×
13.01.2017
217.015.8b15

Результат интеллектуальной деятельности: СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов. Способ включает воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование. Воздушно-абразивную обработку проводят порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа. Травление имплантата осуществляют в водном растворе HF (5-8 мас.%) + HNO (15-19 мас.%) в течение 0,1-02 минут. Газотермическое оксидирование проводят путем индукционного нагрева в воздушной атмосфере до температуры 800-900°C при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг. Затем имплантат выдерживают в течение 0,5-2 минут и охлаждают на воздухе. Обеспечивается формирование на поверхности титановых имплантатов оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размером до 70±10 нм, с помощью высокопроизводительного и ресурсосберегающего способа. 2 з.п. ф-лы, 3 ил., 2 пр.

Изобретение относится к области медицинской техники, а именно к технологии формирования биоинертных наноструктурированных оксидных покрытий на внутрикостных частях титановых имплантатов.

Считается, что взаимодействие материала поверхности имплантата и костной ткани происходит на нанометровом уровне минерализованных коллагеновых фибрилл [N. Wang, Н. Li, W. Lii, J. Li, J. Wang, Z. Zhang, et al., Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs, Biomaterials 32 (2011) 6900-6911; Mendonca G. et al. Advancing dental implant surface technology-from micron-to nanotopography // Biomaterials. - 2008. - T. 29. - №. 28. - C. 3822-3835].

В настоящее время для формирования на титановых внутрикостных имплантатах гетерогенной поверхности, характеризуемой наличием микро- и наноразмерных структурных элементов, используются следующие технологические процессы: обработка концентрированными потоками энергии, газотермическое напыление, электрохимическое и газотермическое оксидирование. Известные способы формирования на титане микро- и наноструктурированной поверхности характеризуются значительной продолжительностью процесса, его технологической сложностью или токсичностью используемых веществ, что способствует поиску новых путей решения имеющейся проблемы.

Известен способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев [патент RU на изобретение №2527511 / Я.А. Четокин, Д.В. Пугашкин // Способ упрочнения металлических изделий с получением наноструктурированных поверхностных слоев. - 2014]. Формирование наноразмерного поверхностного покрытия осуществляют путем обработки поверхности металлических изделий легирующим сплавом, используемым в мелкодисперсной порошкообразной форме. Затем на подготовленные участки поверхности воздействуют лазерным излучением, производимым сфокусированным оптическим тепловым лучом высокоэнергетического квантового генератора, перемещая лазерный луч с шагом в 25 микрон. После этого проводят охлаждение поверхности обрабатываемой детали струей сжатого воздуха температурой 20°C под давлением 8 кПа. При охлаждении происходит кристаллизация легирующего сплава на металлической поверхности изделия.

Основным недостатком способа является технологическая сложность равномерной обработки поверхности.

Известен также способ получения наноструктурированного покрытия в процессе газотермического напыления [патент RU на изобретение №2542218 / Л.Ю. Боташев, Н.У. Бисилов, Р.С. Малсугенов // Способ получения наноструктурированного покрытия. - 2015]. В камере сгорания распылителя формируют высокотемпературный газовый поток путем сжигания топлива в окислителе. В камеру сгорания подачу исходного материала осуществляют в виде порошка. Длину камеры выбирают из условия обеспечения испарения порошкового материала путем воздействия высокотемпературным газовым потоком. Полученный газовый поток после выхода из камеры сгорания ускоряют в сопле и охлаждают с образованием наночастиц, причем используют сопло, длину которого выбирают из условия охлаждения газового потока до температуры ниже температуры плавления исходного материала. Охлаждение газового потока осуществляют путем смешения с холодным потоком инертного газа.

Основным недостатком способа является технологическая сложность процесса газотермического напыления.

Известен также способ получения биосовместимого покрытия на имплантатах из титана и его сплавов [патент RU на изобретение №2322267 / И.В. Родионов, К.Г. Бутовской, О.В. Бейдик, Ю.В. Серянов // Способ получения биосовместимого покрытия на имплантатах из титана и его сплавов. - 2008], позволяющий формировать на поверхности имплантируемых конструкций пористые металлооксидные слои. Согласно способу процесс оксидирования титана и его сплавов проводят при температуре 600-1000°C в течение 1,5-2 ч в газовой среде, подаваемой под давлением 1,2-1,3 атм и состоящей из смеси инертного (аргона, неона, гелия) и окисляющего (кислорода, диоксида углерода) газов при следующем соотношении компонентов: 60-70% и 40-60% соответственно.

