×
13.01.2017
217.015.897b

Результат интеллектуальной деятельности: ВАКУУМНЫЙ СТЕНД ДЛЯ ОГНЕВЫХ ИСПЫТАНИЙ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к стендовому оборудованию и может быть использовано при испытаниях жидкостного ракетного двигателя (ЖРД) космического назначения, связанных с определением тепловых режимов элементов ЖРД и двигательной установки (ДУ). На вакуумном стенде для тепловых испытаний ЖРД, включающем вакуумную камеру 1 со стапелем 2 для установки ЖРД 3 с соплом, имеющим радиационно-охлаждаемый насадок (РОН) 4, газодинамическую трубу 5 с эжектором 6, отсечной клапан 7 в канале газодинамической трубы (ГДТ), охлаждаемые экраны 8 на внутренних стенках вакуумной камеры 1, вакуумную систему 9, магистраль с пускоотсечным клапаном 10, сообщающую полость газодинамической трубы 5 между РОН 4 и отсечным клапаном 7 с вакуумной системой 9. На стыке среза РОН 4 с ГДТ 5 выполнен компенсатор температурного расширения в виде, состоящего из рассчитанной на радиальное температурное расширение РОН 4 тонкостенной цилиндрической или усеченно-конической мембраны 11 из жаростойкой стали, герметично соединенной посредством сварки со стенкой РОН 4 на его срезе и, с другой стороны, - через цилиндрическую стальную проставку 12 с окружающим ГДТ 5, рассчитанным на осевое температурное расширение РОН 4, тонкостенным сильфоном 13 с фланцем 14, который герметично (через уплотнение 15) соединен с фланцем 16 на охлаждаемой внешней стенке тракта охлаждения газодинамической трубы 5, при этом полость ГДТ от РОН 4 до отсечного клапана в канале ГДТ 5 подключена к системе вакуумирования 9 через пускоотсечной клапан 10. Изобретение обеспечивает повышение функциональных возможностей в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объективным условиям при огневых испытаниях ЖРД и ДУ космического назначения. 2 ил.

Изобретение относится к стендовому оборудованию и может быть использовано при огневых испытаниях жидкостных ракетных двигателей (ЖРД) космического назначения, связанных с определением тепловых режимов и состояния элементов конструкции ЖРД и двигательных установок (ДУ).

При стендовой отработке ЖРД и ДУ космического назначения особое место занимают огневые испытания, направленные на определение тепловых режимов агрегатов и элементов конструкции (тепловые испытания), которые существенно влияют на работоспособность ЖРД и ДУ космического объекта.

Для проведения тепловых испытаний необходимо создать штатные (соответствующие объектовым) условия внутреннего теплообмена в газодинамических трактах ЖРД (сопла камер сгорания, выхлопные системы турбин турбонасосных агрегатов), а также, что не менее важно, условия внешнего теплообмена элементов конструкции ЖРД и ДУ с окружающей средой.

Для создания условий внутреннего теплообмена используется стендовое оборудование, обеспечивающее соответствующее штатному давление на срезе сопла камеры двигателя - газоотводные устройства на основе газодинамических труб (ГДТ), газовых или паровых эжекторов; для создания внешних условий теплообмена необходимо снизить давление окружающей среды до величины менее 10-2 мм рт. ст., практически исключающий конвективную составляющую теплообмена, для чего используется вакуумная камера (барокамера), в которой при огневых испытаниях размещается ЖРД или ДУ.

Известен стенд, включающий систему вакуумирования с вакуумной камерой, в которой размещается двигатель, газоотводное устройство в виде газодинамической трубы (ГДТ) с паровым эжектором, представленный в сборнике статей «Исследование ракетного двигателя на жидком топливе»./Под ред. д.т.н. В.А. Ильинского, изд-во «Мир», 1964 г., стр. 60, фиг. 8.

В указанной конфигурации стенд может обеспечить снижение давления на срезе сопла камеры ЖРД и в сообщающемся со входом в ГДТ пространстве вакуумной камеры, окружающем двигатель до не менее 7 мм рт. ст. за счет эжектирования ГДТ и объема вакуумной камеры как при работе двигателя, так и после его останова, что приближает условия внешнего теплообмена двигателя и элементов ДУ к штатным условиям космического пространства, но не обеспечивает достаточно полной их имитации, для чего, как указано выше, необходимо давление окружающей среды не выше 10-2 мм рт. ст., что практически исключает конвективный теплообмен двигателя с окружающим пространством; при этом для поддержания указанного давления (не менее 7 мм рт. ст.) после останова двигателя требуется работа эжектора в течение длительного времени (до 50 мин) перераспределения температур элементов конструкции двигателя и ДУ с достижением их максимальных значений, что существенно увеличивает стоимость испытаний.

