Вид РИД
Изобретение
Предлагаемое техническое решение относится к области ядерной техники, в частности к области очистки жидкометаллического теплоносителя.
К чистоте жидкометаллических теплоносителей, а именно натрия, используемых в ядерных реакторах, предъявляются высокие требования и содержание в них технологических примесей жестко лимитируется. Наиболее широкое применение имеет очистка натрия от примесей с помощью холодных ловушек различных конструкций, работа которых основана на уменьшении растворимости примесей в теплоносителе при снижении его температуры. (См., например, описание к авт. св. №245009 от 02.03.1968 по кл. МПК B01D, к патенту №291526 от 18.10.1968 по кл. МПК G21C 15/02, G21C 15/24 и др.) Холодные ловушки в подавляющем большинстве реакторных установок размещаются за пределами реактора (например, реакторные установки БОР-60, БН-350, БН-600, БН-800, Phenix и др.).
Известны ядерные энергетические установки: SRE, LAMPRE, «Энрико Ферми», DFR, HNPF, в которых для очистки теплоносителя совместно с холодными ловушками использовались горячие ловушки. Работа горячих ловушек основана на способности некоторых химически активных веществ поглощать растворенные в натрии примеси. Наиболее эффективно процесс проходит при высоких температурах. Горячие ловушки размещаются за пределами реактора, а для обеспечения эффективности очистки очищаемый натрий подогревается до температур 550°С и выше с помощью электропечей, в которых размещались ловушки, или электронагревателей входящих в конструкцию ловушки. (См., например, Ю.Е. Багдасаров и др. «Технические проблемы реакторов на быстрых нейтронах», М., Атомиздат, 1969 г.; Ф.А. Козлов и др., «Жидкометаллические теплоносители ЯЭУ. Очистка от примесей и их контроль», М., Энергоатомиздат, 1983 г.; Сб. «Жидкие металлы», Атомиздат, 1970 г.) В отечественной практике горячие ловушки применялись на экспериментальных стендах ГНЦ РФ-ФЭИ и в ядерных энергетических установках космических аппаратов. (См., например, статью В.В. Алексеева и др. «Системы очистки АЭС БН-1200» в журнале «Теплоэнергетика» №5, 2013 г.).
При размещении основного оборудования первого контура (главные циркуляционные насосы, промежуточные теплообменники) непосредственно в корпусе реактора (интегральная компоновка, например, реакторные установки БН-600, БН-800, CEFR и др.) целесообразно размещение в нем оборудования вспомогательных систем первого контура, в частности системы очистки (реакторная установка Superphenix). Такое конструктивное решение позволяет исключить возможность проливов радиоактивного теплоносителя в технологических помещениях за пределами реактора, а также снизить стоимость сооружения реакторной установки за счет исключения специальных помещений для вспомогательных систем первого контура. Требование к габаритным размерам корпуса реактора является одним из основных. Размеры корпуса определяются только основным оборудованием без влияния на них оборудования вспомогательных систем. С учетом указанного требования ограничивается количество размещаемых в реакторе средств очистки теплоносителя (холодные, горячие ловушки), а также их габаритные размеры. В связи с этим они имеют относительно небольшую емкость по примесям и поэтому требуют периодических замен в процессе эксплуатации. Для размещения в корпусе реактора оборудования и его замены в процессе эксплуатации требуется организация специальных проходок в корпусе. Замена промежуточных теплообменников, выемных частей главных циркуляционных насосов первого контура реакторной установки БН-600, фильтровальных патронов холодных ловушек первого контура реакторной установки Superphenix, осуществляется с использованием специальных относительно сложных технологических устройств, обеспечивающих во время проведения операций по замене герметичность реактора и защиту персонала от ионизирующего излучения. При этом замена оборудования представляет собой относительно сложную технологическую операцию, требующую проведения значительного объема подготовительных работ.
Технической задачей является создание горячей ловушки, использующей для подогрева очищаемого теплоносителя тепловыделения активной зоны и размещаемой в активной зоне ядерного реактора.
