×
13.01.2017
217.015.8ce4

Результат интеллектуальной деятельности: СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ

Вид РИД

Изобретение

№ охранного документа
0002604696
Дата охранного документа
10.12.2016
Аннотация: Изобретение относится к области физики ионосферы и может быть использовано для пассивного определения ионосферных параметров. Сущность: выполняют двухчастотный прием спутниковых сигналов ГЛОНАСС/GPS. Измеряют циклы фаз спутниковых радиосигналов, псевдодальности по коду до космических аппаратов (КА) и координаты КА. Записывают полученные данные в буферные запоминающие устройства (БЗУ). Вычисляют в каждый момент времени значения набора полного электронного содержания (ПЭС) для видимых КА с учетом вычитания значений постоянного смещения ПЭС IFB для каждого КА, хранящихся в запоминающем устройстве. Одновременно определяют координаты точки пересечения направления на КА с максимумом слоя F2. Полученные и рассчитанные данные отправляют в устройство формирования сканирующей сетки. В устройстве формирования сканирующей сетки с использованием выбранной модели ионосферы вычисляют значения ПЭС для каждого КА с учетом полученных координат для заданных вариантов интенсивности солнечного радиоизлучения на волне 10,7 см (). В устройстве сглаживания данных на основе получаемых значений ПЭС и рассчитанных ранее значений ПЭС, хранящихся в базах БЗУ, определяют сглаженные значения ПЭС. Используя значения ПЭС, полученные с использованием данных ГЛОНАСС/GPS, и значения, полученные с использованием выбранной модели ионосферы, формируют корреляционные матрицы данных и составляют функционал. Минимизируя данный функционал, определяют скорректированное значение . Используя полученное значение и выбранную модель ионосферы, формируют распределение электронной концентрации в требуемой области. При этом информацию о необходимых географических координатах получают с запоминающего устройства. Технический результат: расширение области действия и повышение быстродействия определения параметров ионосферы при приеме электромагнитных сигналов от нескольких спутников в условиях априорной неопределенности относительно шумов и помех. 4 ил.

Изобретение относится к геофизике и радиотехнике, а именно применяется в процессе мониторинга состояния ионосферы с определением ее параметров при помощи навигационных спутников. Решение задачи определения параметров ионосферы позволяет рассчитать максимально-применимые частоты коротковолновых радиотрасс.

Известны способы для решения задач пассивного определения параметров ионосферы - применение полуэмпирических моделей ионосферы, радиопросвечивание с использованием спутниковых сигналов и комбинирование этих двух способов.

Известен способ определения параметров ионосферы [1], заключающийся в использовании приема двух частот от спутников ГЛОНАСС/GPS. Восстановление профиля электронной концентрации ионосферы производится путем решения обратной задачи по Тихонову. Среди недостатков данного способа следует отметить низкую точность и скорость расчета. Обусловлено это тем, что метод решения обратной задачи по Тихонову очень чувствителен к любым ошибкам измерений, и расчет в предлагаемом способе осуществляется только с участием оператора, что приводит к значительному увеличению общего времени определения параметров ионосферы. Также к недостатку рассматриваемого способа можно отнести восстановление профиля в ограниченной области действия при углах места (50…80 градусов), что неприемлемо для решения многих практических задач, например прогноз характеристик KB радиолиний.

Наиболее близким к предлагаемому способу является способ определения электронной концентрации ионосферы [2], включающий в себя прием радиосигналов от навигационных спутников на двух когерентных частотах F1 и F2, определение по принятым радиосигналам разности псевдодальностей ΔD12, расчет полной электронной концентрации Le вдоль трассы «спутник-наземный пункт». Определение высотного профиля электронной концентрации ионосферы N(z) в области измерения осуществляют путем применения итерационной процедуры решения обратной задачи, основанной на использовании метода сопряженных градиентов и априорной информации о фоновом состоянии ионосферы.

Недостатком способа-прототипа является ограничение области восстановления профиля электронной концентрации ионосферы зоной видимости навигационных спутников, что может быть недостаточно при расчете траекторий распространения КВ радиоволн. Также следует отметить, что объекты, находящиеся в области расположения приемной антенны, также уменьшают зону видимости космических аппаратов (особенно актуально в городских условиях), что понижает возможности данного способа. Вторым недостатком является необходимость проведения итерационной процедуры расчета для каждой искомой точки, что при большом количестве точек сильно уменьшит быстродействие. Указанные недостатки, очевидно, ограничивают возможность применения способа при определении параметров ионосферы.