Кроме того, при тепловых испытаниях ЖРД и ДУ на этом стенде не обеспечивается имитация термооптических характеристик окружающего пространства, таких как температура и степень черноты окружающей среды (космического пространства, поверхностей двигательного отсека), что также приводит к отклонениям условий радиационного теплообмена между элементами конструкции и окружающей средой и, как следствие, отклонениям тепловых режимов элементов конструкции ЖРД и ДУ.

Все вышеперечисленное в итоге свидетельствует о недостаточном функциональном обеспечении полноценных тепловых испытаний ЖРД и ДУ космического назначения на данном стенде и, следовательно, о невозможности проверки их работоспособности по результатам таких испытаний.

Известен стенд, принятый за прототип изобретения, включающий барокамеру, выхлопной диффузор (ГДТ), охлаждаемый жидким азотом, устройство для герметизации стыка сопла двигателя и диффузора в виде вакуумного уплотнения, клапан, изолирующий канал диффузора от атмосферы при его вакуумировании после останова двигателя и охлаждаемые экраны в барокамере (См. книгу А.А. Шишкова, Б.М. Силина. «Высотные испытания реактивных двигателей», Машиностроение, 1985 г., стр. 24, рис. 1.13). Данный стенд может обеспечить имитацию условий теплообмена двигателя, близких к объектовым, как при работе двигателя, так и после его останова, таких как штатное давление на срезе сопла, давление окружающей двигатель среды в вакуумной камере на уровне около 10-2 мм рт. ст., а также термооптические характеристики окружающего пространства при соответствующих штатным условиям температурах экранов и стенок канала ГДТ (обеспечивается заданными температурами охладителей) и степенях черноты поверхностей экранов и канала ГДТ.

Однако при наличии в ЖРД радиационно-охлаждаемого высокотемпературного насадка с температурами сопла до 1000°C использование вакуумного уплотнения на основе вакуумной резины и иного мягкого уплотнительного материала может обеспечить герметичность стыка сопла и ГДТ лишь в течение нескольких секунд после запуска двигателя, после чего оно разрушается из-за воздействия высокой температуры и давление в вакуумной камере повышается с 10-2 мм рт. ст. до уровня давления на срезе сопла, величину которого обеспечивает ГДТ с эжектором (не менее 7 мм рт. ст.).

Вследствие такого повышения давления появляется конвективная составляющая внешнего теплообмена двигателя со средой вакуумной камеры, что приводит к существенному отличию тепловых режимов элементов конструкции ЖРД и ДУ от штатных, соответствующих объектовым условиям теплообмена, как при работе двигателя, так и после его останова. Кроме того, в стенде по прототипу не имитируются термооптические характеристики пространства со стороны среза сопла двигателя.

Таким образом стенд по прототипу не может обеспечить при работе двигателя и в течение достаточного для достижения установившегося теплового режима времени после его останова штатные условия внешнего теплообмена и, следовательно, непригоден для тепловых испытаний двигателя с радиционно-охлаждаемым насадком (РОН) сопла камеры.

Изобретение направлено на повышение функциональных возможностей вакуумного стенда, включающего вакуумную камеру со стапелем для установки двигателя, охлаждающие экраны, систему вакуумирования, ГДТ с эжектором, отсечной клапан в канале ГДТ и устройство герметизации стыка среза сопла с ГДТ, в части обеспечения наиболее полной имитации условий теплообмена, соответствующих объектным условиям, при огневых испытаниях ЖРД и ДУ космического назначения, в том числе ЖРД с радиационно-охлаждаемым насадком сопла, при работе двигателя и после его останова, позволяющих проверить работоспособность двигателя и ДУ при воздействии близких к штатным тепловых нагрузок.