Решение поставленной задачи позволяет упростить конструкцию реактора и его эксплуатацию, повысить надежность корпуса реактора, а также исключить необходимость использования дополнительного технологического оборудования.
Задача решается тем, что в ядерном реакторе на быстрых нейтронах с жидкометаллическим теплоносителем в активной зоне, образованной тепловыделяющими сборками, размещены горячие ловушки, имеющие корпус, идентичный корпусу тепловыделяющей сборки, внутри которого расположен патрон с материалом, предназначенным для поглощения примесей, находящихся в жидкометаллическом теплоносителе. Кроме того, патрон выполнен в виде обечайки, образующей с корпусом кольцевой канал, гидравлически связанный с внутренней полостью обечайки через отверстия, расположенные на ее боковой поверхности в верхней части, и снабженной цилиндрическим вытеснителем.
Сущность технического решения поясняется чертежами, где:
на фиг. 1 показано размещение горячих ловушек;
на фиг. 2 показан общий вид горячей ловушки.
Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем (натрием), содержит активную зону, образованную тепловыделяющими сборками 1 с размещенными в ней горячими ловушками 2. Горячие ловушки 2 установлены в напорной камере ядерного реактора аналогично тепловыделяющим сборкам 1. Горячая ловушка 2 имеет корпус 3, идентичный корпусу тепловыделяющей сборки 1, и снабжена головкой 4 с выходными отверстиями и хвостовиком 5 с входными отверстиями. Внутри корпуса 3 с зазором по отношению к последнему размещена обечайка 7, снабженная цилиндрическим стальным вытеснителем 6. Между обечайкой 7 и корпусом 3 образован кольцевой канал 8, предназначенный для обеспечения циркуляции теплоносителя. Обечайка 7 закреплена на корпусе 3, а во внутренней полости обечайки расположен патрон 9, заполненный материалом, предназначенным для поглощения примесей (геттером) и обеспечивающим очистку теплоносителя (натрия). В качестве материала (геттера) может быть использован цирконий или сплавы на его основе. В верхней части обечайки 7 выполнены отверстия 10, гидравлически связывающие кольцевой канал 8 с внутренней полостью обечайки 7. Хвостовик 5 размещен в напорной камере 11 ядерного ректора, заполненной теплоносителем (натрием).
Работа горячей ловушки, расположенной в активной зоне ядерного реактора, осуществляется следующим образом.
Теплоноситель (натрий) из напорной камеры 11 ядерного реактора через отверстия в хвостовике 5 поступает в кольцевой канал 8. Циркуляция теплоносителя через горячие ловушки 2 обеспечивается главными циркуляционными насосами первого контура, аналогично его циркуляции через тепловыделяющие сборки 1. При прохождении кольцевого канала 8 теплоноситель подогревается до необходимой температуры за счет тепловыделений в активной зоне. Теплообмен происходит с окружающими тепловыделяющими сборками 1 и со стальным цилиндрическим вытеснителем 6, дополнительно нагревающимся за счет радиационного излучения. Для увеличения вклада радиационного излучения в подогрев теплоносителя в конструкции вытеснителя может быть применен материал с более высокой плотностью по сравнению со сталью (например, вольфрам).
Из кольцевого канала 8 теплоноситель поступает в патрон 9, в котором происходит поглощение примесей, и далее очищенный теплоноситель через отверстия в головке 4 поступает в горячую полость ядерного реактора, расположенную над активной зоной.
Таким образом, при размещении горячих ловушек в активной зоне упрощается конструкция реактора из-за отсутствия специальных проходок в его корпусе, упрощается конструкция горячих ловушек из-за отсутствия специального оборудования для подогрева и обеспечения циркуляции теплоносителя, а также биологической защиты, характерной для оборудования, размещаемого в проходках корпуса реактора, не требуется специальное технологическое оборудование для выполнения операций по заменам выработавших ресурс горячих ловушек, упрощается операция по заменам.
По результатам выполненных предварительных оценочных расчетов определено необходимое количество горячих ловушек, а также подтверждено отсутствие их заметного влияния на нейтронно-физические характеристики активной зоны и обеспечение подогрева натрия до необходимой температуры за счет тепловыделений.