×
13.01.2017
217.015.9005

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ДЕФОРМАЦИИ КОРПУСА КОСМИЧЕСКОГО АППАРАТА В ПОЛЕТЕ

Вид РИД

Изобретение

№ охранного документа
0002605232
Дата охранного документа
20.12.2016
Аннотация: Изобретение относится к космической технике. В способе определения деформации корпуса КА в полете фиксируют на внутренней поверхности иллюминатора КА в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности КА, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки. В процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности КА в реперной точке, и направлением на Солнце. Измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце. Для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию КА до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры. Выполняют серию снимков реперной точки за выбранный интервал полета. Последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса КА. Техническим результатом изобретения надежное и точное определении деформации корпуса КА.

Изобретение относится к космической технике и может быть использовано для определения величины деформации различных частей корпуса космического аппарата (КА) в полете.

Космические аппараты (спутники, космические корабли, орбитальные станции и т.д.) подвержены деформации на разных этапах, т.е. при их создании, испытаниях, транспортировке, выведении на орбиту и в орбитальном полете. Определение деформаций является важной задачей и ее решению посвящено большое количество работ [1] Телянер Б.Е. и др. Технология ремонта корпуса и судна. Л.: Судостроение. Например, известен патент RU 2380273 С2 на Способ ведения измерений в ходе контроля местных остаточных деформаций корпуса судна [2]. Недостатки известных способов определения деформаций связаны с тем, что их применение не возможно на орбите космического аппарата.

Вместе с тем проблема деформации корпуса космического аппарата в полете является чрезвычайно сложной. Деформация корпуса КА в полете обусловлена двумя основными причинами. Во-первых, перепадом давления внутри КА и снаружи. Во-вторых, изменением температуры на корпусе КА в процессе орбитального движения (вход КА в тень Земли и выход из тени, изменение ориентации КА относительно Солнца). Указанные факторы приводят к деформации корпуса КА и отклонению чувствительных осей установленных на корпусе приборов на 1°-2°. Это является недопустимым при анализе большинства выполняемых научных экспериментов. Поэтому в полете деформации корпуса КА и отклонения чувствительных осей приборов должны быть определены и учтены. С этой целью для определения деформаций во время полета ОК «Мир» был предложен способ [3] Беляев М.Ю., Ефимов Н.И., Банит Ю.Р., Франк Ч., Фойхт У. Определение областей визирования камеры MOMS-2P во время съемок земной поверхности. Труды 31-32 Чтений К.Э. Циолковского. Секция «Проблемы ракетной и космической техники». М., ИИЕТ РАН, 1999, с. 83-94. Предложенный способ-прототип включает определение на борту базовых направлений и измерение углового расстояния между ними. В качестве базовых направлений выбирались направления на звезды, Солнце, Землю. Соответственно использовались звездный, солнечный и др. датчики, входящие в систему ориентации станции. Основным недостатком данного способа является то, что он может быть использован для определения деформации только в месте установки датчика, измеряющего базовое направление. Датчики и приборы стоят только в определенных местах на корпусе КА, и в процессе полета установка новых датчиков и приборов на корпусе КА является чрезвычайно сложной или даже невозможной задачей.

Задачей, на решение которой направлено настоящее изобретение, является определение деформации корпуса КА в местах, не ограниченных установкой приборов измерения базовых направлений.

Технический результат предлагаемого изобретения заключается в повышении надежности и точности определения деформации корпуса КА даже при отсутствии заранее установленных датчиков и приборов, измеряющих базовые направления.

Технический результат достигается тем, что в способе определения деформации корпуса космического аппарата в полете, включающем определение на борту космического аппарата базовых направлений и измерение углового расстояния между ними, фиксируют на внутренней поверхности иллюминатора космического аппарата в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности космического аппарата, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки, в процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности космического аппарата в реперной точке, и направлением на Солнце, измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце, для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию космического аппарата до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры, выполняют серию снимков реперной точки за выбранный для определения деформации корпуса космического аппарата интервал полета, последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса космического аппарата.

