×
13.01.2017
217.015.8a59

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ОСНОВЕ МАГНИЙ-ЗАМЕЩЕННОГО ГИДРОКСИАПАТИТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине. Описан способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, состоящий в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из титана и формировании биоактивного слоя, при этом воздушно-абразивную обработку производят с использованием порошка дисперсностью 250-300 мкм в течение 5 мин, электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм производят в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, электроплазменное напыление порошка Mg-ΓΑ с дисперсностью до 90 мкм производят в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин. Способ обеспечивает повышенные значения адгезии и развитую морфологию поверхности получаемого покрытия. 2 табл., 2 ил.

Изобретение относится к способам нанесения гидроксиапатитовых покрытий и может быть использовано в медицине, а именно к челюстно-лицевой хирургии и травматологии для изготовления внутритканевых эндопротезов на титановой основе.

Известен способ получения биологически активного керамического покрытия на основе гидроксиапатита методом погружения (патент US на изобретение №6569489 В1, опубл. 27.05.2003), включающий несколько стадий. Сначала подготавливают подложку и получают водный раствор, имеющий уровень рН=6,0-7,5, температуру ниже или равную 100°С и содержащий ионы кальция, фосфата и карбонат-ионы. Затем погружают заготовку изделия в раствор и выдерживают в течение времени, достаточного для формирования керамического покрытия при рН раствора <8.0.

Однако в описанном выше способе не решена проблема формирования покрытия с развитой морфологией и высокими значениями адгезии.

Известен также способ получения плазмонапыленного многослойного биоактивного покрытия на основе гидроксиапатита (патент РФ на изобретение №2146535, МПК A61L 27/00, F61C 8/00, опубл. 20.03.2000 г.), в котором осуществляют плазменное напыление на титановую основу при различных режимах системы покрытий из пяти слоев. Первые два слоя выполнены из титана или гидрида титана, последующие два слоя из смеси титана или гидрида титана с гидроксиапатитом кальция, отличающихся содержанием компонентов в слоях. Наружный пятый слой выполнен из гидроксиапатита кальция.

Известен также способ получения покрытия на основе гидроксиапатита (патент на изобретение РФ №2494764, МПК A61L 27/32, A61L 27/04, A61L 27/40, опубл. 10.10.2013), заключающийся в подготовке лантансодержащего раствора и последующем напылении титанового и лантансодержащего порошков. Формирование лантансодержаего покрытия производят сначала напылением титанового подслоя, а затем лантансодержащего порошка гидроксиапатита.

Однако данные способы являются дорогостоящим и трудоемкими, а также не обеспечивают получения покрытия с развитым микрорельефом и однородностью.

Наиболее близким аналогом к заявляемому изобретению является способ получения гидроксиапатитового биосовместимого покрытия (патент РФ на изобретение №2417107, МПК A61L 27/30, B05D 7/24, A61L 27/32 C1, опубл. 27.04.2011). В соответствии со способом сначала смешивают порошок гидроксиапатита с биологически совместимым связующим веществом в виде фосфатной связки при соотношении связки и порошка 1,0-1,5:1,5-2,0. Затем наносят получаемую суспензию на металлическую поверхность, сушат и термически обрабатывают аргоно-плазменной струей при токе дуги 30-500 А в течение 0,5-2,0 минут с дистанции 40-100 мм.

Однако описанные выше технологические операции способа не позволяют получить биоактивное покрытие, обладающее высокой прочностью и развитой морфологией поверхности.

Задача заявляемого способа заключается в получении методом электроплазменного напыления магний-содержащего покрытия на основе гидроксиапатита с повышенной адгезией и развитой морфологией поверхности.

Поставленная задача решается тем, что при осуществлении способа получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита (Mg-ΓΑ), заключающегося в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из титана и формировании биоактивного слоя, воздушно-абразивную обработку производят с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 5 мин, электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм производят в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, электроплазменное напыление порошка Mg-ΓΑ с дисперсностью до 90 мкм производят в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин.