Задача изобретения - расширение области действия и повышение быстродействия определения параметров ионосферы при приеме электромагнитных сигналов от нескольких спутников, в условиях априорной неопределенности относительно шумов и помех.

Поставленная задача достигается тем, что в способе пассивного определения параметров ионосферы с помощью двухчастотного приема сигналов GPS/ГЛОНАСС измеряют циклы фаз спутниковых радиосигналов, псевдодальности по коду до космических аппаратов (КА) и координаты КА, полученные данные записывают в буферные запоминающие устройства (БЗУ), при этом в начале работы проводят первичную обработку данных, заключающуюся в вычислении в каждый момент времени значений набора полного электронного содержания (ПЭС) для видимых КА (ПЭСК и ПЭСФ), с учетом вычитания значений постоянного смещения ПЭС IFB для каждого КА, хранящихся в запоминающем устройстве (ЗУ), одновременно определяют координаты точки пересечения направления на КА с максимумом слоя F2 и отправляют их в устройство формирования сканирующей сетки, где вычисляют, с использованием выбранной модели, значения ПЭС для каждого КА с учетом полученных координат для заданных вариантов интенсивности солнечного радиоизлучения на волне 10,7 см (F10.7) и в устройстве сглаживания данных, на основе получаемых значений ПЭС и рассчитанных ранее значений ПЭС, хранящихся в БЗУ, определяют сглаженные значения ПЭС, далее, используя значения ПЭС, полученные с использования данных ГЛОНАСС/GPS, и значения, полученные с использованием выбранной модели ионосферы, формируют корреляционные матрицы данных и составляют функционал, минимизируя который, определяют скорректированное значение F10.7 и, используя полученное значение и выбранную модель ионосферы, формируют распределение электронной концентрации в требуемой области, причем информацию о необходимых географических координатах получают с ЗУ.

Достигаемый технический результат - расширение области действия определения параметров ионосферы достигается за счет адаптации модели ионосферы с использованием данных, полученных при помощи навигационных спутниковых систем; повышение быстродействия определения параметров ионосферы достигается за счет сведения многомерной оптимизации к минимизации функционала специального вида, позволяющего проводить автоматическую коррекцию модели по параметру интенсивности солнечной активности.

Перечень фигур

Фиг. 1 Представлена схема устройства.

Фиг. 2 Представлена схема эксперимента.

Фиг. 3 Представлены зависимости полного электронного содержания от времени суток для способов, использующих значения F10.7 и данные ионозонда, и предлагаемого способа для Томска.

Фиг. 4 Представлены зависимости полного электронного содержания от времени суток для способов, использующих значения F10.7 и данные ионозонда, и предлагаемого способа для Подкаменной Тунгуски.

Устройство, реализующее предложенный способ, содержит (фиг. 1) антенну ГЛОНАСС/GPS 1, двухчастотное радиоприемное устройство (РПУ) ГЛОНАСС/GPS 2, буферные запоминающие устройства (БЗУ) 3.1, 3.2, устройство первичной обработки данных 4, запоминающие устройства (ЗУ) 5.1, 5.2, устройство сглаживания данных 6, устройство формирования сканирующей сетки 7, решающее устройство 8, устройство моделирования ионосферы 9, отображающее устройство 10.

Выход антенны ГЛОНАСС/GPS 1, подключен к входу двухчастотного радиоприемного устройства 2 и через его выход - к входу буферного запоминающего устройства 3.1, выход которого соединен с входом устройства первичной обработки данных 4. Выход ЗУ 5.1 соединен с входом устройства первичной обработки данных 4. Выходы устройства первичной обработки данных 4 соединены с входом устройства сглаживания данных 6, входом устройства формирования сканирующей сетки 7 и входом буферного запоминающего устройства 3.2, выход которого соединен с входом устройства сглаживания данных 6. Выходы устройства сглаживания данных 6 и устройства формирования сканирующей сетки 7 подключены к входу решающего устройства 8, выход которого соединен с входом устройства моделирования ионосферы 9. Выход ЗУ 5.2 соединен с устройством моделирования ионосферы 9, выход которого подключен к входу отображающего устройства 10.

Антенна ГЛОНАСС/GPS 1 обеспечивает прием спутниковых сигналов, может быть выполнена, например, в виде спиральной антенны.