За счет выполнения предлагаемых действий определение деформации корпуса КА выполняется надежно, точно и даже при отсутствии измерений от датчиков измерения базовых направлений, установленных на корпусе КА.

Действительно, установив и зафиксировав на внутренней поверхности иллюминатора фотокамеру, можно выполнять обзор внешней поверхности КА. Выбрав на внешней поверхности КА реперные точки, можно выполнить их съемку. Реперными точками могут быть характерные элементы конструкции: концы антенн, части приборов и т.д. Для выполнения съемки требуется обеспечить необходимые условия освещенности фотографируемых элементов конструкции. Фотографируемый элемент конструкции должен быть достаточно освещен. Кроме того, солнечные лучи не должны попадать в поле зрения фотокамеры. Для этого в процессе полета измеряют углы α и β и изменяют ориентацию КА до достижения углами α и β значений, при которых реализуется требуемая освещенность фотографируемой реперной точки. Угол α отсчитывается от плоскости, касательной к внешней поверхности КА в реперной точке. Обычно корпус КА и модули орбитальной станции имеют цилиндрическую форму. Плоскость, относительно которой отсчитывается угол α, также удобнее считать, например, касательной к цилиндрической поверхности, проходящей через реперную точку и имеющей ось симметрии, совпадающую с осью симметрии корпуса КА или модуля орбитальной станции, на которой располагается реперная точка. Заданное значение угла α обеспечивает достаточную освещенность при съемке реперной точки и отсутствие ярко выраженных длинных теней от элементов конструкции. Обычно заданное значение острого угла α составляет значение, превышающее 30°÷40°. Выбор значения угла β также осуществляется для обеспечения благоприятных условий освещенности при фотографировании (Солнце не должно попадать в поле зрения фотокамеры).

После этого выполняют серию снимков реперной точки за выбранный для определения деформации корпуса КА интервал полета. Затем последовательно накладывают полученные снимки реперной точки друг на друга (кадры при съемке лучше делать полупрозрачными). Деформацию корпуса КА определяют по смещению изображения реперной точки на полученных снимках. Современные фотокамеры позволят фиксировать изменение конструктивных элементов до долей миллиметра. Анализируя серию последовательно полученных снимков фотокамерой, жестко закрепленной на иллюминаторе КА, получим величину деформации корпуса КА.

В настоящее время технически все готово для реализации предложенного способа, например, на Международной космической станции МКС. На МКС имеется большой выбор съемочных систем, позволяющих через иллюминатор получать снимки корпуса станции. Объем современного цифрового снимка 20-30 тысяч мегапикселей. Снимки, полученные с помощью используемых на МКС камер Nicon, имеют 6 тысяч пикселей по ширине снимка и 4 тысячи - по высоте. Это значит, что при попадании в кадр фотокамеры элемента конструкции размером 60 см мы получим точность метода 600 мм/6000 пикселей - 0.1 мм/пиксель. То есть на МКС мы сможем измерять и фиксировать деформацию корпуса, имеющую величину 0.1 мм.

Для измерения углов α и β на МКС имеются солнечные датчики. Крепление фотокамер на иллюминаторе может осуществляться с помощью специальных кронштейнов, которые имеются на станции. МКС оборудована большим количеством иллюминаторов, которые обеспечивают возможность обзора практически всей необходимой поверхности корпуса станции. На МКС в распоряжении космонавтов имеются вычислительные средства, персональные компьютеры, которые позволят проводить все необходимые вычисления и последовательно накладывать полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определять деформацию корпуса КА.

Предлагаемый способ позволяет за счет выполнения отличительных действий определять деформацию корпуса КА даже при отсутствии размещения на корпусе КА датчиков, измеряющих базовые направления (на звезды, Солнце и т.д.), т.е. предложенный способ является более универсальным по сравнению с прототипом.

Выбирая реперные точки в различных местах корпуса КА, можно получить полную картину его деформации в полете.

ЛИТЕРАТУРА

1. Телянер Б.Е. и др. Технология ремонта корпуса и судна. Л.: Судостроение.

2. Способ ведения измерений в ходе контроля местных остаточных деформаций корпуса судна. Патент RU 2380273 С.

