×
24.08.2017
217.015.9504

Результат интеллектуальной деятельности: ПЕПТИЗАТОР ДЛЯ СИНТЕЗА МАГНИТОАКТИВНОЙ ЖИДКОСТИ НА ВОДНОЙ ОСНОВЕ

Вид РИД

Изобретение

Аннотация: Изобретение может быть использовано в химической промышленности. Лигносульфонаты, подвергнутые нитрованию концентрированной азотной кислотой, применяют в качестве пептизатора для синтеза магнитоактивной жидкости на водной основе. Изобретение позволяет расширить круг веществ, которые могут быть использованы в качестве пептизатора, и повысить полноту использования растительной биомассы. 1 табл., 66 пр.

Изобретение относится к реагентам, предназначенным для синтеза магнитной жидкости, и касается пептизаторов, предназначенных для формирования магнитной жидкости.

Магнитные жидкости обладают уникальным сочетанием текучести и способностью взаимодействовать с магнитным полем. Их свойства определяются совокупностью характеристик, входящих в нее компонентов (твердой магнитной фазы, дисперсионной среды и стабилизатора), варьируя которые можно в широких пределах изменять физико-химические параметры магнитной жидкости в зависимости от условий их применения. Эффективность применения магнитной жидкости определяется намагниченностью насыщения и устойчивостью к действию гравитационных сил и магнитных полей. Магнитные жидкости при использовании в скоростных уплотнениях и подшипниковых узлах должны обладать низкой вязкостью и испаряемостью в сочетании с высокой термостойкостью, при использовании в качестве магнитных чернил - наоборот, высокой испаряемостью. Магнитные жидкости, предназначенные для использования в биологии и медицине, должны быть нетоксичны и устойчивы при контакте с живыми клетками и тканями организма.

Для получения мелкодисперсных магнитоактивных материалов разработано большое число различных методов, которые можно разделить на два типа.

В методах синтеза первого типа частицы магнитоактивных соединений коллоидных размеров образуются благодаря конденсации отдельных молекул. На размер образующихся частиц влияют условия, при которых происходит объединение отдельных молекул в частицы, поэтому для получения коллоидных частиц магнитных материалов используют различные варианты метода.

Одним из вариантов метода конденсации является реакция химической конденсации высоко дисперсного магнетита [Elmore W.C. Ferromagnetic colloid for studying magnetic structure // Phys. Rev. - 1938. - Vol. 54, N 4. - P. 309.; Elmore W.C. The magnetization of ferromagnetic colloid // Phys. Rev. - 1938. - Vol. 54, N 12. - P. 1092-1095]:

2 FeCl3 + FeCl2 + 8 NaOH → Fe3O4 ↓ + 8 NaCl + 4 H2O.

10%-ные растворы FeCl2⋅4H2O и FeCl3⋅6H2O смешивают при 70°С и при постоянном перемешивании к ним добавляют избыток 10%-ного раствора NaOH. Для ограничения роста частиц использовалось интенсивное перемешивание растворов. Для получения магнетита требуемого состава соотношение солей Fe3+/Fe2+ должно быть 2 к 1.

Существуют способы получения магнитных жидкостей и рентгеноконтрастных средств на основе органических соединений. В качестве магнитного компонента использован магнетит, осажденный из смеси солей железа (II) и железа (III) 25%-ным раствором аммония гидроксида [А.с. 568598 СССР, МКл2 С02G 49/08. Способ получения феррожидкости / Бибик Е.Г., Лавров Н.С., Грибанов Н.М., Котомина Т.М., Варенцова Т.А. // Бюл. - 1977. - №30.; А.с. 861321 СССР, МКл3 С01G 49/08. Способ получения феррожидкости / Бибик Е.Г., Грибанов Н.М., Бузунов О.В., Гермашев В.Г. // 1981. - Бюл. - №33.; А.с. 966015 СССР, МКл3 С01G 49/08. Способ получения феррожидкости / Бибик Е.Г., Бузунов О.В., Грибанов Н.М., Гермашев В.Г // Бюл. - 1982. - №38.; А.с. 978860 СССР, МКл3 А61К 33/26. Рентгеноконтрастное вещество / Цыб А.Ф, Амосов И.С, Бибик Е.Е., Грибанов Н.М, Никитина Р.Г., Рожинский М.М., Кугельмас М.К., Шаназаров К.С., Слюсаренко И.С., Граник Е.Н. // Бюл. - 1982. - №45].

