×
13.01.2017
217.015.8adf

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности. Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета. При этом координаты цвета R, G и B нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету. При этом относительная плотность рассчитывается по формуле: где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C), R, G, B - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции. Техническим результатом является упрощение и повышение производительности способа определения относительной плотности (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти. 1 табл.

Изобретение относится к способам определения относительной плотности нефтяных масляных фракций и может быть использовано в нефтеперерабатывающей и нефтехимической промышленности.

Относительная плотность является важнейшей характеристикой всех видов сырья, продуктов и полупродуктов в процессах нефтехимпереработки, в том числе масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки.

В лабораторном контроле нефтеперерабатывающих производств распространен ареометрический способ определения относительной плотности масляных фракций (ГОСТ 3900-85).

Недостатки стандартного ареометрического способа:

1) необходимость отбора значительного количества пробы (не менее 150 мл);

2) предварительный нагрев высоковязких образцов масляных фракций до текучего состояния, термостатирования образца.

Наиболее близким техническим решением к заявляемому способу является способ [Шуляковская Д.О., Доломатов М.Ю., Доломатова М.М., Еремина С.А. Метод фотоизображений в информационной системе контроля физико-химических свойств многокомпонентных углеводородных систем // Электротехнические и информационные комплексы и системы. - 2014. - №1. - С. 106-113] определения физико-химических свойств многокомпонентных углеводородных систем по фотоизображениям. В данном способе относительная плотность таких многокомпонентных углеводородных систем, как высококипящие нефтяные фракции (мазуты, гудроны, крекинг-остатки, нефтяные смолы и асфальтены), определяется по фотоизображениям оптически прозрачных растворов данных систем. Суть способа заключается в следующем. Производится приготовление раствора образца. Раствор заливается в прозрачную кювету и производится регистрация фотоизображения раствора с люминесцентной лампой или дневным солнечным светом в качестве источника излучения. Затем в графическом редакторе по фотоизображению для исследуемого раствора определяются координаты цвета R, G, В в колориметрической системе sRGB. Далее определяется координата цвета Xphoto или Yphoto раствора образца в колориметрической системе XYZ путем стандартного перехода из колориметрической системы sRGB в XYZ. Затем определяется координата цвета XD или YD (для стандартного источника D65 CIE) путем корректировки, позволяющей учитывать различие освещения при фотосъемке от стандартного источника D65 CIE. Следующий этап заключается в оценке значения интегрального показателя поглощения исследуемого образца по определенной ранее координате цвета XD или YD и концентрации раствора, расчет которой производится при приготовлении раствора. Затем относительная плотность исследуемой многокомпонентной углеводородной системы определяется по интегральному показателю поглощения по линейной зависимости.

Основным недостатком данного способа является его непригодность для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) необходимостью в процедуре приготовления оптически прозрачных растворов, требующей специальной квалификации персонала лаборатории;

2) необходимостью в переходе от одной колориметрической системы к другой, что приводит к увеличению погрешности определения свойств;

3) дополнительным процессом корректировки цветовых характеристик фотоизображений на стандартный источник излучения;

4) временными затратами, связанными с процессом приготовления растворов, корректировкой цветовых характеристик на стандартный источник, определением интегрального показателя поглощения.

Также наиболее близким техническим решением к заявляемому способу является способ [Доломатов М.Ю., Ярмухаметова Г.У., Доломатова Л.А. Взаимосвязь физико-химических и цветовых свойств углеводородных систем в колориметрических системах RGB и XYZ // Прикладная физика. - 2008. - №4. - С. 43-49] определения физико-химических свойств таких углеводородных систем, как нефти и нефтяные остатки, который основан на так называемой корреляции цвет-свойства:

где Z - физико-химическое свойство исследуемой системы;

q - цветовая характеристика оптически прозрачного раствора в колориметрических системах RGB и XYZ;

β1, β2 - эмпирические коэффициенты, зависящие от типа цветовой характеристики и класса углеводородной системы.

Цветовые характеристики растворов многокомпонентных углеводородных систем рассчитываются в стандартных колориметрических системах XYZ и RGB по электронным абсорбционным спектрам поглощения излучения в видимом диапазоне электромагнитного спектра в интервале от 380 до 780 нм. Методика расчета цветовых характеристик, зависящих от стандартных источников излучения (А, В, С или D CIE), состоит из следующих этапов:

1. Расчет координат цвета (X, Y, Z) в колориметрической системе XYZ:

где E(λi) - спектральная характеристика стандартного источника излучения (А, В, С или D);

, , - функции сложения стандартного колориметрического наблюдателя;

τ(λi) - функция спектрального коэффициента пропускания в видимой области спектра;

с - концентрация исследуемого раствора, г/л;

l - толщина поглощающего слоя раствора, см;

k(λi) - коэффициенты поглощения излучения в видимой области, л/(г·см) (в системе СИ 102·м2/кг);

n - количество частичных интервалов разбиения спектра.