Результат обеспечивается тем, что устройство герметизации стыка РОН сопла и ГДТ выполнено в виде компенсатора температурного расширения, состоящего из рассчитанной на радиальное температурное расширение радиационно-охлаждаемого насадка сопла тонкостенной цилиндрической или усеченно-конической мембраны из жаростойкой стали, герметично соединяемой посредством сварки со стенкой РОН на срезе сопла и, с другой стороны, - через стальную цилиндрическую проставку - с окружающим ГДТ тонкостенным сильфоном, рассчитанным на осевое температурное расширение РОН и герметично соединенным посредством фланцевого соединения с вакуумным уплотнением на внешней оболочке тракта охлаждения газодинамической трубы, также на поверхности тарели клапана внутри его кольцевого уплотнения установлен охлаждаемый экран с термооптическими характеристиками, соответствующими характеристикам окружающего и обращенного к соплу двигателя при штатной его эксплуатации космического пространства, при этом полость ГДТ от РОН до отсечного клапана в канале ГДТ подключена к системе вакуумирования через пускоотсечной клапан.

На чертежах представлены схема стенда (фиг. 1) и выноска А (фиг. 2). В состав стенда входят вакуумная камера 1 со стапелем 2 для установки и крепления двигателя 3 с высотным соплом, имеющим радиационно-охлаждаемый насадок 4, ГДТ 5 с эжектором 6 и отсечным клапаном 7, установленным в канале ГДТ после ее диффузорной части. На внутренних стенках вакуумной камеры 1 и на тарели клапана 7 установлены подключенные к системе подачи рабочих тел охлаждения экраны 8, поверхности которых имеют заданные величины степени черноты. Для вакуумирования камеры 1 и части канала ГДТ 5 между соплом и клапаном 7 в составе стенда предусмотрена специальная вакуумная система 9, с которой вакуумируемая часть ГДТ сообщена посредством магистрали с пускоотсечным клапаном 10. К радиационно-охлаждаемому насадку сопла 4 крепится компенсатор, включающий тонкостенную мембрану 11, герметично привариваемую к срезу сопла РОН, цилиндрическую проставку 12, тонкостенный сильфон 13 с фланцем 14, который герметично (через уплотнение 15) соединяется с фланцем 16 на охлаждаемой части ГДТ 5. Внутренняя поверхность канала ГДТ между РОН 4 и клапаном 7 вместе с его экраном 8 имеют термооптические характеристики окружающего космического пространства, что достигается обеспечением требуемой степенью черноты на стенках канала ГДТ 5 и экрана 8 на тарели клапана 7, а также режимом охлаждения этого участка ГДТ и экрана 8 на тарели клапана 7.

Перед началом огневых испытаний ЖРД с радиационно-охлаждаемым насадком сопла 4 и компенсатором монтируется на стапеле 2, при этом наряду с подсоединением топливных трубопроводов и пневмосети стенда к двигателю фланец 14 приваренного к РОН сопла компенсатора герметично соединяется с фланцем 16 ГДТ 5, через вакуумное уплотнение 15. После окончания монтажа стендовой системой вакуумирования 9 осуществляется откачка воздуха из вакуумной камеры 1 до давления не более 10-2 мм рт. ст. и подаются охладители с заданными температурами в тракты охлаждения экранов 8 и тракт охлаждения ГДТ 5. Перед запуском двигателя 3 включается эжектор 6, создающий разрежение в ГДТ 5 и сопле двигателя от 3 до 7 мм рт. ст. После запуска двигателя 3 ГДТ 5 выходит на устойчивый режим работы, устанавливается штатный режим течения и теплообмена в сопле с радиационно-охлаждаемым насадком 4, сопло с РОН выходит на установившийся тепловой режим, определяемый внутренним теплообменом в сопле и внешним теплообменом РОН с экранами 8, установленными на стенках вакуумной камеры 1 и имитирующими объектовые термооптические характеристики окружающего пространства, при близком к штатному давлению окружающей среды 10-2 мм рт. ст. С установившимся тепловым режимом двигатель работает заданное циклограммой испытания время, при этом температурное расширение РОН 4 воспринимается компенсатором: радиальное расширение - мембраной 11, а осевое расширение - сильфоном 13. После останова двигателя в пневмопривод клапана 7 подается газ управления, тарель клапана 7 перекрывает канал ГДТ 5, уплотняясь на седле клапана, выполненное в стенках канала ГДТ 5, затем подается команда на открытие клапана 10, после чего вакуумируется полость ГДТ 5 между клапаном 7 и РОН 4, а также полость сопла двигателя. Выключается эжектор 6, давление в канале ГДТ 5 при этом возрастает до атмосферного, а в объеме полости ГДТ 5, примыкающей к РОН 4, до клапана 7 остается на уровне не более 10-1 мм рт. ст. При близких к штатным величинах давления в полости сопла и окружающем двигатель пространстве вакуумной камеры 1, а также температурах и степенях черноты, окружающих двигатель, в том числе со стороны РОН, поверхностях экранов 8 и стенок канала ГДТ 5 осуществляется теплообмен горячих элементов конструкции двигателя за счет излучения этих элементов и кондукционного теплообмена с холодными агрегатами и элементами двигателя. При достижении установившихся значений температур испытания по определению тепловых режимов двигателя и термостойкости элементов его конструкции прекращаются, после чего все системы стенда приводятся в исходное состояние, а РОН 4 по технологическому припуску отрезают от мембраны 11 компенсатора температурного расширения.

