×
13.01.2017
217.015.91e3

Результат интеллектуальной деятельности: ПАССИВНАЯ ИНФРАКРАСНАЯ ШТРИХОВАЯ МИРА

Вид РИД

Изобретение

Аннотация: Изобретение относится к области фотометрии, и касается пассивной инфракрасной штриховой миры. Мира включает в себя штриховые элементы различных типоразмеров. Штриховые элементы выполнены в виде прямоугольных рам с установленными в них поворотными экранирующими пластинами. Экранирующие пластины выполнены с двухсторонним излучающим покрытием, имеющим максимальный и минимальный коэффициенты излучения. Оси вращения пластин установлены в отверстиях продольных стенок металлических рам. На внешней стороне продольной стенки рамы установлен механизм поворота пластин, обеспечивающий возможностью синхронного поворота каждой пластины вокруг своей оси на любой угол в диапазоне от 0° до 360° и фиксации их в этом положении. Технический результат заключается в расширении динамического диапазона, повышении точности и производительности измерений. 1 з.п. ф-лы. 5 ил.

Область техники

Изобретение относится к технической оптике, а конкретно к фотометрии, и предназначено для исследования и контроля характеристик оптико-электронных систем (ОЭС), может быть использовано в конструкции наземных тест-объектов пассивной инфракрасной штриховой мире, используемых в условиях полигона при испытаниях авиационных инфракрасных систем дистанционного зондирования различного назначения.

Уровень техники

Оценка качества изображения ОЭС осуществляется с помощью штриховой ИК-миры по разрешающей способности, которая определяет такую наивысшую пространственную частоту, когда еще наблюдается промежуток между штрихами, (см. Кулагин С.В., Апарин Е.М. Проектирование фото- и киноприборов. - М.: Машиностроение, 1986, с. 49-50).

Известны эталонные тест-объекты, приведенные в статье «Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric of High Resolution Airborne Hnaging Systems» Eija Honkavaara, финский геодезический институт, 2010 г., журнал «Дистанционное зондирование» №2, 2010.

Тест-объекты, расположенные на полигоне в Финляндии, выполнены в виде стационарных участков для радиометрического тестирования бортовых систем наблюдения высокого разрешения. В состав тест-объектов входят как штриховые миры с известной геометрией для использования в летных испытаниях при оценке разрешающей способности оптико-электронных систем, так и площадные структуры, выполненные из различных материалов: сыпучего гравия различных цветов, мрамора, бетона, имеющих различные излучательные свойства.

Приведенные тест-объекты, во-первых, могут быть использованы только в видимом и ближнем ИК-диапазонах электромагнитного спектра, а заявляемая пассивная инфракрасная мира работает во всем ИК-диапазоне: от 0,7 до 14 мкм; во-вторых, на финском полигоне используются стационарные, а не мобильные тест-объекты; в-третьих, тепловой контраст их не регулируется и, в четвертых, они не могут использоваться долгое время для оценки характеристик систем наблюдения, так как после выпадения осадков (дождя, снега, инея и т.п.) отражающие характеристики тест-объектов изменяются и не соответствуют исходным.

В известных наземных тест-объектах, предназначенных для контроля характеристик инфракрасных систем наблюдения, использовались излучающие поверхности, имеющие одинаковые коэффициенты излучения, но разные температуры (см. A.M. Дубиновский, Э.Д. Панков «Стендовые испытания и регулировка оптико-электронных приборов», Ленинград, изд. Машиностроение, 1996 г.; патент США №5041735 A, МКИ G01J 1/00 от февраля 1990 г.; патент США №5097139, МКИ G011J 1/100 от апреля 1991 г.).

Разность потоков излучения (тепловой контраст) между элементами такого тест-объекта и фоном создавался за счет принудительного нагрева его элементов. Известно, что плотность потока излучения R определяется законом Стефана-Больцмана и зависит как от температуры T, так и от коэффициента излучения ε поверхности объекта

R=ε·σ·T4,

где σ - постоянная Стефана-Больцмана.