Способ синтеза магнетитной магнитной жидкости на водной основе был разработан Нилом [Pat. 4089779 USA, Int. Cl. С02В 1/20. Clarification process / Neal J.A. - 1978.; Pat. 4110208 USA, Int. Cl. С02В 1/20. Clarification process / Neal J.A. - 1978]. Для стабилизации частиц магнетита со средним размером около 10 нм, полученных химической конденсацией, применяли побочный продукт бисульфитной обработки древесины - лигносульфонат натрия.

Методы второго типа синтеза магнитных жидкостей включают в себя различные способы диспергирования крупных частиц магнитоактивных материалов. Первые магнитные жидкости были получены С. Пейпеллом [Pat. 3215572 USA, USA Cl. 149 - 2. Low viskosity magnetic fluid obtaned by the colloidal suspension of magnetic particles / Papell S.S. 1965]. путем мокрого механического измельчения частиц магнетита в шаровых мельницах в течение 1000 ч.

Р. Кайзер усовершенствовал описанный процесс и получил магнитные жидкости на водной основе, органических соединениях (в том числе ароматических углеводородах) и эфирах [Kaiser R., Miskolczy G. Magnetic properties of stable dispersions of subdomain magnetite particle // J. Appl. Phys. - 1970. - Vol. 41, N 3. - P. 1064-1072; Pat. 3700595 USA, Int. Cl. H01F 1/10. Ferrofluid composition / Kaiser R. - 1972].

Кроме механического диспергирования крупных частиц до магнитоактивного материала с образованием частиц коллоидных размеров может быть использовано химическое диспергирование - пептизация, под которой понимается расщепление агрегатов, возникших при коагуляции дисперсных систем, под действием жидкой среды или специальных веществ - пептизаторов. Пептизация применяется в технике при получении высокодисперсных суспензий глин и других веществ.

Предлагается в качестве пептизатора при синтезе магнитной жидкости использовать лигносульфонаты, подвергнутые нитрованию.

Известны различные направления использования нитролигносульфонатов:

1) В производстве бумаги [Чудаков М.И., Русина Н.А., Кирпичева Л.М., Миронова Ю.Я. Модификация лигносульфонатов путем нитрования и использование их при производстве бумаги // ИВУЗ Лесной журнал. - 1977. - №6. - С. 125-127];

2) В строительном производстве для ускорения процессов твердения портландцемента [Топильский Т.В. Влияние нитролигносульфонатов на процессы твердения портланд-цемента // Журнал прикл. химии. - 1981. - т. 54, №1. - С. 7-14];

3) Для обессмоливания сульфитной целлюлозы [Чудаков М.И. и др. Обессмоливание сульфитной целлюлозы растворами нитрованных лигносульфоновых кислот // Бум. пром-сть. - 1973. - №6. - С. 5-6];

4) Для воздействия на вегетацию сорняков и сеянцев ели [Марич С.Н. и др. Оценка воздействия модифицированных лигносульфонатов на вегетацию сорняков и сеянцев ели в лесных питомниках // ИВУЗ Лесной журнал. - 2015. - №3. - С. 59-68];

5) Для производства буровых растворов [Zhang J. at al. Preparation of nitration-oxidation lignosulfonate and the performance in drilling fluid // Petroleum Science and Technology. - 2014. - Vol. 32, Iss. 14. - P. 1661-1668];

6) При решении экологических проблем металлургичесского производства [Пугин К.Г. Разработка противофильтрационного экрана для полигона захоронения отходов металлургии. - Материалы 1-й Международной науч.-практ. конф. "Современные энерго- и ресурсосберегающие технологии. Проблемы и перспективы". - 2009. - Одесса].

Задачей изобретения является расширение круга веществ, которые могут быть использованы в качестве пептизаторов, и более полное использование растительной биомассы.