3. Беляев М.Ю., Ефимов Н.И., Банит Ю.Р., Франк Ч., Фойхт У. Определение областей визирования камеры MOMS-2P во время съемок земной поверхности. Труды 31-32 Чтений К.Э. Циолковского, Секция «Проблемы ракетной и космической техники». М., ИИЕТ РАН, 1999, с. 83-94.

Способ определения деформации корпуса космического аппарата в полете, включающий определение на борту космического аппарата базовых направлений и измерение углового расстояния между ними, отличающийся тем, что фиксируют на внутренней поверхности иллюминатора космического аппарата в заданном положении фотокамеру, выбирают в качестве реперных точек ориентиры на внешней поверхности космического аппарата, попавшие в поле зрения фотокамеры, и фиксируют направления от фотокамеры на реперные точки, в процессе полета измеряют острый угол α между нормалью к плоскости, касательной к внешней поверхности космического аппарата в реперной точке, и направлением на Солнце, измеряют острый угол β между оптической осью фотокамеры и направлением на Солнце, для достижения требуемой освещенности фотографируемой реперной точки изменяют ориентацию космического аппарата до достижения углом α заданного значения, а углом β значения, превышающего величину угла поля зрения фотокамеры, выполняют серию снимков реперной точки за выбранный для определения деформации корпуса космического аппарата интервал полета, последовательно накладывают полученные снимки реперной точки друг на друга и по смещению изображения реперной точки на снимке определяют деформацию корпуса космического аппарата.
Источник поступления информации: Роспатент

Показаны записи 301-310 из 377.
11.03.2019
№219.016.d840

Способ формирования меток времени и устройство для его реализации

Изобретение относится к вычислительной и импульсной технике и может быть использовано в системах, использующих программно-временные устройства. Техническим результатом изобретения является упрощение способа и устройства реализации за счет снижения объема преобразуемой информации. Технический...
Тип: Изобретение
Номер охранного документа: 0002391773
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d842

Привод

Изобретение может быть использовано в качестве приводов автоматики изделий авиационной и ракетной техники. Привод содержит корпус (1), размещенный в нем двигатель (2), связанный с выступающим из корпуса со стороны его первого торца (3) выходным валом (4), а также датчик (16) угла поворота. Вал...
Тип: Изобретение
Номер охранного документа: 0002391583
Дата охранного документа: 10.06.2010
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.d9e0

Резервированный счетчик

Изобретение используется в области вычислительной и импульсной техники для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит n-разрядный счетчик, блок из n мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002379828
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.da87

Устройство для старта полезного груза с планет без атмосферы

Изобретение относится к космической технике, в частности к устройствам доставки полезного груза с Луны на Землю, например для транспортировки с Луны одноатомного газа гелий 3 (Hе), который может быть использован в качестве дополнительного источника термоядерной энергии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002368543
Дата охранного документа: 27.09.2009
11.03.2019
№219.016.dac1

Система теплозащиты космического аппарата

Изобретение относится к конструкции теплозащиты космического аппарата, выводимого ракетой-носителем в космическое пространство. Система теплозащиты космического аппарата содержит экранно-вакуумную тепловую изоляцию (ЭВТИ). Для ЭВТИ предусмотрено устройство обеспечения ее прочностных и...
Тип: Изобретение
Номер охранного документа: 0002360849
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.db2c

Блок центробежных вентиляторов

Изобретение относится к вентиляторостроению, может быть использовано в составе систем терморегулирования изделий космической техники и обеспечивает уменьшение поперечных габаритов и расширение компоновочных возможностей блока центробежных вентиляторов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002415306
Дата охранного документа: 27.03.2011
Показаны записи 301-310 из 324.
11.10.2018
№218.016.906f

Способ тарировки датчика микроускорений в условиях космического полета

Изобретение относится к космической технике и может быть использовано при тарировке датчика микроускорений на космическом аппарате (КА) в условиях штатного космического полета. Сущность изобретения заключается в том, что в способе тарировки датчика микроускорений в условиях космического полета...
Тип: Изобретение
Номер охранного документа: 0002669164
Дата охранного документа: 08.10.2018
11.03.2019
№219.016.dc11