В качестве тепловых источников излучения использовали установки с электроподогревом или кюветы (емкости) с проточной водой. Такой способ создания теплового контраста с использованием принудительного нагрева элементов получил название активный. Конструктивное исполнение активных тест-объектов очень трудоемкое, требует подключения электроэнергии для нагрева элементов, прокачки и подогрева воды, что ограничивает их применение в изменяющихся погодных условиях. Эксплуатация их в полевых условиях сложна, а при выпадении осадков - невозможна [патент США №5041735, МКИ G01J 1/00 от февраля 1990 г.].

Некоторые из недостатков применения активных мир устранены в пассивной инфракрасной мире, тепловой контраст которых создается за счет использования материалов с разными коэффициентами излучения (отражения) поверхности. Так установка «пассивная инфракрасная разрешающая мишень», предназначенная для измерения разрешающей способности инфракрасных разведывательных систем, включает подложку из однородного материала, сохраняющего тепло, и размещенные над ней, в виде стандартной конфигурации, штриховые элементы. Температура такой подложки превышает среднюю температуру окружающей земной поверхности (фона). Над подложкой устанавливается инфракрасная мира, штриховые элементы которой выполнены в виде экранирующих (отражающих) перфорированных алюминиевых пластин, имеющих отверстия (перфорацию), суммарная площадь которых составляет от 50 до 80% общей площади пластины [патент США №4058734, МПК G01J01J 1/100 за 1977].

Размещая над подложкой экранирующие алюминиевые пластины с определенной перфорацией, добиваются необходимого теплового контраста между окружающим фоном и пластинами. В такой пассивной мишени для изменения теплового контраста необходим набор алюминиевых пластин с различной перфорацией. При изменении времени суток величина падающего на земную поверхность солнечного излучения изменяется, что приводит к необходимости смены пластин с другой перфорацией для поддержания постоянного теплового контраста «мишень-фон». Отсутствие плавного регулирования теплового контраста в изменяющихся внешних условиях не позволяет получить точно заданный тепловой контраст миры с фоном. Эксплуатацию миры усложняет также частая замена достаточно большого набора экранирующих пластин, и затраты времени на установку нового температурного режима, что приводит к снижению производительности измерений, повышает их трудоемкость и увеличивает объемы и сроки испытаний.

Известен аналог пассивной инфракрасной миры с системой автоматического регулирования. Мира содержит рабочие штриховые элементы (РШЭ), размещенные на однородной подстилающей поверхности в виде двух одинаковых групповых наборов m - различных типоразмеров из n - штриховых элементов в каждом, и один отдельно установленный измерительный штриховой элемент (ИШЭ). РШЭ выполнены в виде жесткой прямоугольной рамы с подвижным модулем, по всей длине которых установлены под небольшим углом 5°…10° к горизонтальной поверхности параллельно друг к другу узкие прямоугольные пластины, имеющие, соответственно, максимальные и минимальные значения коэффициентов излучения и формирующие периодическую структуру с регулируемым интегральным коэффициентом излучения при линейном перемещении подвижного модуля. В систему введен измеритель разности радиационных температур - двухканальный дифференциальный инфракрасный радиометр для поддержания заданного значения разности радиационных температур всех РШЭ в заданных пределах [патент РФ №2387969, МПК G01M 11/00, G01J 1/00, 1/20, 2008].

Для реализации коэффициента излучения пластин ε≅1,0 используют группу алюминиевых пластин, окрашенных специальной краской, которые устанавливают в рамы неподвижно, а для реализации получения минимального коэффициента излучения ε≅0 используют группу неокрашенных полированных алюминиевых пластин, которые устанавливают в подвижные модули рам.

В данном устройстве система автоматического регулирования выполнена в виде двухконтурной системы замкнутого типа так, что первый контур обеспечивает установку заданного значения разности температуры между ИШЭ и фоном, а второй контур - обеспечивает синхронное управление положением подвижных модулей всех РШЭ по сигналам управления, пропорциональным разностям сигналов, формируемых соответствующими датчиками положения измерительного и рабочих штриховых элементов.