Основными недостатками способа являются технологическая сложность и большая продолжительность процесса оксидирования.

Наиболее близким к предлагаемому способу является способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах [патент RU на изобретение №2469744 / Ф.М. Абдуллаев // Способ создания наноструктурной биоинертной пористой поверхности на титановых имплантатах. - 2012], позволяющий получить пористую наноструктурированную оксидную пленку толщиной 1-10 мкм, состоящую из открытых нанотрубок оксидов титана с размерами пор 40-140 нм. Осуществляют последовательную обработку поверхности имплантата методами пескоструйной обработки, травления в растворе кислот HF (2-3 мас. %) или HF (2-3 мас. %) + HNO3 (5-30 мас. %), или HNO3 + HCl (10-30 мас. %), обжиг-дегазацию в вакууме при температуре 300-770°C, предварительное анодирование (электрохимического оксидирования) при напряжении 30-90 В, удаление оксидной пленки травлением в растворе HF (2-20 мас. %) или HF (2-3 мас. %) + HNO3 (5-30 мас. %), однофазное или двухфазное анодирование постоянным или импульсным (0,5 Гц) током в 5-20% водном растворе щавелевой кислоты при формирующем напряжении 25-130 В и обжиг в печи для структурирования кристаллов и удаления жидкости из пор поверхности при температуре 300-550°C.

Основным недостатком способа являются длительность процесса, обусловленная необходимостью проведения вакуумного обжига-дегазации, предварительного электрохимического оксидирования и удаления оксидной пленкой травлением, а также обжига в печи для структурирования кристаллов и удаления жидкости из пор поверхности.

Задачей изобретения является создание технологически простого и высокопроизводительного и ресурсосберегающего способа формирования наноструктурированного биоинертного покрытия на титановых имплантатах.

Поставленная задача решается тем, что в способе формирования наноструктурированного биоинертного покрытия на титановых имплантатах, включающем воздушно-абразивную обработку, травление в растворе кислот и газотермическое оксидирование, после воздушно-абразивной обработки и травления проводят процесс оксидирования путем индукционного нагрева в воздушной атмосфере до температуры 800-900°C при частоте тока на индукторе 90±10 кГц и потребляемой удельной электрической мощности 0,2-0,4 Вт/кг, затем выдерживают в течение 0,5-2 минут и охлаждают на воздухе. Заявляется также изобретение, в котором наряду с вышеописанными признаками воздушно-абразивную обработку проводят порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа.

Кроме того, заявляется также способ, в котором наряду с вышеописанными признаками травление имплантата осуществляют в водном растворе HF (5-8 мас. %) + HNO3 (15-19 мас. %) в течение 0,1-0,2 минут.

Техническим результатом является формирование на поверхности титановых имплантатов оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размеров до 70±10 нм, с помощью высокопроизводительного и ресурсосберегающего способа.

Изобретение поясняется фигурами, на которых представлены: процесс газотермического оксидирования (Фиг. 1), микро- и наноразмерная морфология поверхности формируемого оксидного покрытия (Фиг. 2а и 2б соответственно), а также морфология структуры поверхности оксидного покрытия (Фиг. 3а и 3б) и образцов технически чистого титана (Фиг. 3в и 3г) после испытаний in vitro в течение 7 суток.

На Фиг. 1 позициями 1-5 обозначены:

1 - имплантат;

2 - керамическая камера оксидирования;

3 - водоохлаждаемый индуктор;

4 - источник питания;

5 - оксидное покрытие.

Предлагаемый способ осуществляют следующим образом.

Титановый имплантат подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2-0,3 МПа. Затем поверхность очищают от технологических загрязнений и подвергают травлению в водном растворе кислот HF (5-8 мас. %) + HNO3 (15-19 мас. %) в течение 0,1-0,2 минут. После этого имплантат промывают в дистиллированной воде и сушат на воздухе. Имплантат 1 помещают в керамическую камеру оксидирования 2 (повторяющую форму изделия), на внешней поверхности которой размещен водоохлаждаемый индуктор 3, подключенный к источнику питания 4 (Фиг. 1). После чего имплантат 1 подвергается индукционному нагреву при частоте тока на индукторе 90±10 кГц и удельной потребляемой электрической мощности 0,2-0,4 Вт/кг до температуры 800-900°C, последующей выдержке в течение 0,5-2 минут, последующему охлаждению на воздухе (Фиг. 1). В результате на поверхности изделия образуется оксидное покрытие 5 (Фиг. 1).