Для оценки возможности применения нитрованных лигносульфонатов в качестве пептизатора был выполнен эксперимент, в котором доказано пептизирующее действие лигносульфонатов нитрованных в различных условиях.

Нитрование технических лигносульфонатов (ЛСТ) проводили следующим образом. К заданному объему раствора ЛСТ добавляли необходимый объем раствора концентрированной азотной кислоты и выдерживали реакционную смесь в течение 15…60 мин.

Для конденсации магнитоактивного соединения к заданному объему раствора нитрованных ЛСТ добавляли заданный объем раствора сульфата железа (II) и заданный объем раствора щелочного реагента. В этих условиях происходит первоначальное выделение крупнодисперсных частиц, которые постепенно седиментируют. На дне реактора образуется плотный окрашенный осадок, который с течением времени пептизируется. При этом образуется магнитная жидкость, магнитную активность которой измеряли на весах Гуи через заданные промежутки времени.

Пример 1. К 4 мл раствора ЛСТ (концентрация 18,6 мг/мл) добавляли 1 мл концентрированной азотной кислоты (концентрация 63,6%). Продолжительность нитрования составила 60 мин. После завершения нитрования объем реакционной смеси доводили до 100 мл дистиллированной водой. Для конденсации магнитоактивного соединения к 10 мл раствора нитрованных ЛСТ добавляли 2 мл раствора сульфата железа (II) (концентрация 5,56 мг Fe (II)/мл) и 2 мл 2 М раствора гидроксида натрия. В этих условиях происходит первоначальное выделение крупнодисперсных частиц, которые постепенно осаждаются. На дне реактора образуется плотный окрашенный осадок, который с течением времени пептизируется. При этом образуется магнитная жидкость (МЖ), магнитную активность которой измеряли на весах Гуи через 15 мин проведения конденсации. Величина магнитной активности (МА) составила 61,4 мг.

Пример 2. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 79,6 мг.

Пример 3. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 85,4 мг.

Пример 4. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 87,9 мг.

Пример 5. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход концентрированной азотной кислоты составил 0,8 мл. Продукт реакции представляет собой компактный твердый осадок (КО). Величина магнитной активности (МА) составила 47,5 мг.

Пример 6. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 84,3 мг.

Пример 7. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 102,9 мг.

Пример 8. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 114,3 мг.

Пример 9. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 5. Расход концентрированной азотной кислоты составил 1,2 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 29,2 мг.

Пример 10. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 57,0 мг.

Пример 11. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 74,1 мг.

Пример 12. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 9. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 78,8 мг.

Пример 13. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход раствора сульфата железа (II) составил 1,75 мл. Величина магнитной активности (МА) составила 38,1 мг.

Пример 14. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 48,0 мг.

Пример 15. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 51,9 мг.

Пример 16. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 52,1 мг.

Пример 17. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 13. Расход раствора сульфата железа (II) составил 2,25 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 43,8 мг.

Пример 18. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 75,0 мг.

Пример 19. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 97,3 мг.

Пример 20. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 17. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 113,4 мг.

Пример 21. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход 2 М раствора гидроксида натрия составил 2,5 мл. Величина магнитной активности (МА) составила 71,0 мг.

Пример 22. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 97,2 мг.

Пример 23. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 104,1 мг.

Пример 24. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 21. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 109,0 мг.

Пример 25. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Продолжительность нитрования составила 15 мин. Величина магнитной активности (МА) составила 62,3 мг.

Пример 26. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 88,6 мг.

Пример 27. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 95,9 мг.

Пример 28. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 25. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 109,8 мг.

Пример 29. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Вместо 2 мл 2 М раствора гидроксида натрия использовали 2 мл концентрированного водного раствора аммиака. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 32,9 мг.

Пример 30. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 57,8 мг.

Пример 31. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 79,6 мг.

Пример 32. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 29. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 100,7 мг.

Пример 33. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Температура, при которой проводили конденсацию, равна 45°С. Величина магнитной активности (МА) составила 112,4 мг.

Пример 34. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 122,6 мг.

Пример 35. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 127,6 мг.

Пример 36. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 33. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 129,9 мг.