Применение двухконтурной системы регулирования заданного значения разности температур между окружающим фоном и штриховыми элементами миры и двух групп подвижных и неподвижных пластин с различными коэффициентами излучения усложняет конструкцию инфракрасной миры, а также требует дополнительной установки исполнительных электромеханизмов перемещения пластин, электронных блоков управления и электропитания, что, в свою очередь, ведет к тепловому загрязнению установки, окружающей воздушной и фоновой обстановки, появлению большого количества и достаточно мощных аномальных источников тепла.

Известна пассивная инфракрасная мира с плавно регулируемым тепловым контрастом [патент РФ №2105956, МПК G01J 1/04, 1998].

В прототипе миры, размещенной на однородной подстилающей поверхности, штриховые элементы выполнены в виде прямоугольных рам, с установленными в них раскрывающимися экранирующими пластинами, имеющими механизм их перемещения (раскрыва). В раскрытом состоянии пластины перекрывают все сечение рамы. Раскрывающиеся экранирующие пластины выполнены в виде попарно связанных между собой шарнирами створок. Створки снабжены по своим концам штырями. При этом штыри одной из створок установлены в отверстиях боковых стенок рамы с возможностью вращения, а штыри другой створки размещены в продольных пазах, выполненных в раме, и связаны с механизмом их перемещения. Такое выполнение штриховых элементов миры позволяет получить регулируемый тепловой контраст с подстилающей поверхностью при различных погодных условиях и не требует значительных затрат времени на его установку. Конструкция миры достаточно проста. Мира может эксплуатироваться в различное время года в простых и сложных метеоусловиях.

Недостатком миры является то, что вторая оборотная сторона экранирующих пластин миры в устройстве не используется, что ограничивает динамический диапазон устанавливаемой разности радиационных температур при испытаниях. Контраст миры относительно фона может быть установлен только отрицательным (Тшф).

Сущность изобретения

Технический результат, на достижение которого направлено изобретение, заключается в расширении динамического диапазона регулирования заданной разности радиационных температур между фоном и штриховыми элементами миры, как следствие, повышении точности, установки и поддержания заданной при испытаниях разности радиационных температур; возможности установки как положительных, так и отрицательных контрастов миры с переходом через «0°»; эксплуатации в полигонных условиях в любое время года, в простых и сложных метеоусловиях и повышению производительности испытаний.

Для достижения указанного технического результата в пассивной инфракрасной штриховой мире с плавно регулируемым тепловым контрастом, содержащей штриховые элементы различных типоразмеров, выполненными в виде прямоугольных рам с установленными в них поворотными экранирующими прямоугольными пластинами, инфракрасный радиометр, измеряющий значения радиационных температур подстилающей поверхности (фона) и пластин, и связанный с ним ПЭВМ типа «Notebook» для усреднения измерений и вычисления текущего значения разности радиационных температур ΔT, соответствующего определенному углу поворота пластин, установленного оператором, экранирующие пластины с двух сторон выполнены с излучающими покрытиями, имеющими, соответственно, максимальный и минимальный коэффициенты излучения. Оси вращения пластин установлены в отверстиях продольных стенок металлических рам штриховых элементов. На внешней стороне продольной стенки рамы установлен механизм поворота пластин, включающий червячную передачу с ручкой привода, пару зубчатых колес червячной передачи и шестернями, находящимися в сцепление друг с другом, установленными на осях вращения пластин. Механизм выполнен с возможностью синхронного поворота каждой из шестерен и пластин вокруг своей оси на угол в диапазоне от 0 до 360° и фиксации их в этом положении. При этом для получения теплового контраста в диапазоне ΔT=2°…10°C в облачную погоду, пластины поворачивают на угол от 0 до 180°, а при угле +90° все сечение рамы перекрывают пластины со стороной с минимальным коэффициентом излучения, а в ясную погоду, пластины поворачивают на угол 180 до 360°, при угле +270°, все сечение рамы перекрывают пластины со стороной с максимальным коэффициентом излучения.