Изобретение поясняется с помощью Фиг. 1, на которой показана структура получаемого в соответствии с заявляемым способом покрытия и позициями 1-3 обозначены:

1 - титановая основа изделия;

2 - титановый подслой;

3 - слой из Mg-ΓΑ.

Способ осуществляют следующим образом.

Предварительную подготовку поверхности медицинского изделия осуществляют воздушно-абразивной обработкой, например, на аппарате АСОЗ 1.2 ΜΕΓΑ порошком электрокорунда Белэкт №25 (ТУ 9391-094-45814830-2003) дисперсностью 250-300 мкм в течение 5 минут.

Далее осуществляют электроплазменное напыление титанового подслоя 2 с дисперсностью порошка титана (Ti) 100-150 мкм в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин на опескоструенную титановую основу изделия 1, например, на полуавтоматической установке УПН-28.

Формирование покрытия завершают электроплазменным напылением слоя Mg-ΓΑ 3 в течение 6-8 с при токе дуги 300 А, дистанции напыления до 50 мм, дисперсности до 90 мкм и расходе плазмообразующего газа 20 л/мин.

Ток дуги при электроплазменном напылении, время напыления, дистанция напыления, дисперсность порошка и расход плазмообразующего газа были получены экспериментальным путем, результаты которого представлены в таблице 1.

Выбранные технологические режимы электроплазменного напыления объясняются следующим образом.

Увеличение тока дуги (выше 300 А) значительно повышает энтальпию и температуру плазменной струи, а также температуру, скорость и дисперсность напыляемых частиц, что обусловливает рост плотности покрытия, производительности напыления и коэффициент использования материала, что может негативно отразиться на качестве покрытия. Наиболее рациональное регулирование тока дуги, параметров напыления и качества получаемого покрытия обеспечивается при токе дуги 300 А. При меньших значениях тока напыления (менее 300 А) не происходит достаточного проплавления частиц напыляемого порошка, что приведет к снижению адгезионно-когезионных характеристик.

Время напыления было определено экспериментальным путем в зависимости от типа используемого материала. Для небольшой длительности (менее 8-10 с) электроплазменного напыления характерен недостаточный прогрев частиц порошка и тонкий неравномерный слой покрытия, а при использовании большего времени (более 10-12 с) напыления наоборот - слишком толстый слой покрытия, что негативно сказывается на прочности сцепления покрытия с основой. Поэтому при электроплазменном напылении титанового подслоя целесообразно использование времени, равного 10-12 сек.

Слишком малые (менее 50-150 мм) дистанции не обеспечивают необходимого прогрева частиц, а также значения их скорости, создают опасность перегрева напыляемой поверхности и всего изделия, что может привести к их фазовому, а чрезмерно большая дистанция (более 150 мм) вызывает падение температуры и скорости плазменного потока в зоне формирования покрытия. Поэтому оптимальной для заявляемого способа является дистанция напыления до 150 мм.

Дисперсность частиц порошка титана выбирается из условия необходимости их быстрого нагрева до температуры плавления и распыления, поэтому наиболее рациональным является использование порошка титана с дисперсностью 100-150 мкм.

Повышение расхода плазмообразующего газа снижает теплофизические характеристики потока частиц, плотность покрытия и эффективность напыления, увеличивая при этом дисперсность и скорость частиц. В зависимости от требуемых показателей дисперсности частиц и плотности покрытия следует устанавливать наименьший возможный расход плазмообразующего газа, в заявляемом способе он определен экспериментально и составляет 20 л/мин.

Электроплазменное напыление слоя Mg-ΓΑ 3 производят в течение 6-8 с при токе дуги 300 А, дистанции напыления до 50 мм, дисперсности до 90 мкм и расходе плазмообразующего газа 20 л/мин. Технологические режимы электроплазменного напыления порошка Mg-ΓΑ выбираются из соображений, описанных выше.

Для полученного в соответствии с заявляемым способом плазмонапыленнного покрытия была определена адгезия методом сдвига (ГОСТ 14759-69) на универсальной испытательной машине ИР 5082-100 (ООО «ИМПУЛЬС», г. Иваново) при скорости перемещения рабочей траверсы 0,5 мм/мин.