Пример 37. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Конденсацию проводили в течение 5 мин на неодимовом магните (сила сцепления 200 кг). Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 67,4 мг.

Пример 38. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 15 мин. Величина магнитной активности (МА) составила 120,4 мг.

Пример 39. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 30 мин. Величина магнитной активности (МА) составила 145,7 мг.

Пример 40. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 45 мин. Величина магнитной активности (МА) составила 157,4 мг.

Пример 41. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 37. Продолжительность конденсации составила 60 мин. Величина магнитной активности (МА) составила 166,4 мг.

Пример 42. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Для конденсации магнитоактивного соединения брали 8 мл раствора нитрованных ЛСТ. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 56,7 мг.

Пример 43. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 98,1 мг.

Пример 44. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 136,3 мг.

Пример 45. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 163,2 мг.

Пример 46. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 42. Для конденсации магнитоактивного соединения брали 12 мл раствора нитрованных ЛСТ. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 54,4 мг.

Пример 47. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 82,7 мг.

Пример 48. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 91,4 мг.

Пример 49. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 46. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 94,4 мг.

Пример 50. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Конденсацию магнитоактивного соединения проводили на кипящей водяной бане в течение 1 мин. Продукт реакции представляет собой магнитную жидкость. Измерение магнитной активности проводили через 5 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Величина магнитной активности (МА) составила 113,8 мг.

Пример 51. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 15 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 82,7 мг.

Пример 52. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 30 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 131,3 мг.

Пример 53. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 45 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 94,4 мг.

Пример 54. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 50. Измерение магнитной активности проводили через 60 мин после завершения конденсации магнитоактивного соединения на кипящей водяной бане. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 134,6 мг.

Пример 55. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход концентрированной азотной кислоты составил 0,6 мл. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 35,5 мг.

Пример 56. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 63,7 мг.

Пример 57. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 74,7 мг.

Пример 58. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 55. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 78,1 мг.

Пример 59. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 1. Расход 2 М раствора гидроксида натрия составил 1,5 мл. Продукт реакции представляет собой компактный твердый осадок. Величина магнитной активности (МА) составила 40,6 мг.

Пример 60. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 75,0 мг.

Пример 61. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 102,3 мг.

Пример 62. Нитрование ЛСТ и конденсацию МА проводили в условиях примера 59. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой магнитную жидкость. Величина магнитной активности (МА) составила 118,8 мг.

Пример 63. Конденсацию МА проводили в условиях примера 1. Для этого 4 мл раствора ЛСТ (концентрация 18,6 мг/мл) разбавляли до 100 мл дистиллированной водой. Для конденсации магнитоактивного соединения использовали 10 мл разбавленного раствора ЛСТ. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 8,2 мг.

Пример 64. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 30 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 12,8 мг.

Пример 65. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 45 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 16,6 мг.

Пример 66. Конденсацию МА проводили в условиях примера 63. Продолжительность конденсации составила 60 мин. Продукт реакции представляет собой твердый осадок. Величина магнитной активности (МА) составила 19,1 мг.

Полученные результаты сведены в таблице. Из приведенных примеров видно, что нитрованные ЛСТ являются эффективным пептизатором при синтезе магнитной жидкости и позволяют более полно использовать растительную биомассу.

Применение лигносульфонатов, подвергнутых нитрованию концентрированной азотной кислотой, в качестве пептизатора для синтеза магнитоактивной жидкости на водной основе.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 91.
13.01.2017
№217.015.7a83

Трансформатор, содержащий трехфазную и круговую обмотки

Изобретение относится к электротехнике и может быть использовано в многофазных полупроводниковых преобразователях, выпрямителях, инверторах, обратимых преобразователях, преобразователях постоянного напряжения. Технический результат состоит в улучшении кривой намагничивания, повышении к.п.д. и...
Тип: Изобретение
Номер охранного документа: 0002600571
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7d77

Круглопильный станок

Изобретение относится к деревообрабатывающей промышленности, в частности к станкам для продольной распиловки древесины. Круглопильный станок содержит станину, на которой закреплен опорный диск для кольцевой пилы. Пила ограничена от осевого смещения аэростатическими боковыми направляющими. Пила...
Тип: Изобретение
Номер охранного документа: 0002600743
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.88b8