Для расширения диапазона устанавливаемой разности радиационных температур миры и фона, повышения точности измерения используются обе стороны поворотной дюралюминиевой экранирующей пластины с разными излучающими покрытиями, одна из сторон - матированная и покрытая черной краской с максимальным коэффициентом излучения ε≅1,0, вторая сторона - отполированная с минимальным коэффициентом излучения ε≅0,01…0,05. При этом создается как положительный, так и отрицательный тепловой контраст миры относительно фона.

Признаки, отличающие конструкцию предлагаемой штриховой миры, от наиболее близкой к ней мире, известной по патенту №2105956 (прототип), характеризуют наличие того, что штриховые элементы миры снабжены механизмом поворота каждой пластины вокруг своей оси на угол в диапазоне от 0 до 360° и могут быть зафиксированы в этом положении. Плавное регулирование угла поворота пластин дает возможность установить ΔT равное заданному по эксперименту. Количество штриховых элементов, ширина штрихового элемента и расстояние между ними в каждой секции одинаковы. Прямоугольные пластины ИК-миры экранируют при повороте тепловой поток от подстилающей поверхности. Важным преимуществом конструкции предлагаемой миры является использование двух сторон дюралюминиевых экранирующих пластин с различными коэффициентами излучения: одна сторона - матированная и покрыта черной краской с ε≅1,0, вторая сторона - отполированная с ε≅0,01…0,05.

- расширен динамический диапазон регулирования заданной разности радиационных температур между фоном и штриховыми элементами миры за счет использования двух сторон вращающихся экранирующих пластин с различными коэффициентами излучения ε и, как следствие, повышения точности, приблизительно в 2 раза, установки и поддержания заданной при испытаниях разности радиационных температур;

- возможности установки как положительных, так и отрицательных контрастов миры с переходом через «0°».

Использование поворотных экранирующих пластин, позволяющих получить плавно регулируемый тепловой контраст с подстилающей поверхностью при различных погодных условиях, приводит к повышению производительности испытаний. Предлагаемая пассивной инфракрасной миры может эксплуатироваться в полигонных условиях в любое время года, в простых и сложных метеоусловиях.

Перечень фигур

На фигуре 1 представлена схема расположения штриховых элементов пассивной штриховой инфракрасной миры на подстилающей поверхности (фоне), где

- 1 - подстилающая поверхность;

- 2 - штриховой элемент пассивной штриховой инфракрасной миры,

- (2a)-сгруппированные штриховой элемент в секции различных типоразмеров, и ориентированных по направлению полета (НП).

На фигуре 2 показан штриховой элемент пассивной инфракрасной миры, где:

- 3 -металлическая рама с набором экранирующих пластин (2);

- 4 - продольная стенка рамы с механизмом поворота пластин;

- 5 - поперечная стенка рамы;

- 6 - дюралюминиевая экранирующая пластина внутри рамы, с двухсторонним покрытием: одна сторона - пластина с матированной стороной, окрашенной черной краской, вторая сторона пластины с отполированной поверхностью.

На фигуре 3 показан внешний вид рамы с механизмом поворота пластин, позволяющий выполнять поворот экранирующих пластин, на заданный угол в заданном направлении.

- 3 - жесткая рама с набором экранирующих пластин;

- 6 - дюралюминиевая пластина;

- 8 - механизм поворота экранирующих пластин;

- 9 - червячная передача с ручкой привода;

- 10 - пара зубчатых колес червячной передачи;

- 11 - шестерни, находящиеся в сцеплении друг с другом, установленные на осях поворота пластин, выполненные с возможностью синхронного поворота каждой из шестерен вокруг своей оси на любой угол в диапазоне от 0° до 360° и фиксирования их в этом положении.

На фигуре 4 представлена схема позиционирования пластин при различных углах поворота в штриховом элементе миры, (вид сбоку).

