×
13.01.2017
217.015.86da

Результат интеллектуальной деятельности: СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра. В способе калибровки датчика, содержащего термочувствительный элемент, основанном на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве обеспечивают контролируемый нагрев посредством пропускания импульса электрического тока через ТЧЭ. При этом определяют начальной величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Далее подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ. Устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ. Результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии. Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра). 3 ил.

Изобретение относится к области измерительной техники и может быть использовано для калибровки датчиков, содержащих термочувствительные элементы (ТЧЭ), например болометра.

Для определения интегральной энергии источника излучения по изменению сопротивления термочувствительного элемента болометра обычно используют известные соотношения [Ю.Л. Бакшаев, С.А. Данько, Е.Е. Соколов и др. // Вопросы атомной науки и техники. Сер. Термоядерный синтез, 2011, вып. 1, с. 54-62 - аналог]. Однако расчет по этим формулам не всегда является корректным по нескольким причинам. Во-первых, во многих конструкциях болометров присутствует отток тепла от термочувствительного элемента в диэлектрическую подложку, что занижает реальный нагрев ТЧЭ. Во-вторых, не учитываются контактные сопротивления при подключении ТЧЭ к источнику питания, что увеличивает включаемое в измерения сопротивление болометра. В-третьих, физические свойства применяемых ТЧЭ не всегда соответствуют своим табличным величинам (особенно ТЧЭ, полученные методом гальванического осаждения металла, напыления и т.д.). Эти обстоятельства делают необходимым проведение калибровки датчика, содержащего ТЧЭ.

Известен способ калибровки ТЧЭ болометра [R.В. Spielman, С. Deeney, D.L. Fehl et al. // Rev. Sci. Instrum., 1999, v. 70, p. 651-655 - прототип], в котором калибровка термочувствительного элемента выполняется посредством измерения сопротивления ТЧЭ при его контролируемом нагреве в вакуумной печи посредством термометра. По результатам измерений строится зависимость сопротивления ТЧЭ от температуры нагрева. К недостаткам данного вида калибровки можно отнести то, что вложенная в ТЧЭ энергия рассчитывается с использованием табличных величин, которые могут отличаться от реальных значений для конкретных ТЧЭ. Кроме того, существуют погрешности при измерении температуры ТЧЭ из-за тепловых процессов, сопровождающих нагрев ТЧЭ. Суммарная погрешность измерений оценивается авторами на уровне 10%.

Задача состоит в следующем. В экспериментах по генерации импульсов мягкого рентгеновского излучения (МРИ) на мощных Z-пинч установках применяются различные наборы детекторов (вакуумные и полупроводниковые диоды и т.д.). Важным дополнением к этим датчикам служат датчики, содержащие ТЧЭ, например болометры, позволяющие не только измерить полную по спектру мощность импульса МРИ, но и провести калибровку других детекторов (например, вакуумных диодов). Для уменьшения ошибки измерения болометром требуется его предварительная калибровка. В связи с этим возникла необходимость в разработке способа калибровки, применение которого дает возможность построить калибровочную характеристику болометра.

Технический результат состоит в увеличении точности восстановления интегральной энергии источника излучения при измерении изменения сопротивления термочувствительного элемента датчика, содержащего ТЧЭ (болометра).

Данный технический результат достигается тем, что в отличие от известного способа калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанного на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, в заявляемом устройстве обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.

В прототипе при калибровке регистрируется зависимость сопротивления ТЧЭ от температуры при его нагреве, что позволяет в экспериментах лишь оценить сопротивление ТЧЭ при изменении его температуры. Данный результат является промежуточным для расчета энергии, поглощенной ТЧЭ, и недостаточным для восстановления энергии источника излучения (измерение является косвенным). Основным преимуществом заявляемого способа калибровки является возможность получения прямой зависимости изменения сопротивления ТЧЭ от поглощенной им энергии, что и является калибровочной характеристикой датчика, содержащего ТЧЭ (болометра). Энергия, поглощенная ТЧЭ при калибровке, определяется достаточно точно как интеграл произведения величин импульсов тока и напряжения на ТЧЭ. Такой способ калибровки учитывает реальные величины физических свойств ТЧЭ, контактные сопротивления в цепи питания ТЧЭ и повышает точность процедуры восстановления энергии МРИ из полученных осциллограмм во взрывных и лабораторных экспериментах.