По методу нормального отрыва сдвига образцы попарно склеивали поверхностями с напыленным покрытием. В качестве клея использовали эпоксидную смолу ЭД-20 (ТУ 2252-003-62517430-01) с полиэтиленполиаминовым отвердителем. Чтобы склеивание получилось качественным, образцы прижимали друг к другу с помощью грузов и выдерживали при комнатной температуре в течение 24 часов.

Адгезия определяется как среднее отношение усилия отрыва склеенных образцов к площади участка отрыва (ГОСТ 27890-88). Максимальное усилие, при котором произошел отрыв плазмонапыленного покрытия, составило 5.4 кН. Адгезия плазмонапыленного Mg-ΓΑ покрытия составила порядка 14.0-14.9 МПа, что превышает средние показатели адгезии для гидроксиапатитовых плазмонапыленных покрытий, полученных другими способами. Увеличение адгезии связано с получением более равномерной структуры плазмонапыленного Mg-ΓΑ покрытия и присутствием в покрытии β-трикальцийфосфата, который возникает вследствие дестабилизации структуры гидроксиапатита ионами магния (Таблица 2).

Таким образом, выбранные технологические режимы электроплазменного напыления (подслой Ti: дисперсность - 100-150 мкм, время напыления - 10-12 с, ток дуги - 300 А, дистанция напыления - до 150 мм, расход плазмообразующего газа - 20 л/мин; слой Mg-ΓΑ: дисперсность - до 90 мкм; время напыления - 6-8 с, ток дуги - 300 А, дистанция напыления - до 50 мм, расход плазмообразующего газа - 20 л/мин) обеспечивают получение плазмонапыленного покрытия на основе порошка Mg-ΓΑ с повышенными адгезионными характеристиками. Кроме того, наличие в составе покрытия элементов Mg дестабилизирует структуру гидроксиапатита с образованием β-трикальцийфосфата, который обладает повышенными адгезионными характеристиками.

Исследования морфологии поверхности образцов проводились с помощью металлографического микроскопа МИМ-7. В результате исследования было определено, что плазмонапыленное Mg-ГА покрытие обладает развитой морфологией по всей поверхности, что обусловлено использованием подобранных технологических параметров при электроплазменном напылении, в частности дистанции напыления - до 50 мм и дисперсности порошка - до 90 мкм.

Таким образом, разработан способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, которое обладает развитой морфологией, повышенными значениями адгезионных характеристик за счет содержания в своей структуре магния, что будет способствовать увеличению срока службы готового изделия.

Способ получения биосовместимого покрытия на основе магний-замещенного гидроксиапатита, состоящий в предварительной подготовке поверхности медицинского изделия воздушно-абразивной обработкой, электроплазменном напылении подслоя из порошка титана и формировании биоактивного слоя, отличающийся тем, что воздушно-абразивную обработку проводят с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 5 мин, затем осуществляют электроплазменное напыление подслоя из порошка титана с дисперсностью 100-150 мкм в течение 10-12 с при токе дуги 300 А с дистанции напыления до 150 мм и расходе плазмообразующего газа 20 л/мин, а формирование биоактивного слоя производят электроплазменным напылением порошка Mg-ГА с дисперсностью до 90 мкм в течение 6-8 с при токе дуги 300 А с дистанции напыления до 50 мм и расходе плазмообразующего газа 20 л/мин.
СПОСОБ ПОЛУЧЕНИЯ БИОСОВМЕСТИМОГО ПОКРЫТИЯ НА ОСНОВЕ МАГНИЙ-ЗАМЕЩЕННОГО ГИДРОКСИАПАТИТА
Источник поступления информации: Роспатент

Показаны записи 81-90 из 179.
10.05.2018
№218.016.3c4a

Способ работы компрессорной станции магистральных газопроводов

Способ работы компрессорной станции магистральных газопроводов, газоперекачивающие агрегаты которой оснащены комбинированным типом привода - электроприводным и газотурбинным, характеризуется тем, что при падении электрической нагрузки общей энергосистемы для газоперекачивающих агрегатов в...
Тип: Изобретение
Номер охранного документа: 0002647742
Дата охранного документа: 19.03.2018
10.05.2018
№218.016.3d05