Позиция 4а) соответствует углу полворота пластин α=+900, 4б соответствует углу поворота пластин α=+135°; 4в) соответствует углу поворота пластин α=+180°; 4г) соответствует углу поворота пластин α=+270°; 4д) соответствует углу поворота пластин α=+270° (0°), где (1) - подстилающая поверхность (фон) (1)-, дюралюминиевая экранирующая пластина внутри рамы, с двухсторонним покрытием: одна сторона (6) - отполированная поверхность; вторая сторона (6a) - матированная стороной, окрашенная черной краской.

На фигуре 5 представлена функциональная схема установки и регулирования теплового контраста пассивной инфракрасной мирой, включающей раму (3) с экранирующими пластинами (6), измерительное пятно (13), инфракрасный радиометр (12), измеряющий радиационные температуры фона Тф и штрихов миры Тм, передаваемые в ПЭВМ типа «Notebook» (7) для усреднения и вычисления текущего значения разности радиационных температур ΔT=Тмф, соответствующего определенному углу поворота пластины, устанавливаемому в механизме поворота миры. Угол поворота пластин устанавливает оператор с помощью механизма поворота (8) на каждом штриховом элементе ИК-миры.

Каждый штриховой элемент миры, согласно изобретению, содержит жесткую раму (3), с установленными в ней одинаковыми наборами экранирующих пластин (6) (узких прямоугольных полосок), имеющих соответственно минимальные и максимальные значения коэффициентов излучения. При первом крайнем положении, когда экранирующие пластины установлены параллельно подстилающей поверхности (фону), перекрывается без разрывов вся площадь рамы (3), в других положениях - механизм плавного поворота (8) пластин осуществляет синхронное вращение пластин на такой угол (до такого положения), при котором разность радиационных температур между пластинами и фоном становится равной заданному в эксперименте значению ΔT.

Пассивная штриховая инфракрасная мира с плавным регулированием функционирует следующим образом.

Для получения теплового контраста в диапазоне ΔT=2…10°C в облачную погоду, пластины поворачивают на угол от 0 до 180°, а при угле +90° все сечение рамы перекрывают пластины со стороной с минимальным коэффициентом излучения, а в ясную погоду, пластины поворачивают на угол 180 до 360°, при этом при угле +270°, все сечение рамы перекрывают пластины со стороной с максимальным коэффициентом излучения (см. фиг. 4 поз. 4a)…4д)).

Перед полетом с помощью инфракрасного радиометра (12) измеряют радиационную температуру фона и экранирующих пластин ИК-миры. Радиометр устанавливается на такой высоте над поверхностью рамы штрихового элемента (3), при которой размеры измерительного пятна (14) прибора позволяют измерять в нескольких точках значение радиационной температуры штриха миры и, затем, переставив радиометр, измеряют в нескольких точках значение радиационной температуры фона для вычисления их усредненных значений .

Изменение внешних условий функционирования миры (времени суток, облачности, ветра и т.п.) приводит к изменению значений теплового контраста и необходимости поворота пластин на другой угол поворота, соответствующий заданному значению разности радиационных температур.

В предлагаемом тест-объекте разность потоков излучения (тепловой контраст) между штрихами и фоном создается за счет теплового нагрева штрихов миры, фона и того и другого вместе. В случае, когда пластины расположены перпендикулярно поверхности, радиационная температура холодной полосы миры определяется, в основном, радиационной температурой подстилающей поверхности (фона), т.е. Tмиры = Tфона. При повороте пластин на угол +90°, когда пластины параллельны фону, радиационная температура определяются температурой дюралюминиевых пластин. При этом все сечение рамы будет перекрыто пластинами. В этом случае обеспечивается экранирование теплового потока от подстилающей поверхности, и температура штриха миры будет определяться радиационной температурой излучения поверхности пластин. В промежуточных положениях - одновременно обеими составляющими, причем, в зависимости от угла поворота пластин, преобладает либо собственное излучение фона, либо пластины.