Двухчастотное радиоприемное устройство ГЛОНАСС/GPS 2 может быть выполнено с применением цифровой элементной базы, например, по схемам, приведенным в [1, 2]. Обеспечивает синхронное измерение циклов фаз принятых на выходе антенны 1 спутниковых радиосигналов, псевдодальностей по коду до космических аппаратов (КА) и координат КА в текущий момент времени.

Буферное запоминающее устройство 3.1 обеспечивает регистрацию данных, полученных с двухчастотного радиоприемного устройства ГЛОНАСС/GPS на время последующей обработки.

Буферное запоминающее устройство 3.2 обеспечивает накопление сглаженных значений полного электронного содержания (ПЭС) для каждого КА.

Устройство первичной обработки входных данных 4 определяет количество доступных КА, координаты точки пересечения направления на КА с максимумом слоя F2 и реализует функцию определения ПЭС по формуле [3]:

где R - радиус Земли, h - высота ионосферы, ПЭСН - наклонное значение ПЭС, определяемое для фазовых (ф) и кодовых измерений (к) по формулам:

где fL1, fL2 - частоты КА, pL1, pL2 - псевдодальности по коду, измеренные РПУ для каждой частоты, фL1, фL2 - псевдодальности, измеренные по количеству циклов фазы, IFB - значения смещения ПЭС для каждого КА.

Запоминающее устройство 5.1 обеспечивает хранение значений смещения ПЭС для каждого КА [3], полученных в результате калибровки устройства.

Запоминающее устройство 5.2 обеспечивает хранение значений географических координат, для которых необходимо рассчитать параметры ионосферы.

Устройство сглаживания данных 6 реализует функцию сглаживания полученных значений ПЭС для каждого КА в i-й момент времени по формуле:

где wm, wn - весовые коэффициенты, связанные соотношением:

Устройство формирования сканирующей сетки 7 реализует функцию формирования значений ПЭС для каждого КА согласно используемой модели ионосферы (NeQuick, IRI-2014 и т.д.) с использованием набора значений интенсивности солнечного радиоизлучения на волне 10,7 см.

Решающее устройство 8 производит определение значения интенсивности солнечного радиоизлучения на волне 10,7 см (F10.7) в области видимости КА путем минимизации функционала, определяющего отклонение модели от реальных данных, например:

где R - корреляционная матрица данных значений ТЕС для видимых КА в установленный период времени, Rmodel(F10.7) - корреляционная матрица данных значений ТЕС, рассчитанных на основе используемой модели ионосферы в устройстве 7.

Устройство моделирования ионосферы 9 реализует функцию расчета высотного распределения электронной концентрации, согласно выбранной модели ионосферы (NeQuick, IRI-2012 и т.д.) в точках, записанных в ЗУ 5.2.

Отображающее устройство 10 реализует вывод данных о распределении электронной концентрации ионосферы в заданных точках.

Изобретение осуществляется следующим образом. Принимают радиосигналы с КА ГЛОНАСС/GPS на антенну 1 и посредством радиоприемного устройства 2 измеряют циклы фаз спутниковых радиосигналов, псевдодальности по коду до космических аппаратов и координаты КА. Полученные данные записывают в БЗУ 3.1.

В начале работы устройства проводят первичную обработку данных, заключающуюся в вычислении в каждый момент времени значений набора ПЭС для видимых КА (ПЭСК и ПЭСФ), с учетом вычитания значений постоянного смещения ПЭС IFB для каждого КА, хранящихся в ЗУ 5.1. Одновременно определяют координаты точки пересечения направления на КА с максимумом слоя F2 и отправляют их в устройство формирования сканирующей сетки в устройстве 7.

На втором этапе обработки в устройстве 7 вычисляют, с использованием выбранной модели, значения ПЭС для каждого КА с учетом полученных координат для заданных вариантов интенсивности солнечного радиоизлучения на волне 10,7 см (F10.7). В устройстве сглаживания данных, на основе получаемых значений ПЭС и рассчитанных ранее значений ПЭС, хранящихся в БЗУ 3.2, определяют сглаженные значения ПЭС.

На третьем этапе обработки, используя значения ПЭС, полученные с использованием данных ГЛОНАСС/GPS, и значения, полученные с использованием выбранной модели ионосферы, формируют корреляционные матрицы данных и составляют функционал, минимизируя который, определяют скорректированное значение F10.7. Далее, используя полученное значение и выбранную модель ионосферы, формируют распределение электронной концентрации в требуемой области, информацию о необходимых географических координатах получают с ЗУ 5.2. Информацию о распределении электронной концентрации в заданных точках выводят в отображающем устройстве 10.