Высоконагруженное термозатягиваемое резьбовое соединение

Изобретение относится к области общего и специального машиностроения и может использоваться во всех областях промышленного производства для обеспечения соединения высоконагруженных элементов механических конструкций. Техническим результатом является значительное повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002602478
Дата охранного документа: 20.11.2016
25.08.2017
№217.015.a6d6

Реагент для гомогенного нитрования сульфатного лигнина

Изобретение относится к реагентам, предназначенным для проведения нитрования сульфатного лигнина. Применение смеси раствора азотной кислоты и диметилсульфоксида в качестве реагента для нитрования сульфатного лигнина в гомогенных условиях позволяет провести реакцию в гомогенных условиях и...
Тип: Изобретение
Номер охранного документа: 0002608145
Дата охранного документа: 16.01.2017
25.08.2017
№217.015.a8b4

Способ создания накопителя токсичных отходов на сильно деформируемом основании

Изобретение относится к гидротехническим сооружениям и может быть использовано при создании накопителей отходов промышленных предприятий. Способ включает подготовку основания путем отсыпки дренирующего грунта с уклоном от центра к периферии на величину, равную половине прогнозируемой разности...
Тип: Изобретение
Номер охранного документа: 0002611167
Дата охранного документа: 21.02.2017
25.08.2017
№217.015.aebd

Способ получения масла из ягод брусники

Изобретение относится к области переработки растительного сырья, а именно к области получения масел растительного происхождения. Способ включает обработку подготовленных ягод брусники диоксидом углерода, находящимся в суб- или сверхкритическом состоянии, при температуре 20-60°C, давлении...
Тип: Изобретение
Номер охранного документа: 0002612797
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.aefb

Способ обработки тел вращения

Способ включает установку заготовки во вращающихся центрах. Предварительно устанавливают положение оси, по которой осуществляют базирование заготовки, путем обмера поперечных сечений заготовки с определением координат точек контура сечения, по которым определяют положение центров тяжести её...
Тип: Изобретение
Номер охранного документа: 0002612877
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b18b

Движительно-рулевая колонка

Изобретение относится к пропульсивным системам судостроения. Движительно-рулевая колонка состоит из корпуса, привода, трансмиссионного вала, двух соосных валов с гребными винтами и дифференциального механизма. Дифференциальный механизм выполнен в виде двух симметричных планетарных редукторов с...
Тип: Изобретение
Номер охранного документа: 0002613135
Дата охранного документа: 15.03.2017
25.08.2017
№217.015.b75d

Устройство для создания термопластических концентрированных напряжений в полосовых пилах

Изобретение относится к области металлургии и может быть использовано в деревообрабатывающей промышленности Для повышения устойчивости полосовых пил в процессе пиления устройство содержит однофазные индукторы переменного тока, включающие магнитопровод, индуцирующий провод, токоподводящие...
Тип: Изобретение
Номер охранного документа: 0002614863
Дата охранного документа: 29.03.2017
25.08.2017
№217.015.b7f7

Ленточнопильный станок

Изобретение относится к деревообрабатывающей промышленности, в частности к ленточнопильным станкам. Ленточнопильный станок содержит станину с аэростатическими опорами, ленточную пилу, привод пилы в виде линейного электродвигателя, состоящего из ротора, статора в виде дугового индуктора,...
Тип: Изобретение
Номер охранного документа: 0002615000
Дата охранного документа: 03.04.2017
Показаны записи 71-80 из 108.
10.03.2016
№216.014.bf6e

Способ получения магнитоактивного соединения

Изобретение может быть использовано в неорганической химии. Магнитоактивное соединение получают путем конденсации из растворов соли железа(II) и окислителя при их смешении и добавлении щелочного реагента. В качестве соли железа(II) используют гептагидрат сульфата железа(II). В качестве...
Тип: Изобретение
Номер охранного документа: 0002576436
Дата охранного документа: 10.03.2016
27.03.2016
№216.014.c963