На фиг. 1 изображена схема устройства, с помощью которого реализован способ калибровки термочувствительных элементов болометра.

На фиг. 2 представлен внешний вид устройства калибровки.

На фиг. 3 показана калибровочная характеристика ТЧЭ (зависимость изменения сопротивления ТЧЭ от поглощенной им энергии).

Практически реализован (на этапе, предшествующем эксперименту с плазменным пинчем) способ с помощью устройства для калибровки болометра, схема и внешний вид которого представлены на фигурах 1 и 2 соответственно. На элементах VT1, R1, VD1 (фиг. 1) собран источник тока 1, D1 - стабилизатор питания, DA1 - оптоэлектронная схема управления, на вход которой подается оптический импульс от блока управления и синхронизации, VT2, R2, R3 - электронный ключ 2, С1 - накопительный конденсатор, R4 - калибровочный резистор, предназначенный для контроля параметров тока калибровки, R5 - калибруемый ТЧЭ болометра. К контрольным точкам A, B, C, D подключается измерительная аппаратура контроля параметров калибровки (тока и напряжения на ТЧЭ). Энергия калибровочного импульса регулируется изменением напряжения питания и длительности импульса тока. Амплитуда тока в ТЧЭ при этом может достигать до 60 А, а вкладываемая в ТЧЭ энергия - до 85 мДж. Конструктивно устройство собрано в металлическом корпусе (фиг. 2), на передней панели которого расположены оптический разъем 3 для коммутации с блоком управления и синхронизации запуском устройства и разъем 4 контроля тока, протекающего через ТЧЭ калибруемого болометра.

Перед проведением калибровки определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ. Формирование импульса тока с заданной длительностью и амплитудой определяется величиной напряжения питания источника тока 1 и длительностью оптического импульса запуска устройства, подаваемого от внешнего блока управления и синхронизации на вход оптоэлектронной схемы DA1. Этот импульс тока подается на ТЧЭ, поглощается им, что приводит к нагреву и изменению его сопротивления. Изменение сопротивления определяется из отношения изменения напряжения на ТЧЭ (регистрируют на осциллографе с точек С, D) к протекающему через него току (значения тока регистрируют с резистора R4 точек А, В). Из полученных осциллограмм импульсов тока и напряжения на ТЧЭ методами дальнейшей математической обработки (интегрированием произведения зарегистрированных напряжения и тока на ТЧЭ) получаются зависимости сопротивления ТЧЭ, поглощенной им энергии в калибровочном импульсе, температуры ТЧЭ от времени длительности импульса. Результатом калибровки является построение калибровочной зависимости (фиг. 3) изменения сопротивления ТЧЭ от поглощенной им энергии. Эта зависимость по результатам взрывных и лабораторных экспериментах по измерению энергии мощных импульсов МРИ позволяет с достаточной точностью определить поглощенную ТЧЭ болометра энергию, что в дальнейшем значительно повышает точность (до 10%) восстановления энергии, излучаемой плазменным пинчем в эксперименте.

Способ калибровки датчика, содержащего термочувствительный элемент (ТЧЭ), основанный на измерении изменения сопротивления ТЧЭ при его контролируемом нагреве, отличающийся тем, что обеспечение контролируемого нагрева осуществляют посредством пропускания импульса электрического тока через ТЧЭ, при этом определяют начальную величину (амплитуду и длительность) электрического импульса по теоретически рассчитанной величине максимальной энергии, которую можно вложить в ТЧЭ с учетом рабочего диапазона температур для конкретного ТЧЭ, подают этот начальный электрический импульс на ТЧЭ, в течение длительности данного начального электрического импульса измеряют изменение сопротивления ТЧЭ путем регистрации тока и напряжения на ТЧЭ, устанавливают зависимость изменения сопротивления ТЧЭ от величины вложенной в него энергии электрического импульса, полученной при интегрировании произведения зарегистрированных напряжения и тока электрического импульса в ТЧЭ, результатом калибровки является построение калибровочной кривой, характеризующей зависимость изменения сопротивления ТЧЭ от вложенной в него энергии.
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
СПОСОБ КАЛИБРОВКИ ДАТЧИКА, СОДЕРЖАЩЕГО ТЕРМОЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 471-480 из 799.
09.05.2019
№219.017.4ff9