При установке пластин с отполированной стороной, коэффициент излучения которых минимальный (ε<0,05), а при этом коэффициент отражения (α>0,97), поверхность пластины, как зеркало, отражает поток излучения верхних холодных слоев атмосферы Земли. В ясную погоду температура верхних слоев атмосферы в окнах прозрачности атмосферы составляет T=-50…-60°C, поэтому радиационная температура пластин будет составлять величину порядка T≅-30…-40°C.

В облачную погоду, отраженный от пластин тепловой поток определяется температурой нижней кромки облаков, что всегда на 5…10°C ниже температуры воздуха и земной поверхности (фона). При использовании отполированной поверхности пластин создается отрицательный температурный контраст относительно фона. При повороте пластины от +90 до 180° отраженная составляющая теплового потока от пластин уменьшается, открывается фоновая поверхность миры и Tмиры = Tфона (пластины стоят ребрами к поверхности).

Установка пластин на угол +270° - пластины опять параллельны подстилающей поверхности, все сечение рамы перекрыто пластинами, но при этом пластины имеют матированную поверхность с высоким коэффициентом излучения (ε>0,97), что обеспечивает радиационный контраст миры в диапазоне ΔT=2…10°C. Расширение динамического диапазона ΔT ИК-миры повышает точность выставки заданного значения ΔT приблизительно в 2 раза.

За счет высокого коэффициента поглощения пластины большего, чем у окружающих объектов и фона, под воздействием солнечного и небесного излучения температура пластин на 2…12°C становится выше окружающего фона. Создается положительный тепловой контраст. При повороте пластин эффективная (экранирующая) площадь пластин уменьшается, тепловой контраст понижается и становится равным «0°», т.е. Tфона = Tмиры.

При подготовке к летному эксперименту для ИК-миры в качестве подстилающей поверхности выбирается ровная площадка с однородным травяным покровом, грунтом, асфальтовым или бетонным покрытием. Часть секций миры располагается вдоль заданного направления полета самолета, а другая часть секций - поперек направления полета (см. фигуру 1). Для обеспечения измерений разрешающей способности авиационных инфракрасных сканирующих систем поступают следующим образом. С помощью инфракрасного радиометра, устанавливаемого так, чтобы исключить влияние внешнего фона, измеряют усредненное значение радиационной температуры фона и экранирующих пластин, которое передается в ноутбук для расчета текущего значения ΔТ. Полученная разность температур ΔТ соответствует определенному углу поворота экранирующих пластин, который устанавливается в механизме поворота миры. Затем с борта летательного аппарата выполняется тепловая аэросъемка местности с ИК-мирой. Выполняется послеполетный анализ полученных аэроснимков с изображениями миры и, при предварительной автоматизированной обработке, определяют заданные характеристики бортовой ИК-системы.

Предлагаемая конструкция пассивной штриховой ИК-миры обеспечивает установку и поддержание значения разности радиационных температур в течение эксперимента, при изменяющихся внешних условиях, при задании нового значения разности радиационных температур оператором. Это расширяет диапазон погодных условий проведения эксперимента, надежность и достоверность полученных результатов и сокращает временные и финансовые затраты на летные испытания авиационных ИК-систем дистанционного зондирования Земли.


ПАССИВНАЯ ИНФРАКРАСНАЯ ШТРИХОВАЯ МИРА
ПАССИВНАЯ ИНФРАКРАСНАЯ ШТРИХОВАЯ МИРА
ПАССИВНАЯ ИНФРАКРАСНАЯ ШТРИХОВАЯ МИРА
ПАССИВНАЯ ИНФРАКРАСНАЯ ШТРИХОВАЯ МИРА
Источник поступления информации: Роспатент

Показаны записи 101-110 из 251.
10.04.2015
№216.013.3e10

Лигатура для титановых сплавов

Изобретение относится к области цветной металлургии и может быть использовано при производстве сплавов титана. Лигатура содержит, мас.%: ванадий 40-50, титан 5-20, углерод 3-5, алюминий - остальное. Изобретение позволяет улучшить свариваемость и механические характеристики в зоне термического...
Тип: Изобретение
Номер охранного документа: 0002547376
Дата охранного документа: 10.04.2015
20.05.2015
№216.013.4c43