Способ управления ориентацией космического аппарата с неподвижными панелями солнечных батарей при выполнении экспериментов на орбитах с максимальной длительностью теневого участка

Изобретение относится к управлению ориентацией космического аппарата (КА) с неподвижными относительно корпуса КА панелями солнечных батарей (СБ). Способ управления включает гравитационную ориентацию КА и его закрутку вокруг продольной оси (минимального момента инерции). При нахождении Солнца...
Тип: Изобретение
Номер охранного документа: 0002457158
Дата охранного документа: 27.07.2012
11.03.2019
№219.016.dc1a

Способ одноосной ориентации космического аппарата вытянутой формы

Изобретение относится к управлению ориентацией космического аппарата (КА) и может быть использовано при выполнении экспериментов и исследований на его борту. Способ включает гравитационную ориентацию КА, после которой производят закрутку КА вокруг выставленной на центр Земли оси КА. Закрутку...
Тип: Изобретение
Номер охранного документа: 0002457159
Дата охранного документа: 27.07.2012
29.03.2019
№219.016.ed54

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата и определение по изображению контура пожара. Дополнительно запоминают...
Тип: Изобретение
Номер охранного документа: 0002683142
Дата охранного документа: 26.03.2019
29.03.2019
№219.016.ee1d

Способ контроля лесного пожара с космического аппарата

Изобретение относится к области дистанционного мониторинга. Способ контроля лесного пожара с космического аппарата. Способ контроля лесного пожара с космического аппарата включает выполнение съемки с космического аппарата подстилающей поверхности и определение по получаемому изображению контура...
Тип: Изобретение
Номер охранного документа: 0002683143
Дата охранного документа: 26.03.2019
29.04.2019
№219.017.44c6

Способ определения магнитной помехи на космическом аппарате в полете

Изобретение относится к управлению полетом космических аппаратов с использованием данных о магнитном поле Земли (МПЗ). Способ включает измерение векторов напряженности МПЗ и направления на выбранную звезду (в оптическом диапазоне). Последний вектор должен быть отклонен от нормали к плоскости...
Тип: Изобретение
Номер охранного документа: 0002408507
Дата охранного документа: 10.01.2011
29.04.2019
№219.017.44cf

Способ определения трехосной ориентации космического аппарата

Изобретение относится к управлению ориентацией космического аппарата (КА), оснащенного магнитометром для определения вектора напряженности магнитного поля Земли (МПЗ). Способ включает измерение напряженности МПЗ и параметров орбиты КА. При этом стабилизируют КА в инерциальном пространстве,...
Тип: Изобретение
Номер охранного документа: 0002408508
Дата охранного документа: 10.01.2011
09.05.2019
№219.017.4bfc

Способ поддержания трехосной ориентации космического аппарата с силовыми гироскопами и целевой нагрузкой

Изобретение относится к управлению ориентацией космического аппарата (КА). Предлагаемый способ включает математическое моделирование орбиты КА, измерение кинетического момента силовых гироскопов и - на определенных полетных интервалах - параметров углового движения КА. По этим измерениям...
Тип: Изобретение
Номер охранного документа: 0002341419
Дата охранного документа: 20.12.2008
19.06.2019
№219.017.8b6c

Планшет для выбора объектов наблюдения с орбитального космического аппарата

Планшет для выбора наземного объекта наблюдения с орбитального космического аппарата (КА) относится к космической технике. Планшет для выбора наземных объектов наблюдения с орбитального КА включает в себя гибкую ленту с картой поверхности планеты, установленную над ней полупрозрачную пластину и...
Тип: Изобретение
Номер охранного документа: 0002469274
Дата охранного документа: 10.12.2012
20.06.2019
№219.017.8ce6

Способ определения деформации корпуса объекта преимущественно космического аппарата

Изобретение относится к способам технологического контроля технических средств. Способ определения деформации корпуса объекта, преимущественно космического аппарата, включает измерение острого угла α между направлением от ориентира на поверхности объекта к источнику освещения и нормалью к...
Тип: Изобретение
Номер охранного документа: 0002691776
Дата охранного документа: 18.06.2019
+ добавить свой РИД