Способ отработки боеприпаса

Изобретение относится к области исследования быстропротекающих процессов, а конкретно к испытаниям боеприпасов. Способ включает в себя запуск боеприпаса и контроль параметров его функционирования путем регистрации моментов пролета боеприпасом заданных точек траектории с помощью установленных в...
Тип: Изобретение
Номер охранного документа: 0002448344
Дата охранного документа: 20.04.2012
09.05.2019
№219.017.5024

Бесконтактный электромагнитный датчик измерения производной по времени от величины индукции магнитного поля электромагнитного импульса

Изобретение относится к области физики плазмы, газовых разрядов, сильноточной электронике, радиофизике, астрофизике и может применяться для исследования динамики распространения электромагнитных импульсов в диспергирующих неоднородных средах, радиолокации. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002444021
Дата охранного документа: 27.02.2012
18.05.2019
№219.017.53d4

Способ исследования поведения материалов при ударно-волновом нагружении с помощью протонной радиографии

Использование: для исследования материалов при ударно-волновом нагружении с помощью протонной радиографии. Сущность изобретения заключается в том, что получают экспериментальное изображение пучка протонов с помощью системы регистрации после прохождения через объект исследования с последующей...
Тип: Изобретение
Номер охранного документа: 0002687840
Дата охранного документа: 16.05.2019
18.05.2019
№219.017.5470

Смотровое окно

Изобретение может быть использовано для передачи изображения из области высокого динамического давления в область низкого давления с одновременным препятствием проникновению среды из одной области в другую. Смотровое окно содержит оправу, внутри которой размещен установленный в обойме из...
Тип: Изобретение
Номер охранного документа: 0002281220
Дата охранного документа: 10.08.2006
18.05.2019
№219.017.5638

Способ контроля целостности изделия

Изобретение относится к области исследования материалов без нарушения их структуры и свойств с помощью электромагнитных средств, например, путем измерения магнитной восприимчивости, и может использоваться при разработке способов обнаружения нарушения целостности, в частности, контейнеров с...
Тип: Изобретение
Номер охранного документа: 0002390768
Дата охранного документа: 27.05.2010
18.05.2019
№219.017.5714

Взрывное устройство

Изобретение относится к взрывным устройствам. Взрывное устройство содержит корпус и элементы огневой цепи, в которую входит преобразователь горения в детонацию, включающий сквозной канал, заполненный бризантным взрывчатым веществом. Преобразователь горения в детонацию выполнен в виде отдельной...
Тип: Изобретение
Номер охранного документа: 0002382319
Дата охранного документа: 20.02.2010
18.05.2019
№219.017.574e

Комплекс технических средств защиты

Изобретение относится к технике защиты окружающей среды от вредного воздействия продуктов взрыва и может быть использовано для ликвидации боеприпасов и взрывных устройств. Комплекс технических средств защиты, при производстве взрывных работ с зарядами или взрывными устройствами большой...
Тип: Изобретение
Номер охранного документа: 0002354927
Дата охранного документа: 10.05.2009
18.05.2019
№219.017.57f1

Способ пайки керамики с металлами и неметаллами

Изобретение может быть использовано в электронной, радиотехнической промышленности и прецизионном приборостроении для пайки изделий с высокими требованиями по вакуумной плотности, термостойкости, влагостойкости, коррозионностойкости при воздействии высоких давлений, высоких температур и ударных...
Тип: Изобретение
Номер охранного документа: 0002336980
Дата охранного документа: 27.10.2008
18.05.2019
№219.017.589f

Устройство для измерения термомеханических характеристик термопластичных материалов

Предлагаемое изобретение относится к области испытательной техники. Устройство содержит неподвижное основание со средством позиционирования образца исследуемого материала, систему нагружения индентора, закрепленного на стержне, систему контроля перемещений индентора и собственно индентор,...
Тип: Изобретение
Номер охранного документа: 0002363940
Дата охранного документа: 10.08.2009
24.05.2019
№219.017.5d8d

Лазерный модуль и способ его изготовления

Изобретение относится к области лазерной техники и касается лазерного модуля. Лазерный модуль содержит ступенчатое основание, на котором размещены лазерные диоды, микролинзы, линзы, плоские зеркала и фокусирующие линзы. Оптическое волокно зафиксировано в корпусе и в защитной трубке,...
Тип: Изобретение
Номер охранного документа: 0002688888
Дата охранного документа: 22.05.2019
Показаны записи 281-290 из 290.
17.02.2018
№218.016.2e14