2. Расчет координат цвета (R, G, В) в колориметрической системе RGB:

3. Расчет координат цветности (x, у, z) системы XYZ и (r, g, b) системы RGB по формулам:

где m, mRGB - цветовой модуль в колориметрических системах XYZ и RGB.

Данный способ также непригоден для таких систем как нефтяные масляные фракции. Кроме того, способ характеризуется рядом недостатков:

1) длительность процесса снятия спектра в видимой области спектра;

2) необходимость использования специального спектрометра;

3) способ может быть применим для оптически прозрачных растворов веществ только заданной концентрации.

Целью изобретения является упрощение и повышение производительности способа определения относительной плотности (при температуре образца 15°С и температуре воды 4°С) нефтяных масляных фракций первичной переработки нефти с установки атмосферно-вакуумной трубчатки нефтеперерабатывающего завода с температурами кипения от 300-550°С (второй, третьей, четвертой и пятой фракции). Поставленная цель достигается за счет того, что предлагаемый способ имеет повышенную экспрессность, применимость для различных нефтяных масляных фракций с температурами кипения от 300-550°С. Способ предусматривает упрощение технологии в связи с отсутствием необходимости подготовки образцов и существенным упрощением необходимых расчетов, а также упрощением используемой аппаратуры.

Суть способа заключается в связи плотности и концентрации светопоглощающих центров в оптически прозрачной среде. В масляных фракциях, как известно, присутствуют полициклические углеводороды с числом колец более трех, нафтеноароматические компоненты и компоненты с гетероатомами азота, серы и кислорода. Такие компоненты при переходе из возбужденного в стабильное состояние излучают свет в видимой области (обладают цветностью), что соответствует π-π* или π-n переходам.

Предлагаемый способ заключается в том, что определение относительной плотности нефтяной масляной фракции производится по ее цветовым характеристикам координатам красного, зеленого и синего цвета, отличающийся тем, что координаты цвета RsRGB, GsRGB и BsRGB нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по установленной зависимости:

Предлагаемый способ осуществляется следующим образом. Небольшую навеску исследуемой нефтяной масляной фракции помещают в прозрачную кювету размером 10*20 мм (шириной 20 мм и толщиной 10 мм) и регистрирую фотоизображение кюветы с масляной фракцией с дневным светом в качестве источника излучения. Регистрация фотоизображения производится цифровым фотоаппаратом с разрешением 10 мегапикселей (размер матрицы 3872×2592 пиксела) и более.

Полученное фотоизображение обрабатывают в растровом графическом редакторе и получают координаты красного, зеленого и синего цвета (RsRGB, GsRGB, BsRGB) в колориметрической системе sRGB.

Рассчитывают относительную плотность нефтяной масляной фракции по установленной зависимости:

|где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°С и температуре воды 4°С);

RsRGB, GsRGB, BsRGB - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.

Пример 1. Определяют относительную плотность второй масляной фракции (температура кипения 300-400°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=127, GsRGB=125, BsRGB=46. Рассчитывают относительную плотность второй масляной фракции (температура кипения 300-400°С) по зависимости (7):

Пример 2. Определяют относительную плотность третьей масляной фракции (температура кипения 350-420°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=118, GsRGB=94, BsRGB=26. Рассчитывают относительную плотность третьей масляной фракции (температура кипения 350-420°С) по зависимости (7):

Пример 3. Определяют относительную плотность четвертой масляной фракции (температура кипения 420-500°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=119, GsRGB=81, BsRGB=22. Рассчитывают относительную плотность четвертой масляной фракции (температура кипения 420-500°С) по зависимости (7):

Пример 4. Определяют относительную плотность пятой масляной фракции (температура кипения 450-550°С). Координаты цвета исследуемой нефтяной масляной фракции в колориметрической системе sRGB равны RsRGB=96, GsRGB=30, BsRGB=25. Рассчитывают относительную плотность пятой масляной фракции (температура кипения 450-550°С) по зависимости (7):

Значения относительной плотности исследуемых масляных фракций (примеры 1-4), определенные стандартным ареометрическим способом (ГОСТ 3900-85) и предлагаемым способом приведены в таблице 1.

Вывод: как следует из таблицы 1, относительная погрешность определения относительной плотности нефтяных масляных фракций по предлагаемому способу по сравнению со стандартным в среднем составляет 0,45%. Следовательно, предлагаемый способ может быть использован для экспрессного определения относительной плотности нефтяных масляных фракций.