Устройство для испытания стыков полотнищ геомембраны на водопроницаемость

Изобретение относится к строительству и может быть использовано для изучения водопроницаемости геомембраны и стыков ее полотнищ. Устройство для испытания стыков полотнищ геомембраны на водопроницаемость включает емкость с герметично закрывающейся крышкой (2) и эластичной диафрагмой (4). Емкость...
Тип: Изобретение
Номер охранного документа: 0002578417
Дата охранного документа: 27.03.2016
20.03.2016
№216.014.cc82

Способ создания противофильтрационного экрана

Изобретение относится к области гидротехнического строительства и может быть использовано для создания противофильтрационного экрана на накопителях промышленных и бытовых отходов. Способ включает подготовку грунтового основания, укладку на него рулонного изолирующего материала из двух слоев...
Тип: Изобретение
Номер охранного документа: 0002577480
Дата охранного документа: 20.03.2016
10.04.2016
№216.015.2daf

Стабилометр

Изобретение относится к устройствам для исследования деформационно-прочностных характеристик грунтов в условиях трехосного сжатия. Стабилометр включает рабочую камеру с прозрачными боковыми стенками, верхний и нижний штампы и нагрузочное устройство. Боковые стенки камеры образованы...
Тип: Изобретение
Номер охранного документа: 0002579538
Дата охранного документа: 10.04.2016
10.05.2016
№216.015.3abd

Способ испытания свай статической нагрузкой

Изобретение относится к строительству и может быть использовано для определения несущей способности свай в существующих фундаментах при обследовании зданий перед реконструкцией. Способ испытания свай статической нагрузкой включает отрывку фундамента, обнажение подошвы ростверка, отделение сваи...
Тип: Изобретение
Номер охранного документа: 0002583806
Дата охранного документа: 10.05.2016
10.06.2016
№216.015.468a

Прибор для определения морозного пучения и водопроницаемости грунта при циклическом промерзании-оттаивании

Изобретение относится к области гидротехнического строительства и предназначено для измерения деформаций морозного пучения, сжимаемости при оттаивании и коэффициента фильтрации при нескольких циклах промерзания-оттаивания в лабораторных условиях. Прибор содержит обойму для образца, штамп со...
Тип: Изобретение
Номер охранного документа: 0002586271
Дата охранного документа: 10.06.2016
10.06.2016
№216.015.4696

Способ регулирования выходного напряжения управляемого выпрямителя на базе трансформатора с вращающимся магнитным полем с четным числом секций круговой обмотки

Изобретение относится к области электротехники и может быть использовано для управления выпрямителями (УВ), построенными на базе трансформаторов с вращающимися магнитными полями (ТВМП). Техническим результатом является улучшение качества выпрямленного напряжения. В способе регулирования...
Тип: Изобретение
Номер охранного документа: 0002586322
Дата охранного документа: 10.06.2016
27.08.2016
№216.015.4d0d

Органоминеральная добавка для укрепления песчаных грунтов

Изобретение относится к области строительства дорожных оснований и оснований инженерных коммуникаций и может быть использовано для укрепления песчаных грунтов. Органоминеральная добавка для укрепления песчаных грунтов, включающая измельченный сапонит-содержащий материал, выделенный из пульпы...
Тип: Изобретение
Номер охранного документа: 0002595280
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4ec0

Установка для пропитки древесины жидкостью

Изобретение относится к деревообрабатывающей промышленности, в частности к обработке древесины пропиткой. Установка для пропитки включает герметичную пропиточную емкость, заполненную пропиточной жидкостью, насосы, запорную и регулирующую аппаратуру. Установка снабжена гидростатическим...
Тип: Изобретение
Номер охранного документа: 0002595392
Дата охранного документа: 27.08.2016
27.08.2016
№216.015.4f90

Способ переработки луба берёзовой коры

Изобретение относится к сельскохозяйственной промышленности. Согласно предложенному способу осуществляют измельчение луба березовой коры до фракции менее 1 мм и экстрагируют его водно-спиртовым раствором гидроксида калия в сверхвысокочастотном поле. Затем отделяют экстракт и сушат...
Тип: Изобретение
Номер охранного документа: 0002595332
Дата охранного документа: 27.08.2016
+ добавить свой РИД