Предлагаемое изобретение обеспечивает проведение огневых испытаний на вакуумном стенде ЖРД (ДУ) с РОН с практически полной имитацией всех условий, определяющих при штатной эксплуатации теплообмен конструкции двигателя с окружающей его средой - космическим пространством и элементами конструкции двигательного отсека при работе двигателя и после его останова, к которым относятся:

- давление в вакуумной камере не более 10-2 мм рт. ст., обеспечиваемое вакуумной системой стенда и герметизацией стыка среза РОН сопла двигателя с ГДТ при работе двигателя и после его останова;

- давление не более 10-2 мм рт. ст. внутри сопла, обеспечиваемое вакуумированием части канала ГДТ между соплом и тарелью клапана отсечного устройства, после перекрытия клапаном канала ГДТ;

- термооптические характеристики окружающего двигатель пространства (температура, степень черноты) обеспечиваются за счет соответствующим образом выполненных и охлаждаемых теплоносителями с заданными температурами экранов, установленных на тарели отсечного устройства и на стенках вакуумной камеры, а также охлаждаемой внутренней поверхности канала ГДТ, между соплом и отсечным устройством, выполненной с соответствующей космическому пространству степенью черноты.

Вакуумный стенд для огневых испытаний жидкостного ракетного двигателя космического назначения, включающий вакуумную камеру со стапелем для монтажа двигателя, охлаждаемые экраны вокруг двигателя, газодинамическую трубу (ГДТ), герметично соединенную с вакуумной камерой, эжектор на выходе газодинамической трубы, устройство герметизации стыка радиационно-охлаждаемого насадка сопла и ГДТ, отсечной клапан в канале газодинамической трубы, систему вакуумирования, отличающийся тем, что устройство герметизации стыка радиационно-охлаждаемого насадка сопла и ГДТ выполнено как компенсатор температурного расширения радиационно-охлаждаемого насадка сопла в виде тонкостенной цилиндрической или усеченно-конической мембраны из жаростойкой стали, герметично соединяемой с одной стороны посредством сварки со стенкой радиационно-охлаждаемого насадка на срезе сопла, с другой стороны - соединенной через стальную цилиндрическую проставку с окружающим газодинамическую трубу тонкостенным стальным сильфоном, рассчитанным на осевое температурное расширение радиационно-охлаждаемого насадка сопла и герметично соединенным посредством фланцевого соединения с внешней оболочкой тракта охлаждения газодинамической трубы, также на поверхности тарели клапана внутри кольцевого уплотнения установлен охлаждаемый экран, причем обращенная к радиационно-охлаждаемому насадку поверхность экрана, а также внутренняя поверхность канала газодинамической трубы между тарелью отсечного устройства и стыком сопла с газодинамической трубой выполнены с термооптическими характеристиками, соответствующими характеристикам окружающего и обращенного к соплу двигателя при штатной его эксплуатации космического пространства, при этом полость ГДТ от радиационо-охлаждаемого насадка до отсечного клапана в канале ГДТ подключена к системе вакуумирования через пускоотсечной клапан.
ВАКУУМНЫЙ СТЕНД ДЛЯ ОГНЕВЫХ ИСПЫТАНИЙ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ КОСМИЧЕСКОГО НАЗНАЧЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 125.
17.04.2019
№219.017.156a

Устройство для отделения сбрасываемого отсека от основного изделия

Изобретение относится к системам разделения отсеков летательных аппаратов и может быть использовано в ракетно-космической технике для отделения от основного изделия дополнительного топливного отсека после выработки находящегося в нем топлива. Предлагаемое устройство содержит подпружиненные...
Тип: Изобретение
Номер охранного документа: 0002293692
Дата охранного документа: 20.02.2007
17.04.2019
№219.017.1574