Технологические режимы воздушно-абразивной обработки, травления и газотермического оксидирования были определены путем проведения исследований методом растровой электронной микроскопии. Приведенные пределы значений технологических режимов воздушно-абразивной обработки обеспечивают формирование заданного микрорельефа поверхности имплантата.

Приведенные пределы значений технологических режимов газотермического оксидирования обеспечивают формирование на титане оксидного покрытия толщиной 3-10 мкм, состоящего из оксидных кристаллов размером до 70±10 нм.

При подаче на индуктор тока частотой менее 80 кГц снижается электрический коэффициент полезного действия устройства индукционного нагрева и самого процесса обработки. При подаче на индуктор тока частотой более 100 кГц не происходит улучшения эффективности процесса обработки и наблюдается снижение коэффициента мощности.

Предельные значения потребляемой удельной электрической мощности (0,2-0,4 Вт/кг) обусловлены тем, что при величине удельной электрической мощности менее 0,2 Вт/кг будет затруднен нагрев малогабаритных титановых изделий до заданной температуры из-за потерь на излучение. При величине удельной электрической мощности более 0,4 Вт/кг увеличивается вероятность перегрева титана и, как следствие, появление трещин поверхностного слоя.

При значениях температуры нагрева менее 800°C и продолжительности процесса газотермического оксидирования менее 0,5 минут образуется оксидное покрытие, не обладающее наноструктурированной морфологией поверхности. При значениях температуры нагрева более 900°C и продолжительности термообработки более 2 минут на поверхности титана образуются оксидные покрытия, обладающие низкими значениями адгезионно-когезионной прочности.

Примеры выполнения способа.

Пример 1. Стоматологический цилиндрический имплантат с диаметром 3,7 мм и длиной 10 мм, изготовленный из технического титана марки ВТ1-00, подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,2 МПа. Затем изделие очищают от технологических загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П). Промывают в дистиллированной воде с последующей сушкой на воздухе. Затем имплантат подвергают травлению в водном растворе кислот HF (5 мac.%) + HNO3 (1 мас. %) в течение 0,1 минуты и промывают дистиллированной водой с последующей сушкой на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 5 мм и длиной 20 мм. Затем имплантат подвергают индукционному нагреву до температуры 850°C и выдерживают в течение 0,5 минут при частоте тока на индукторе 90±10 кГц. После проведения процесса газотермического оксидирования имплантат охлаждают на воздухе до комнатной температуры.

Пример 2. Стержневой фиксатор для наружного чрезкостного остеосинтеза диаметром 4 мм и длиной 50 мм, изготовленный из технического титана марки ВТ6, подвергают воздушно-абразивной обработке порошком электрокорунда дисперсностью 100-200 мкм при давлении воздушной среды 0,3 МПа в течение 2 минут. Поверхность фиксатора очищают от технологический загрязнений путем ультразвуковой очистки в водном 4-6% растворе поверхностно-активных веществ (например, Сульфонол-П) и промывают дистиллированной водой с последующей сушкой на воздухе. Затем имплантат подвергают травлению в водном растворе кислот HF (8 мас. %) + HNO3 (16 мас. %) в течение 0,2 минут, промывают дистиллированной водой и сушат на воздухе. После чего имплантат размещают в кварцевой камере оксидирования с внутренним диаметром 6 мм и длиной 60 мм. Имплантат подвергают индукционному нагреву до температуры 900°C и выдерживают в течение 1 минуты при частоте тока на индукторе 90±10 кГц. После проведения процесса газотермического оксидирования имплантата охлаждают на воздухе до комнатной температуры.

Для подтверждения формирования на поверхности титановых имплантатов наноструктурированных биоинертных покрытий в результате обработки, описанной в предложенном способе, были проведены исследования морфологии и проверка биосовместимости.

Исследовались образцы из титанового сплава ВТ6 с оксидными покрытиями, сформированными по способу, описанному в примере 2. Структурное состояние покрытий изучалось методом растровой электронной микроскопии (РЭМ) на электронном микроскопе «MIRA II LMU». Проверка биосовместимости образцов с покрытиями проводилась в условиях in vitro. В качестве контрольных образцов использовались пластинки из технического титана марки ВТ1-00, подвергнутые воздушно-абразивной обработке. Для исследования были использованы дермальные фибробласты человека, выделенные методом миграции из фрагментов нормальной кожи. Продолжительность культивирования составила 7 суток, что считается достаточным для протекания стадий адгезии и начала пролиферации. Далее образцы покрытий с клетками подвергались фиксирующей обработке формальдегидом и последующему изучению с применением РЭМ.

