырья с получением восстановителя для производства технического кремния, который включает термообработку углеродсодержащего сырья в кипящем слое при температуре...
Тип: Изобретение
Номер охранного документа: 0002666420
Дата охранного документа: 07.09.2018
22.09.2018
№218.016.8932

Способ формирования футеровочных слоев в катодном кожухе алюминиевых электролизеров и устройство для его осуществления

Изобретение относится к способу и устройству для футеровки катодного устройства электролизера для получения алюминия. Способ включает укладку материалов одновременно с его распределением по поверхности цоколя и выравниванием по уровню, отсчитываемому от плоскости верхнего края кожуха катодного...
Тип: Изобретение
Номер охранного документа: 0002667270
Дата охранного документа: 18.09.2018
04.10.2018
№218.016.8e53

Устройство для сбора и удаления газов в алюминиевом электролизере

Изобретение относится к устройству для сбора и удаления газов в алюминиевом электролизере с предварительно обожженными анодами. Устройство содержит систему газоходов, содержащую горизонтальный основной и дополнительный газоходы, выполненные с возможностью включения/отключения основного и...
Тип: Изобретение
Номер охранного документа: 0002668617
Дата охранного документа: 02.10.2018
Показаны записи 151-160 из 173.
29.03.2019
№219.016.ef42

Ошиновка модульная мощных электролизеров для производства алюминия

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах при двухрядном поперечном расположении их в корпусе электролиза, в частности к ошиновке электролизера. В ошиновке электролизера, содержащей анодную ошиновку, соединенную с анодами...
Тип: Изобретение
Номер охранного документа: 0002288976
Дата охранного документа: 10.12.2006
10.04.2019
№219.016.ffe2

Способ автоматического устранения анодных эффектов

Изобретение относится к области электролитического получения алюминия из расплавов и предназначено для автоматического устранения анодных эффектов в электролизерах с самообжигающимся анодом. Техническим результатом является увеличение надежности гашения, снижение времени гашения анодного...
Тип: Изобретение
Номер охранного документа: 0002285755
Дата охранного документа: 20.10.2006
10.04.2019
№219.017.0313

Устройство для сбора и удаления газов из алюминиевого электролизера

Изобретение относится к цветной металлургии, и в частности к устройству для сбора и удаления газов из алюминиевого электролизера при получении алюминия электролизом. Устройство содержит балку-коллектор с двойными вертикальными стенками и газоходными каналами переменного сечения, высота которых...
Тип: Изобретение
Номер охранного документа: 0002316620
Дата охранного документа: 10.02.2008
10.04.2019
№219.017.031c

Устройство для компенсации магнитного поля, наведенного соседним рядом последовательно соединенных электролизеров большой мощности

Изобретение относится к производству алюминия методом электролиза расплавленных криолитовых солей в электролизерах большой мощности при поперечном расположении их в корпусе электролиза, в частности к устройству для компенсации магнитного поля. Устройство включает внутренний и внешний...
Тип: Изобретение
Номер охранного документа: 0002316619
Дата охранного документа: 10.02.2008
10.04.2019
№219.017.0344

Способ обжига подины алюминиевого электролизера с обожженными анодами

Изобретение относится к цветной металлургии, в частности к электролитическому получению алюминия, а именно к способам обжига подины алюминиевого электролизера с обожженными анодами. Способ обжига подины алюминиевого электролизера с обожженными анодами включает покрытие подины, выполненной из...
Тип: Изобретение
Номер охранного документа: 0002318920
Дата охранного документа: 10.03.2008
10.04.2019
№219.017.05c0

Катодное устройство электролизера для получения алюминия

Изобретение относится к катодному устройству электролизера для получения алюминия. Катодное устройство содержит футерованный катодный кожух, опирающийся на фундамент через промежуточную опорную раму, состящую из отдельных секций, причем на концах крайних секций выполнено не менее четырех...
Тип: Изобретение
Номер охранного документа: 0002321683
Дата охранного документа: 10.04.2008
23.04.2019
№219.017.36ad

Способ переработки угольной пены электролитического производства алюминия

Изобретение относится к способу переработки угольной пены. Способ включает обратную флотацию угольной пены водой с разделением ее на хвосты флотации и флотационный криолит, который после сгущения и фильтрации возвращают на электролитическое производство, выщелачивание хвостов флотации с...
Тип: Изобретение
Номер охранного документа: 0002685566
Дата охранного документа: 22.04.2019
25.04.2019
№219.017.3ae9

Катодное устройство алюминиевого электролизера

Изобретение относится к конструкции катодного устройства электролизера для производства алюминия электролизом. Катодное устройство содержит металлический кожух, футерованный боковыми блоками, установленными на бровку, подовые углеграфитовые блоки с токоподводящими стержнями, цоколь из...
Тип: Изобретение
Номер охранного документа: 0002685821
Дата охранного документа: 23.04.2019
29.04.2019
№219.017.3f55

Способ нанесения смачиваемого покрытия подины алюминиевого электролизера

Изобретение относится к области цветной металлургии, в частности к производству алюминия электролизом криолит-глиноземных расплавов. Способ нанесения (синтеза) смачиваемого диборидного покрытия подины алюминиевого электролизера осуществляют в период пуска электролизной ванны непосредственно из...
Тип: Изобретение
Номер охранного документа: 0002299278
Дата охранного документа: 20.05.2007
18.05.2019
№219.017.54e8

Катодное устройство электролизера для производства алюминия

Изобретение относится к области цветной металлургии, а именно к конструкции катодного устройства электролизера для производства алюминия. Технический результат заключается в снижении теплового сопротивления между футеровкой и фланцевым листом катодного устройства электролизера. Оно включает...
Тип: Изобретение
Номер охранного документа: 0002299277
Дата охранного документа: 20.05.2007
+ добавить свой РИД