Преимущества заявляемого способа экспрессного определения относительной плотности нефтяных масляных фракций заключаются в следующем:

1. использование небольшого количества образца нефтяной масляной фракции (порядка 3 мл);

1. не требуется предварительная подготовка образцов: нагрев высоковязких образцов нефтяных масляных фракций до текучего состояния, термостатирование, а также не требуется приготовление растворов;

2. достаточно одного фотографического изображения;

3. подходит для нефтяных масляных фракций в широком диапазоне температур кипения 300-550°С;

4. имеется потенциальная возможность дистанционного контроля относительной плотности нефтяных масляных фракций без отбора проб, что позволяет применять способ в системе оперативного контроля качества сырья и продуктов маслоблоков на нефтеперерабатывающих заводах.

Способ определения относительной плотности нефтяных масляных фракций путем определения ее цветовых характеристик, координат красного, зеленого и синего цвета, отличающийся тем, что координаты цвета R, G и B нефтяной масляной фракции определяются в колориметрической системе sRGB в растровом графическом редакторе по фотоизображению нефтяной масляной фракции, которое регистрируется с дневным светом в качестве источника излучения, путем помещения нефтяной масляной фракции в прозрачную кювету, при этом относительная плотность рассчитывается по формуле: где - относительная плотность нефтяной масляной фракции (при стандартной температуре образца 15°C и температуре воды 4°C);R, G, B - координаты соответственно красного, зеленого и синего цвета в колориметрической системе sRGB, определяемые по фотоизображению нефтяной масляной фракции.
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
СПОСОБ ОПРЕДЕЛЕНИЯ ОТНОСИТЕЛЬНОЙ ПЛОТНОСТИ НЕФТЯНЫХ МАСЛЯНЫХ ФРАКЦИЙ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 107.
20.09.2015
№216.013.7bc3

Способ получения анизотропного нефтяного волокнообразующего пека

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной...
Тип: Изобретение
Номер охранного документа: 0002563280
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc5

Способ получения пористого материала

Изобретение относится к области получения сорбционно-активных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, а также для очистки сточных вод от белковых токсикантов. Способ получения пористого...
Тип: Изобретение
Номер охранного документа: 0002563282
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bfe

Атомно-силовой сканирующий зондовый микроскоп, использующий квазичастицы

Изобретение относится к области техники зондовой микроскопии. Атомно-силовой сканирующий зондовый микроскоп (АСМ) содержит кантилевер, иглу кантилевера, систему обнаружения и регистрации отклонения кантилевера, включающую лазер, отражательную поверхность кантилевера и 4-секционный фотодиод с...
Тип: Изобретение
Номер охранного документа: 0002563339
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e2c

Система производства огнеупорных изделий для литьевых установок

Изобретение относится к технологии изготовления огнеупорных изделий для металлургической промышленности, более конкретно к системе производства огнеупорных изделий для литьевых установок, и может найти применение при изготовлении углеродсодержащих стопорных пробок, стаканов-дозаторов,...
Тип: Изобретение
Номер охранного документа: 0002563897
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7ffc

Способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители. Способ получения высокодисперсного диоксида кремния включает предварительную обработку...
Тип: Изобретение
Номер охранного документа: 0002564361
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.87d6

Способ получения асфальтенов с улучшенными электронными характеристиками

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации, в частности к получению асфальтенов, обладающих свойствами полупроводников. Изобретение касается способа получения асфальтенов путем деасфальтизации углеводородного сырья, включающего обработку сырья...
Тип: Изобретение
Номер охранного документа: 0002566377
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.96db

Способ измерения энергетических спектров квазичастиц в конденсированной среде

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде, возбуждают квазичастицы с...
Тип: Изобретение
Номер охранного документа: 0002570239
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97bf

Способ очистки сточных вод от фтора

Изобретение относится к способам очистки фторсодержащих сточных вод и может быть использовано в предприятиях по производству экстракционной фосфорной кислоты и фторосиликата натрия на основе фторокремниевой кислоты. Способ очистки сточных вод от фтора осуществляется путем обработки их...
Тип: Изобретение
Номер охранного документа: 0002570467
Дата охранного документа: 10.12.2015
20.12.2015
№216.013.9b7e

Способ получения полимерных продуктов, содержащих в составе макромолекул незамещенные циклопропановые группы

Изобретение относится к способу получения полимерных продуктов с незамещенными циклопропановыми группами общей формулы (1): где (a+b):(c+d)=60-95:5-40 мол.%. Способ заключается во взаимодействии 1,2-полибутадиена атактического строения с диазосоединением в среде метиленхлорида в присутствии...
Тип: Изобретение
Номер охранного документа: 0002571431
Дата охранного документа: 20.12.2015
20.12.2015
№216.013.9ccc