Результаты растровой электронной микроскопии показали, что микроструктура поверхности представляет собой рельеф исходной металлической основы после воздушно-абразивной обработки, травления и оксидирования. Исследование в нанометровом масштабе выявило структуру поверхности оксидного покрытия, представленную округлыми зернами и порами, с линейными размерами до 70±10 нм (Фиг. 2).

Проверка биосовместимости in vitro оксидных покрытий, сформированных по предложенному способу, показала, что клетки фибробластов более стабильно закрепляются на поверхности покрытия (Фиг. 3а, б) чем на поверхности контрольных образцов из технического титана (Фиг. 3в, г), что свидетельствует о высоком уровне биосовместимости оксидных покрытий, полученных по предложенному способу.

Из полученных результатов следует, что предложенный способ позволяет формировать наноструктурированные биоинертные покрытия на титановых имплантатах.


СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ
СПОСОБ ФОРМИРОВАНИЯ НАНОСТРУКТУРИРОВАННОГО БИОИНЕРТНОГО ПОКРЫТИЯ НА ТИТАНОВЫХ ИМПЛАНТАТАХ
Источник поступления информации: Роспатент

Показаны записи 81-89 из 89.
25.08.2017
№217.015.a732

Устройство для стабилизации геометрических параметров кольцевых деталей

Изобретение относится к обкатке кольцевых деталей. Устройство содержит станину с размещенными на ней двумя опорными и деформирующим валками, механизм вращения обрабатываемой детали и механизм нагружения. Оси опорных валков установлены на станине неподвижно. Один опорный валок соединен с...
Тип: Изобретение
Номер охранного документа: 0002608114
Дата охранного документа: 13.01.2017
25.08.2017
№217.015.a950

Способ правки и стабилизации нежестких деталей

Изобретение относится к правке деталей. Осуществляют вращение детали и воздействуют на нее деформирующим инструментом, вызывающим в ней пластическую деформацию. Отвод деформирующего инструмента после деформации детали осуществляют постепенно с подачей S≤(0,01-0,05)Δ, в течение времени где S -...
Тип: Изобретение
Номер охранного документа: 0002611614
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9ca

Установка для раскатки и стабилизации дорожек качения шариковых подшипников

Изобретение относится к области раскатки дорожек качения колец шариковых подшипников. Установка содержит шариковую оправку с деформирующими элементами в виде шариков, механизм нагружения и механизм для установки и вращения заготовки. В механизме нагружения установлен электронный динамометр....
Тип: Изобретение
Номер охранного документа: 0002611615
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.a9de

Способ стабилизации размеров длинномерных деталей

Изобретение относится к правке упругопластическим изгибом длинномерных деталей. Осуществляют предварительное упругое деформирование детали. Осуществляют правку детали с одновременным поверхностным пластическим деформированием рабочим инструментом, перемещающимся вдоль образующей вращающейся...
Тип: Изобретение
Номер охранного документа: 0002611616
Дата охранного документа: 28.02.2017
25.08.2017
№217.015.aa48

Способ формирования оксидных покрытий на изделиях из титановых сплавов

Изобретение относится к технологии формирования оксидных покрытий на титановых изделиях технического и медицинского назначения, например элементах пар трения и метизных изделиях. Титановое изделие подвергают индукционному нагреву в воздушной атмосфере до температуры 700-800°С при частоте тока...
Тип: Изобретение
Номер охранного документа: 0002611617
Дата охранного документа: 28.02.2017
26.08.2017
№217.015.d961

Комбинированный ручной инструмент "тор"

Изобретение относится к области комбинированных многофункциональных ручных инструментов. Комбинированный ручной инструмент содержит две рукояти, с расположенным на одном конце одной рукояти полотном топора, на торцевой стороне которого сформированы выемка и режущая кромка, и с расположенным на...
Тип: Изобретение
Номер охранного документа: 0002623529
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.4635

Способ релаксации остаточных напряжений

Изобретение относится к релаксации остаточных напряжений. Осуществляют обкатку детали вокруг ее оси и деформирование ее роликами. Деформирование детали осуществляют с начальной деформацией : u где l - длина детали, мм; W - момент сопротивления изгибу, мм; Е - модуль упругости материала...
Тип: Изобретение
Номер охранного документа: 0002650383
Дата охранного документа: 11.04.2018
09.06.2018
№218.016.5fb7