Способ формирования титановых пористых покрытий на титановых имплантатах

Изобретение относится к области медицинской техники, а именно технологии формирования пористых биоинертных металлических покрытий на внутрикостных частях титановых имплантируемых конструкций. Способ формирования титановых пористых покрытий на титановых имплантатах включает воздушно-абразивную...
Тип: Изобретение
Номер охранного документа: 0002647968
Дата охранного документа: 21.03.2018
10.05.2018
№218.016.3d79

Композиция на основе эпоксидной диановой смолы

Изобретение предназначено для использования в таких отраслях, как строительство, в качестве наливных бесшовных полов, в машиностроении, ракетно-космической технике, для обеспечения пожарной безопасности, защитных покрытий, имеющих повышенную деформационную стойкость. Композиция включает...
Тип: Изобретение
Номер охранного документа: 0002648069
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.3dd4

Способ изготовления электрически изолированных резисторов микросхем

Изобретение относится к микроэлектронике, а именно к способу изготовления электрически изолированных резисторов микросхем на арсениде галлия с высокой термостабильностью. Технический результат заключается в увеличении термостабильности и повышении пробивного напряжения изолирующих слоев...
Тип: Изобретение
Номер охранного документа: 0002648295
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.41bf

Виртуальная система управления процессом выпуска однородной продукции предприятия с его регулированием

Изобретение относится к управлению предприятием. Виртуальная система управления процессом выпуска однородной продукции предприятия с его регулированием состоит из производственного и виртуально-компьютерного комплекса. Производственный комплекс состоит из соединенных программно-планового блока,...
Тип: Изобретение
Номер охранного документа: 0002649114
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4604

Способ формирования наноструктурированного оксидного покрытия на техническом титане

Изобретение относится к области медицинской техники и приборостроения, а именно к технологии формирования наноструктурированных оксидных покрытий системы Ti-Ta-(Ti,Ta)O на изделиях из технического титана, в том числе имплантируемых внутрикостных конструкциях. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002650221
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.469c

Приемник ик- и тгц-излучений

Изобретение относится к технике радиоизмерений. Предлагаемый приемник предназначен для измерения пространственно-энергетиеских характеристик лазерного излучения на длинах волн 2.08-16.6 мкм, 0.33-0.37 мм. Технический результат предлагаемого устройства заключается в расширении спектрального...
Тип: Изобретение
Номер охранного документа: 0002650430
Дата охранного документа: 13.04.2018
10.05.2018
№218.016.488a

Состав и способ для получения биоактивной стоматологической лечебно-профилактической пленки

Изобретение относится к технологии получения пленок для медицины, в частности для стоматологии. Предлагается способ получения биоактивной стоматологической лечебно-профилактической пленки. Для осуществления способа растворяют поливиниловый спирт и хлористый магний в воде при непрерывном...
Тип: Изобретение
Номер охранного документа: 0002651041
Дата охранного документа: 18.04.2018
10.05.2018
№218.016.4aa4

Бетонная смесь с высокой стойкостью к высолообразованию

Изобретение относится к строительным материалам, в частности к составам строительных растворов и бетонов с высокой стойкостью к высолообразованию, используемых при производстве бетонных изделий и конструкций. Бетонная смесь с высокой стойкостью к высолообразованию включает, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002651683
Дата охранного документа: 23.04.2018
29.05.2018
№218.016.53eb

Способ автономной ориентации подвижных объектов

Изобретение относится к способу автономной ориентации подвижного объекта. Для автономной ориентации подвижного объекта измеряют проекции векторов напряженности результирующего магнитного поля трехосным блоком акселерометров, кажущееся ускорение объекта трехосным блоком акселерометров,...
Тип: Изобретение
Номер охранного документа: 0002653967
Дата охранного документа: 15.05.2018
Показаны записи 71-79 из 79.
20.01.2018
№218.016.12c0

Способ определения толщины пленки с помощью интерферометрии белого света

Изобретение относится к области метрологии тонких пленок. Способ определения толщины пленки с помощью интерферометрии белого света, при котором подложку, содержащую измеряемую пленку, подвергают в интерферометре воздействию белого света с ограниченной когерентностью и измеряют коррелограммы,...
Тип: Изобретение
Номер охранного документа: 0002634328
Дата охранного документа: 25.10.2017
20.01.2018
№218.016.15d7