Способ получения износо-коррозионностойкого градиентного покрытия

Изобретение относится к области получения покрытий со специальными свойствами, в частности к покрытиям с высокой стойкостью к коррозионным повреждениям и износу. Способ холодного газодинамического напыления износо-коррозионностойкого градиентного покрытия включает подачу металлического порошка...
Тип: Изобретение
Номер охранного документа: 0002551037
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4d69

Способ получения многослойного градиентного покрытия методом магнетронного напыления

Изобретение относится к способу нанесения градиентных покрытий магнетронным напылением, в частности к нанесению покрытий на основе тугоплавких металлов, и может быть использовано для получения покрытий с высокими адгезивными и когезивными характеристиками, а также с оптимальным сочетанием...
Тип: Изобретение
Номер охранного документа: 0002551331
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4da5

Устройство для измерения подводного шума плавсредства и система для проверки его рабочего состояния

Изобретения относятся к области гидроакустики и могут быть использованы для контроля уровня шумоизлучения подводного объекта в натурном водоеме. Техническим результатом, получаемым от внедрения изобретений, является получение возможности измерений уровня шума подводного плавсредства...
Тип: Изобретение
Номер охранного документа: 0002551391
Дата охранного документа: 20.05.2015
20.05.2015
№216.013.4daa

Способ бесконтактных измерений геометрических параметров объекта в пространстве и устройство для его осуществления

Изобретение относится к способу бесконтактных измерений геометрических параметров объекта в пространстве. При реализации способа на поверхности объекта выделяют одну и/или более обособленную зону, для которой можно заранее составить несколько разных упрощенных математических параметрических...
Тип: Изобретение
Номер охранного документа: 0002551396
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5189

Способ изготовления конусных изделий из стеклообразного материала

Изобретение относится к технологии получения изделий из кварцсодержащих материалов и может быть использовано в стекольной промышленности, кварцевом производстве. Способ получения изделий конусной формы наплавом из кристаллического исходного сырья осуществляют путем подачи сырья во вращаемую...
Тип: Изобретение
Номер охранного документа: 0002552394
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.51cf

Способ получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали

Изобретение относится к металлургической промышленности и касается способа получения слоистого композиционного материала на основе алюминиевых сплавов и низколегированной стали. Способ включает: зачистку контактных поверхностей заготовок из стали и алюминия механическим способом,...
Тип: Изобретение
Номер охранного документа: 0002552464
Дата охранного документа: 10.06.2015
10.06.2015
№216.013.5265

Способ получения сталеалюминиевого соединения сваркой плавлением

Изобретение относится к области сварочного производства, в частности к способу получения сварного сталеалюминиевого соединения, и может быть использовано в судостроении, при строительстве железнодорожного транспорта и автомобилестроении. Сталеалюминиевое соединение получают сваркой плавлением...
Тип: Изобретение
Номер охранного документа: 0002552614
Дата охранного документа: 10.06.2015
20.06.2015
№216.013.55e2

Способ разрушения ледяного покрова

Изобретение относится к технологиям разрушения ледяного покрова для вскрытия прохода через ледовое поле. Способ разрушения ледяного покрова основан на использовании двух видов воздействия на ледяное поле: облучение мощным лазерным излучением и нагружение льда корпусом ледокола. На ледоколе...
Тип: Изобретение
Номер охранного документа: 0002553516
Дата охранного документа: 20.06.2015
20.06.2015
№216.013.56d9

Композиционный наноструктурированный порошок для нанесения покрытий

Изобретение относится к области порошковой металлургии, в частности к получению порошка для нанесения износо- и коррозионно-стойких покрытий с высокой адгезионной и когезионной прочностью методом холодного газодинамического напыления (ХГДН). Композиционный наноструктурированный порошок для...
Тип: Изобретение
Номер охранного документа: 0002553763
Дата охранного документа: 20.06.2015
Показаны записи 101-110 из 184.
20.12.2014
№216.013.107c