Блок электроразъемов

Изобретение относится к устройствам для соединения и последующего разъединения электрических соединительных элементов между разделяемыми отсеками космических летательных аппаратов. Предлагаемый блок содержит две части соединителя с взаимодействующими между собой элементами электроразъемов,...
Тип: Изобретение
Номер охранного документа: 0002294039
Дата охранного документа: 20.02.2007
17.04.2019
№219.017.1575

Блок предварительной расстыковки электроразъемов

Изобретение относится к устройствам для соединения и последующего разъединения электрических соединительных элементов, установленных на космических летательных аппаратах. Предлагаемый блок содержит две части соединителя с взаимодействующими между собой элементами электроразъемов, привод...
Тип: Изобретение
Номер охранного документа: 0002294038
Дата охранного документа: 20.02.2007
09.05.2019
№219.017.4da9

Узел стыковки электрических цепей разъемного соединения

Изобретение относится к ракетной технике и может быть использовано для соединения и последующего разъединения электрических цепей отделяемого и бортового оборудования. Узел стыковки содержит первую и вторую части соединителя, установленные соответственно на отделяемом и бортовом блоках...
Тип: Изобретение
Номер охранного документа: 0002339553
Дата охранного документа: 27.11.2008
09.05.2019
№219.017.4f2e

Способ разделения ступеней ракеты-носителя пакетной схемы

Изобретение относится к космической технике. Способ разделения ступеней ракеты-носителя пакетной схемы характеризуется тем, что в расчетный момент времени разрывают нижние узлы связи. Разворачивают первую ступень вокруг верхних узлов связи за счет силы тяги двигателей первой ступени. Разрывают...
Тип: Изобретение
Номер охранного документа: 0002455204
Дата охранного документа: 10.07.2012
24.05.2019
№219.017.6053

Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты

Изобретение относится к ракетно-космической технике, а именно к ракетам космического назначения. Способ защиты стартовых сооружений от газодинамического воздействия струй двигателей ракеты заключается в выполнении маневра углового разворота ракеты по заранее введенной в систему управления...
Тип: Изобретение
Номер охранного документа: 0002407680
Дата охранного документа: 27.12.2010
29.05.2019
№219.017.6874

Электросоединитель

Изобретение относится к ракетной технике и может быть использовано для соединения и последующего разъединения электрических цепей, формирующих сигнал в системе управления. Электросоединитель содержит первую (1) и вторую (2) части и снабжен кожухом (6) с хвостовиком (7), который соединен...
Тип: Изобретение
Номер охранного документа: 0002455203
Дата охранного документа: 10.07.2012
09.06.2019
№219.017.7c3c

Фланцевый точечный стык

Фланцевый точечный стык относится к космической и авиационной технике и может быть использован с целью сохранения или минимизации деформаций внешних обводов силовых частей и агрегатов космических аппаратов, ракет-носителей и летательных аппаратов, имеющих в процессе эксплуатации существенный...
Тип: Изобретение
Номер охранного документа: 0002361790
Дата охранного документа: 20.07.2009
13.06.2019
№219.017.81dc

Терморегулирующее покрытие

Изобретение относится к терморегулирующим покрытиям, наносимым на наружную поверхность для поддержания определенного теплового режима космического аппарата. Описано терморегулирующее покрытие, выполненное из композиции, содержащей в качестве связующего амидосодержащую акриловую смолу в...
Тип: Изобретение
Номер охранного документа: 0002315794
Дата охранного документа: 27.01.2008
13.06.2019
№219.017.8236

Идентификатор частотных характеристик

Идентификатор частотных характеристик предназначен для экспериментального исследования динамических (частотных) характеристик систем автоматического управления. Техническим результатом изобретения является расширение функциональных возможностей устройства. Идентификатор состоит из генератора...
Тип: Изобретение
Номер охранного документа: 0002321043
Дата охранного документа: 27.03.2008
Показаны записи 111-120 из 127.
29.05.2019
№219.017.6658

Способ формирования команд управления на ракете, вращающейся по углу крена, система управления ракетой, способ преобразования импульсов на ракете, вращающейся по углу крена, и синус-косинусный преобразователь системы управления ракетой