Реактор термохимической конверсии твердых горючих ископаемых, биомассы, бытовых отходов и резинотехнических изделий

Изобретение относится к области теплоэнергетики и может быть использовано при энергообеспечении промышленных и коммунально-бытовых потребителей. Реактор термохимической конверсии твердых горючих ископаемых, биомассы, бытовых отходов и резинотехнических изделий включает загрузочный бункер 3,...
Тип: Изобретение
Номер охранного документа: 0002656669
Дата охранного документа: 06.06.2018
Показаны записи 91-100 из 100.
26.08.2017
№217.015.d961

Комбинированный ручной инструмент "тор"

Изобретение относится к области комбинированных многофункциональных ручных инструментов. Комбинированный ручной инструмент содержит две рукояти, с расположенным на одном конце одной рукояти полотном топора, на торцевой стороне которого сформированы выемка и режущая кромка, и с расположенным на...
Тип: Изобретение
Номер охранного документа: 0002623529
Дата охранного документа: 27.06.2017
26.08.2017
№217.015.da72

Способ химико-термической индукционной обработки малогабаритных изделий из альфа-титановых сплавов

Изобретение относится к металлургии, а именно к химико-термической обработке и упрочнению малогабаритных изделий конструкционного и медицинского назначения, например метизных изделий и стоматологических имплантатов, изготовленных из альфа-сплавов титана. Способ химико-термической индукционной...
Тип: Изобретение
Номер охранного документа: 0002623979
Дата охранного документа: 29.06.2017
10.05.2018
№218.016.392d

Способ формирования оксидных покрытий на изделиях из циркониевых сплавов

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования оксидных покрытий на циркониевых изделиях технического или медицинского назначения, например элементах пар трения, датчиках, тепловыделяющих элементах и внутрикостных имплантируемых конструкциях....
Тип: Изобретение
Номер охранного документа: 0002647048
Дата охранного документа: 13.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3dd4

Способ изготовления электрически изолированных резисторов микросхем

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью. Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев...
Тип: Изобретение
Номер охранного документа: 0002648295
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.4604

Способ формирования наноструктурированного оксидного покрытия на техническом титане

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)O на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002650221
Дата охранного документа: 11.04.2018
13.10.2018
№218.016.91ca

Способ формирования серебросодержащего биосовместимого покрытия на титановых имплантатах

Изобретение относится к медицине, а именно к ортопедической стоматологии и травматологии, и может быть использовано для формирования серебросодержащего биосовместимого покрытия на титановых имплантатах. Для этого проводят получение покрытия путем предварительной механической обработки титановой...
Тип: Изобретение
Номер охранного документа: 0002669402
Дата охранного документа: 11.10.2018
30.05.2019
№219.017.6bc3

Способ формирования оксидных покрытий на изделиях из нержавеющих хромоникелевых сталей

Изобретение относится к области машино- и приборостроения, а именно к технологии оксидирования изделий конструкционного и медицинского назначения из нержавеющей хромоникелевой стали, например элементов запорной арматуры и внутрикостных имплантируемых конструкций. Способ включает размещение...
Тип: Изобретение
Номер охранного документа: 0002689485
Дата охранного документа: 28.05.2019
01.06.2019
№219.017.7207

Способ химико-термического упрочнения малогабаритных изделий из технического титана

Изобретение относится к области машино- и приборостроения, а именно технологии химико-термической обработки и упрочнения малогабаритных изделий конструкционного и медицинского назначения, изготовленных из сплавов титана. Способ включает размещение изделий в термостойком контейнере на подкладке...
Тип: Изобретение
Номер охранного документа: 0002690067
Дата охранного документа: 30.05.2019
30.10.2019
№219.017.dbd1

Способ формирования цирконийсодержащего оксидного покрытия на титановых сплавах

Изобретение относится к области машино- и приборостроения, а именно к технологии формирования локальных покрытий системы Ti-Zr-(Ti,Zr)O на изделиях из титановых сплавов, и может быть использовано для защиты деталей, работающих в условиях повышенных температур, агрессивных сред и абразивного...
Тип: Изобретение
Номер охранного документа: 0002704337
Дата охранного документа: 28.10.2019
+ добавить свой РИД