Способ градуировки гидрофонов методом взаимности

Изобретение относится к области гидроакустики и может быть использовано при градуировке гидрофонов (Г) в измерительном бассейне методом взаимности. Техническим результатом, получаемым от внедрения изобретения, является повышение точности градуировки Г методом взаимности при использовании...
Тип: Изобретение
Номер охранного документа: 0002535643
Дата охранного документа: 20.12.2014
20.12.2014
№216.013.1381

Способ изготовления упругоподобных моделей летательных аппаратов на станках с чпу

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели...
Тип: Изобретение
Номер охранного документа: 0002536416
Дата охранного документа: 20.12.2014
10.01.2015
№216.013.18ae

Способ градуировки гидрофонов методом сличения

Изобретение относится к области гидроакустики и может быть использовано при градуировке гидрофонов (Г) в измерительном бассейне методом сличения. Техническим результатом, получаемым от внедрения изобретения, является повышение точности градуировки Г методом сличения при использовании...
Тип: Изобретение
Номер охранного документа: 0002537746
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.18b1

Гидрофонный тракт с бездемонтажной проверкой его работоспособности

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. Техническим результатом, получаемым от внедрения изобретения, является устранение необходимости...
Тип: Изобретение
Номер охранного документа: 0002537749
Дата охранного документа: 10.01.2015
20.01.2015
№216.013.1fb0

Композиционный сплав на основе co-tib-bn

Изобретение относится к области металлургии, в частности к прецизионным сплавам на основе кобальта для нанесения функциональных покрытий с высокими физико-механическими свойствами методом гетерофазного переноса. Сплав на основе кобальта содержит, мас.%: хром - 17,4-21,1; кремний - 2,6-4,9;...
Тип: Изобретение
Номер охранного документа: 0002539553
Дата охранного документа: 20.01.2015
27.01.2015
№216.013.2081

Способ измерения параметров потока на выходе из протоков моделей ла

Заявленное изобретение относится к области экспериментальной аэродинамики, в частности к способу определения аэродинамических характеристик (АДХ) моделей летательных аппаратов (ЛА), и может быть использовано в аэродинамических трубах (АДТ) при определении параметров потока на выходе из протоков...
Тип: Изобретение
Номер охранного документа: 0002539769
Дата охранного документа: 27.01.2015
10.02.2015
№216.013.2225

Поршень форсированного дизельного двигателя

Изобретение может быть использовано в дизельных двигателях. Поршень форсированного дизельного двигателя состоит из двух стальных сваренных между собой нижнего и верхнего фрагментов (1) и (2), образующих периферийную и центральную полости (3) и (4) охлаждения головки поршня, сообщенные основными...
Тип: Изобретение
Номер охранного документа: 0002540194
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2258

Способ определения работоспособности гидроакустического тракта в натурных условиях

Изобретение относится к измерительной технике, метрологии и гидроакустике и может быть использовано для бездемонтажной проверки рабочего состояния гидроакустического тракта в натурных условиях. На вход проверяемого гидроакустического тракта подают тестовые сигналы в виде тепловых шумов Джонса с...
Тип: Изобретение
Номер охранного документа: 0002540245
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.23fc

Способ изготовления сотового заполнителя

Изобретение относится к способам изготовления сотовых заполнителей для трехслойных панелей и оболочек и касается способа изготовления сотового заполнителя (СЗ) из стеклоткани. На полотно стеклоткани в продольном направлении наносят с заданным шагом клеевые полосы, подсушивают их и разрезают...
Тип: Изобретение
Номер охранного документа: 0002540665
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.29ed

Индуктор для магнитно-импульсной раздачи трубчатых заготовок

Изобретение относится к обработке металлов давлением, в частности к индукторам для магнитно-импульсной обработки. Используют токоподвод коаксильного типа, образованный торцовым токовыводом, выполненным в виде стальной трубы с фланцем, закрепленным на торце спирали индуктора, и изолированно...
Тип: Изобретение
Номер охранного документа: 0002542190
Дата охранного документа: 20.02.2015
+ добавить свой РИД