Изобретение относится к области вооружения. Технический результат - повышение точности формирования команд управления. В способе формирования команд управления на ракете, вращающейся по углу крена, измеряют скорость вращения ракеты по углу крена и интегрируют ее по времени, формируют...
Тип: Изобретение
Номер охранного документа: 0002351875
Дата охранного документа: 10.04.2009
09.06.2019
№219.017.7e0f

Способ стрельбы управляемым артиллерийским снарядом с лазерной полуактивной головкой самонаведения

Изобретение относится к управляемым артиллерийским снарядам с лазерной полуактивной головкой самонаведения. Заявленный способ стрельбы управляемым артиллерийским снарядом заключается в расчете установок для стрельбы управляемым снарядом на основании отклонений от цели по дальности и...
Тип: Изобретение
Номер охранного документа: 0002408832
Дата охранного документа: 10.01.2011
09.06.2019
№219.017.7ed0

Способ наведения телеуправляемой ракеты

Способ включает измерение координат цели и ракеты, формирование опорной траектории наведения ракеты, формирование линейного рассогласования между ракетой и опорной траекторией наведения, формирование команды управления ракетой, пропорциональной линейной комбинации линейного рассогласования...
Тип: Изобретение
Номер охранного документа: 0002437052
Дата охранного документа: 20.12.2011
29.06.2019
№219.017.99b4

Способ стрельбы управляемым снарядом

Изобретение относится к области ракетного вооружения, а именно к способам стрельбы управляемыми снарядами из боевых машин пехоты и танков. После выстреливания снаряда из канала ствола на траектории его полета осуществляют запуск маршевого двигателя по установленному времени запуска и управление...
Тип: Изобретение
Номер охранного документа: 0002275582
Дата охранного документа: 27.04.2006
29.06.2019
№219.017.9d0c

Система наведения управляемого снаряда

Изобретение относится к области наведения управляемых снарядов и может быть использовано в комплексах танкового и противотанкового вооружения, а также в малогабаритных зенитных комплексах. Технический результат - повышение помехозащищенности и повышение точности наведения снаряда на цель за...
Тип: Изобретение
Номер охранного документа: 0002382315
Дата охранного документа: 20.02.2010
29.06.2019
№219.017.9eaa

Устройство формирования команд управления вращающейся вокруг продольной оси ракетой

Изобретение относится к области вооружения, в частности к области управляемых вращающихся по углу крена ракет, и может быть использовано в комплексах артиллерийского, танкового и противотанкового вооружения, а также малогабаритных управляемых ракет зенитных комплексов. Техническим результатом...
Тип: Изобретение
Номер охранного документа: 0002321814
Дата охранного документа: 10.04.2008
29.06.2019
№219.017.9eb8

Способ наведения вращающейся ракеты с релейным приводом рулевого органа (варианты)

Изобретение относится к области разработки систем наведения ракет и может быть использовано в комплексах ПТУР и ЗУР. Способ наведения вращающейся ракеты включает формирование модулированного излучения на пусковом устройстве, прием излучения на ракете и выработку сигналов управления в...
Тип: Изобретение
Номер охранного документа: 0002326323
Дата охранного документа: 10.06.2008
29.06.2019
№219.017.9ef0

Способ формирования сигналов управления ракетой

Изобретение относится к ракетной технике и может быть использовано в системах управления ракетами. Способ включает формирование сигнала в каждом канале управления по высоте и направлению, формирование команды управления ракетой, формирование сигналов управления рулевыми органами ракеты в...
Тип: Изобретение
Номер охранного документа: 0002413918
Дата охранного документа: 10.03.2011
29.06.2019
№219.017.a0ba

Способ наведения по оптическому лучу ракеты, стартующей с подвижного носителя, и система наведения для его осуществления

Изобретение может быть использовано в противотанковых ракетных комплексах на подвижных носителях. Способ включает формирование двух лучей в виде последовательности коротких световых импульсов, проецируемых в виде перпендикулярных друг другу полос постоянной ширины, последовательное сканирование...
Тип: Изобретение
Номер охранного документа: 0002436033
Дата охранного документа: 10.12.2011
18.03.2020
№220.018.0cd6

Энергетическая установка с машинным преобразованием энергии

Изобретение относится к объектам энергетического машиностроения. Изобретение направлено на повышение КПД турбокомпрессорных энергетических установок путем уменьшения затрат энергии турбины на привод компрессора. Эта задача решается снижением потребной степени сжатия компрессора только до...
Тип: Изобретение
Номер охранного документа: 0002716766
Дата охранного документа: 16.03.2020
+ добавить свой РИД