Приведем пример реализации предлагаемого способа определения параметров ионосферы.

В окрестности г. Омска производился прием сигналов спутниковых навигационных систем GPS/ГЛОНАСС с использованием двухчастотного приемника фирмы NovAtel. После первичной обработки радиосигналов с помощью аналитической модели ионосферы NeQuick вычислялись значения ПЭС для каждого КА. Затем формировались корреляционные матрицы и составлялся функционал, по минимизации которого определялось скорректированное значение F10.7. Вычисленные значения использовались для определения параметра ионосферы в районах станций вертикального зондирования (ВЗ) Томск и Подкаменная Тунгуска. Схема проводимого эксперимента отображена на фиг. 2.

Для проверки заявленного способа проводился анализ результатов измерений путем сравнения значений ПЭС, полученных по скорректированным (предложенный способ) и измеренным (данные сайта http:/spaceweather.com) значениям F10.7, со значениями ПЭС, вычисленными по данным станций ВЗ: Томск (фиг. 3) и Подкаменная Тунгуска (фиг. 4). Определение среднего квадратичного отклонения (СКО) выявило, что при удалении от точки измерений ошибка предложенного способа возросла, но его выигрыш над способом без коррекции значений F10.7 остался прежним: 2,5 раза.

Источники информации

1. П. №2042129, G01S 13/95, опубликован 20.08.1995 г.

2. П. №2421753,G01S 13/95, опубликован 20.06.2011.

3. Zhang Y., Wu F., Kubo Ν., Yasuda Α. TEC Measurement By Single Dual-frequency GPS Receiver, Proceedings of the 2003 international Symposium on GPS/GNSS, November 2003.

Способ пассивного определения параметров ионосферы, включающий в себя двухчастотный прием спутниковых сигналов ГЛОНАСС/GPS, измерение циклов фаз спутниковых радиосигналов, псевдодальности по коду до космических аппаратов (КА) и координаты КА, запись полученных данных в буферные запоминающие устройства (БЗУ), первичную обработку данных, заключающуюся в вычислении в каждый момент времени значений набора полного электронного содержания (ПЭС) для видимых КА (ПЭС и ПЭС) с учетом вычитания значений постоянного смещения ПЭС IFB для каждого КА, хранящихся в запоминающем устройстве (ЗУ), и одновременное определение координаты точки пересечения направления на КА с максимумом слоя F2, отличающийся тем, что полученные и рассчитанные данные отправляют в устройство формирования сканирующей сетки, где вычисляют с использованием выбранной модели ионосферы значения ПЭС для каждого КА с учетом полученных координат для заданных вариантов интенсивности солнечного радиоизлучения на волне 10,7 см (F), и в устройстве сглаживания данных на основе получаемых значений ПЭС и рассчитанных ранее значений ПЭС, хранящихся в БЗУ, определяют сглаженные значения ПЭС, далее, используя значения ПЭС, полученные с использования данных ГЛОНАСС/GPS, и значения, полученные с использованием выбранной модели ионосферы, формируют корреляционные матрицы данных и составляют функционал, минимизируя который, определяют скорректированное значение F, используя полученное значение и выбранную модель ионосферы, формируют распределение электронной концентрации в требуемой области, причем информацию о необходимых географических координатах получают с ЗУ.
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
СПОСОБ ПАССИВНОГО ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ИОНОСФЕРЫ
Источник поступления информации: Роспатент

Показаны записи 61-63 из 63.
19.01.2018
№218.016.0176

Многодиапазонное устройство для селекции, усиления и преобразования сигнала

Изобретение относится к радиоэлектронике и может быть использовано в профессиональных радиоприемных устройствах. Многоканальное устройство для селекции, усиления и преобразования сигналов содержит М поддиапазонных каналов, при этом у каждого канала вход соединен с входом устройства, а выход...
Тип: Изобретение
Номер охранного документа: 0002629960
Дата охранного документа: 05.09.2017
19.01.2018
№218.016.0a8f

Кварцевый генератор

Изобретение относится к области радиоэлектроники и может быть использовано при разработках миниатюрных кварцевых генераторов для поверхностного монтажа. Изобретение обеспечивает создание высокостабильного миниатюрного кварцевого генератора поверхностного монтажа, пьезоэлемент которого...
Тип: Изобретение
Номер охранного документа: 0002632268
Дата охранного документа: 03.10.2017
10.05.2018
№218.016.467d