Способы получения кремнийзамещенного гидроксиапатита и биоактивного покрытия на его основе

Изобретение относится к медицине. Описан способ получения кремнийзамещенного гидроксиапатита, включающий синтез кремнийзамещенного гидроксиапатита методом осаждения из водного раствора реагентов, содержащих ортофосфорную кислоту, гидроксид кальция и тетраэтилортосиликат, отстаивание, выделение...
Тип: Изобретение
Номер охранного документа: 0002635189
Дата охранного документа: 09.11.2017
13.02.2018
№218.016.1eaa

Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана

Изобретение относится к области сенсорной техники и нанотехнологий, в частности к способам изготовления устройств распознавания и детектирования компонентов газовых смесей. Способ изготовления мультиэлектродного газоаналитического чипа на основе мембраны нанотрубок диоксида титана включает...
Тип: Изобретение
Номер охранного документа: 0002641017
Дата охранного документа: 15.01.2018
13.02.2018
№218.016.20b0

Способ электроплазменного напыления биосовместимых покрытий на основе магнийсодержащего трикальцийфосфата

Изобретение относится к области медицины, в частности, к стоматологии, и раскрывает способ нанесения керамических биосовместимых покрытий. Способ характеризуется тем, что включает предварительную подготовку поверхности имплантата воздушно-абразивной обработкой и ультразвуковым обезжириванием,...
Тип: Изобретение
Номер охранного документа: 0002641597
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.20d8

Способ измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра белого света

Изобретение относится к области метрологии тонких пленок, а именно к способу измерения толщины тонких прозрачных пленок бесконтактным способом с помощью интерферометра. При реализации способа измерения толщины тонкой пленки и картирования топографии ее поверхности с помощью интерферометра...
Тип: Изобретение
Номер охранного документа: 0002641639
Дата охранного документа: 18.01.2018
13.02.2018
№218.016.23f5

Способ устройства подземных резервуаров

Изобретение относится к строительству, а именно к устройству подземных резервуаров, преимущественно для хранения сжиженных газов. Способ устройства подземных резервуаров заключается в рытье котлована под резервуар, установке фундамента, установке резервуара в котлован и креплении его к...
Тип: Изобретение
Номер охранного документа: 0002642587
Дата охранного документа: 25.01.2018
17.02.2018
№218.016.2e13

Способ работы воздушно-аккумулирующей газотурбинной электростанции с абсорбционной бромисто-литиевой холодильной машиной (абхм)

Изобретение относится к энергетике. В способе работы воздушно-аккумулирующей газотурбинной электростанции (ВАГТЭ) с абсорбционной бромисто-литиевой холодильной машиной (АБХМ) в период спада электрической нагрузки сжатый, предварительно охлажденный в промежуточном охладителе воздух добавочно...
Тип: Изобретение
Номер охранного документа: 0002643878
Дата охранного документа: 06.02.2018
20.02.2019
№219.016.bc3b

Способ получения биоактивного покрытия на основе кремнийзамещенного гидроксиапатита

Изобретение относится к медицине. Описан способ получения биоактивного покрытия на основе кремнийзамещенного гидроксиапатита, включающий воздушно-абразивную обработку с использованием порошка электрокорунда дисперсностью 250-300 мкм в течение 4-6 мин, затем для формирования покрытия проводят...
Тип: Изобретение
Номер охранного документа: 0002680149
Дата охранного документа: 18.02.2019
08.04.2019
№219.016.fe75

Способ напыления биосовместимого покрытия модифицированного компонентом с низкой температурой разложения

Изобретение относится к медицине, а именно к способу напыления биосовместимого покрытия. Способ напыления биосовместимого покрытия, модифицированного компонентом с низкой температурой разложения, включающий послойное нанесение электроплазменным напылением на титановую основу покрытия,...
Тип: Изобретение
Номер охранного документа: 0002684283
Дата охранного документа: 05.04.2019
+ добавить свой РИД