Способ получения кормового дикальцийфосфата

Изобретение относится к способам получения минеральных добавок для корма животных, а именно к производству кормового дикальцийфосфата. Способ получения кормового дикальцийфосфата включает добавление к экстракционной фосфорной кислоте, содержащей 45-52% PO, 1,5-4% серной кислоты в пересчете на...
Тип: Изобретение
Номер охранного документа: 0002571765
Дата охранного документа: 20.12.2015
Показаны записи 61-70 из 117.
20.09.2015
№216.013.7bad

Комплексное соединение 6-метилурацила с карбоксилсодержащим органическим соединением и способ его получения

Изобретение относится к получению комплекса 6-метилурацила с пектином, который может быть использован в медицине и фармацевтической промышленности, формулы: Предложенное комплексное соединение проявляет противоязвенную активность и эффективно в качестве основного действующего вещества при...
Тип: Изобретение
Номер охранного документа: 0002563258
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bae

Способ получения малеинизированных 1,2-полибутадиенов

Изобретение относится к области высокомолекулярных соединений, в частности к получению полимерных продуктов, содержащих в составе макромолекул ангидридные группы. Способ получения малеинизированных 1,2-полибутадиенов заключается во взаимодействии раствора синдиотактического 1,2-полибутадиена с...
Тип: Изобретение
Номер охранного документа: 0002563259
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc3

Способ получения анизотропного нефтяного волокнообразующего пека

Изобретение относится к способам получения анизотропного нефтяного волокнообразующего пека и может быть использовано в нефтеперерабатывающей промышленности. Предложен способ получения анизотропного нефтяного волокнообразующего пека путем термообработки изотропного нефтяного пека в инертной...
Тип: Изобретение
Номер охранного документа: 0002563280
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bc5

Способ получения пористого материала

Изобретение относится к области получения сорбционно-активных материалов, используемых при разделении и очистке газовых и паровых смесей различной природы, для очистки поверхности воды от нефти и нефтепродуктов, а также для очистки сточных вод от белковых токсикантов. Способ получения пористого...
Тип: Изобретение
Номер охранного документа: 0002563282
Дата охранного документа: 20.09.2015
20.09.2015
№216.013.7bfe

Атомно-силовой сканирующий зондовый микроскоп, использующий квазичастицы

Изобретение относится к области техники зондовой микроскопии. Атомно-силовой сканирующий зондовый микроскоп (АСМ) содержит кантилевер, иглу кантилевера, систему обнаружения и регистрации отклонения кантилевера, включающую лазер, отражательную поверхность кантилевера и 4-секционный фотодиод с...
Тип: Изобретение
Номер охранного документа: 0002563339
Дата охранного документа: 20.09.2015
27.09.2015
№216.013.7e2c

Система производства огнеупорных изделий для литьевых установок

Изобретение относится к технологии изготовления огнеупорных изделий для металлургической промышленности, более конкретно к системе производства огнеупорных изделий для литьевых установок, и может найти применение при изготовлении углеродсодержащих стопорных пробок, стаканов-дозаторов,...
Тип: Изобретение
Номер охранного документа: 0002563897
Дата охранного документа: 27.09.2015
27.09.2015
№216.013.7ffc

Способ получения высокодисперсного диоксида кремния

Изобретение относится к технологии получения диоксида кремния с развитой удельной поверхностью и может найти применение в отраслях промышленности, использующих высокодисперсные минеральные наполнители. Способ получения высокодисперсного диоксида кремния включает предварительную обработку...
Тип: Изобретение
Номер охранного документа: 0002564361
Дата охранного документа: 27.09.2015
27.10.2015
№216.013.87d6

Способ получения асфальтенов с улучшенными электронными характеристиками

Изобретение относится к области переработки углеводородного сырья путем деасфальтизации, в частности к получению асфальтенов, обладающих свойствами полупроводников. Изобретение касается способа получения асфальтенов путем деасфальтизации углеводородного сырья, включающего обработку сырья...
Тип: Изобретение
Номер охранного документа: 0002566377
Дата охранного документа: 27.10.2015
10.12.2015
№216.013.96db

Способ измерения энергетических спектров квазичастиц в конденсированной среде

Изобретение относится к области техники зондовой спектроскопии, которая занимается разработкой устройств и методов для исследования спектров поверхности с нанометровым разрешением. Согласно способу измерения энергетических спектров квазичастиц в конденсированной среде, возбуждают квазичастицы с...
Тип: Изобретение
Номер охранного документа: 0002570239
Дата охранного документа: 10.12.2015
10.12.2015
№216.013.97bf

Способ очистки сточных вод от фтора

Изобретение относится к способам очистки фторсодержащих сточных вод и может быть использовано в предприятиях по производству экстракционной фосфорной кислоты и фторосиликата натрия на основе фторокремниевой кислоты. Способ очистки сточных вод от фтора осуществляется путем обработки их...
Тип: Изобретение
Номер охранного документа: 0002570467
Дата охранного документа: 10.12.2015
+ добавить свой РИД