Малогабаритный направленный ответвитель

Предлагаемое изобретение относится к области радиотехники и может быть использовано в радиопередающих системах KB диапазона. Заявленный направленный ответвитель содержит корпус, а также первичную и вторичную линии, состоящие из проводников, образующих область электромагнитной связи, причем...
Тип: Изобретение
Номер охранного документа: 0002650421
Дата охранного документа: 13.04.2018
Показаны записи 61-70 из 72.
13.01.2017
№217.015.7e63

Фильтр гармоник коротковолнового передатчика

Изобретение относится к области радиотехники и может быть использовано в фильтрах гармоник усилителей мощности широкодиапазонных радиопередатчиков. Технический результат - повышение избирательности и улучшение согласования во всем рабочем диапазоне частот передатчика. Фильтр гармоник...
Тип: Изобретение
Номер охранного документа: 0002601200
Дата охранного документа: 27.10.2016
24.08.2017
№217.015.94a3

Автоматизированный корабельный комплекс связи

Изобретение относится к области радиотехники, а именно к технике управления корабельными радиокомплексами, и может быть использовано для организации внутренней и внешней связи на кораблях, судах и других подвижных объектах. Технический результат состоит в повышении качества каналов передачи...
Тип: Изобретение
Номер охранного документа: 0002608562
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.94d8

Система декаметровой радиосвязи с высокоскоростной передачей данных

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех. Для этого...
Тип: Изобретение
Номер охранного документа: 0002608569
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.94fa

Система высокоскоростной декаметровой радиосвязи

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения, предназначенных для передачи высокоскоростных дискретных сообщений с использованием сигналов с угловой манипуляцией. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002608554
Дата охранного документа: 23.01.2017
24.08.2017
№217.015.9536

Способ декаметровой радиосвязи с высокоскоростной передачей данных

Изобретение относится к радиосвязи и может быть использовано в радиосетях декаметрового диапазона широкого применения. Технический результат состоит в повышении помехоустойчивости приема данных при мешающем воздействии сосредоточенных по спектру синусоидальных и флуктуационных помех. Для этого...
Тип: Изобретение
Номер охранного документа: 0002608567
Дата охранного документа: 23.01.2017
25.08.2017
№217.015.9e37

Входное устройство однотрактового многодиапазонного радиоприемника

Изобретение относится к радиосвязи и может быть использовано в радиоприемниках диапазона сверхдлинных волн (СДВ). Технический результат - повышение избирательности радиоканала. Входное устройство одноканального многодиапазонного радиоприемника содержит соединенные последовательно антенный вход,...
Тип: Изобретение
Номер охранного документа: 0002610835
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.bf89

Входное устройство м диапазонного радиоприемника

Изобретение относится к радиосвязи и может быть использовано в радиоприемниках в декаметровом диапазоне волн. Включение во входное устройство М диапазонного радиоприемника М канального коммутируемого частотно-селективного устройства (ЧСУ), М канального перестраиваемого ЧСУ и включение...
Тип: Изобретение
Номер охранного документа: 0002617118
Дата охранного документа: 21.04.2017
26.08.2017
№217.015.d3a9

Устройство для гашения колебаний проводов

Изобретение относится к радиотехнике, а именно к устройствам для гашения колебаний проводов, а также может быть использовано в качестве компенсатора растягивающих усилий, возникающих в проводах и кабелях от воздействия ударных ветровых нагрузок. Техническим результатом является повышение...
Тип: Изобретение
Номер охранного документа: 0002621722
Дата охранного документа: 07.06.2017
29.12.2017
№217.015.f667

Радиопередающее устройство с адаптивной компенсацией амплитудных и фазовых искажений

Изобретение относится к радиотехнике. Технический результат изобретения заключается в возможности адаптивной компенсации амплитудных и фазовых нелинейных искажений KB радиопередатчика. Радиопередающее устройство состоит из цифрового повышающего преобразователя частоты, селективного усилителя,...
Тип: Изобретение
Номер охранного документа: 0002630387
Дата охранного документа: 07.09.2017
29.12.2017
№217.015.fdca

Конструкция тонкопленочного чип резистивного вч-аттенюатора

Изобретение относится к области электроники и может быть использовано при изготовлении ЧИП резистивных высокочастотных (ВЧ) аттенюаторов. Техническим результатом является увеличение рассеиваемой мощности и упрощение технологии изготовления резистивного ВЧ-аттенюатора. Резистивный ВЧ-аттенюатор...
Тип: Изобретение
Номер охранного документа: 0002638541
Дата охранного документа: 14.12.2017
+ добавить свой РИД