Система корректировки траекторий потока заряженных частиц

Изобретение относится к области ускорительной техники, физике плазмы, а именно к устройствам корректировки траекторий потоков заряженных частиц, и может быть использовано в атомной физике, медицине, химии, физике твердого тела. Система корректировки траекторий потока заряженных частиц содержит...
Тип: Изобретение
Номер охранного документа: 0002643507
Дата охранного документа: 02.02.2018
04.04.2018
№218.016.2e9e

Устройство для передачи светового излучения большой мощности

Устройство для передачи светового излучения большой мощности относится к квантовой электронике, в частности к технологическим лазерным устройствам. Устройство для передачи светового излучения большой мощности содержит заполненную теплоносителем камеру, ограниченную с торца прозрачным оптическим...
Тип: Изобретение
Номер охранного документа: 0002644448
Дата охранного документа: 12.02.2018
04.04.2018
№218.016.3160

Прижимной механизм

Изобретение относится к специальным контейнерам, в частности к механизмам удержания, обеспечивающим надежное и быстрое закрепление опасного груза в стесненных габаритных условиях. Техническим результатом является обеспечение быстрого и надёжного закрепления груза в стеснённых габаритных...
Тип: Изобретение
Номер охранного документа: 0002645022
Дата охранного документа: 15.02.2018
04.04.2018
№218.016.3676

Способ определения температуры нагретой поверхности летательного аппарата при сверхзвуковом обтекании набегающим потоком

Изобретение относится к способам определения температуры нагретой поверхности летательного аппарата (ЛА) и может быть использовано при исследованиях в области аэродинамики, баллистики и т.д. Способ включает видеосъемку исследуемой поверхности, преобразование цветового изображения исследуемой...
Тип: Изобретение
Номер охранного документа: 0002646426
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.369e

Способ регулирования состава газовой среды

Изобретение относится к области методов и средств регулирования и контроля газовой среды и может быть использовано в системах управления технологическими процессами. Предложен способ регулирования газовой среды в контейнере, содержащем горючее или токсичное газообразное вещество, включающий...
Тип: Изобретение
Номер охранного документа: 0002646424
Дата охранного документа: 05.03.2018
04.04.2018
№218.016.3700

Способ определения показателей однородности дисперсного материала спектральным методом и способ определения масштабных границ однородности дисперсного материала спектральным методом

Изобретения относятся к области определения однородности дисперсных материалов и могут найти применение в порошковой металлургии, в самораспространяющемся высокотемпературном синтезе, в материаловедении и аналитической химии. Способ определения показателей однородности дисперсного материала...
Тип: Изобретение
Номер охранного документа: 0002646427
Дата охранного документа: 05.03.2018
10.05.2018
№218.016.4513

Способ генерации и вывода электронного пучка в область высокого давления газа, до атмосферного

Изобретение относится к области создания сфокусированных электронных пучков и вывода их в область повышенного давления, до атмосферного. Плазменный катод создается низковольтным отражательным разрядом с полым катодом, электрическим полем ускоряют вышедшие из плазменного катода электроны....
Тип: Изобретение
Номер охранного документа: 0002650101
Дата охранного документа: 09.04.2018
14.03.2019
№219.016.dfa7

Способ регистрации распределения интенсивности мягкого рентгеновского излучения

Изобретение относится к области регистрации ионизирующего излучения и касается способа регистрации распределения интенсивности мягкого рентгеновского излучения при наличии в спектре паразитного видимого и инфракрасного излучения. Способ заключается в том, что излучение пропускают через...
Тип: Изобретение
Номер охранного документа: 0002681659
Дата охранного документа: 12.03.2019
19.07.2019
№219.017.b63a

Устройство для формирования мегаамперного импульса тока в лайнерной нагрузке

Изобретение относится к средству формирования мегаамперных импульсов тока с целью создания мощных источников мягкого рентгеновского излучения (МРИ). Устройство содержит соосно расположенные в вакууме центральный электрод, первое и второе электродные кольца, прямой и обратный токопроводы, а...
Тип: Изобретение
Номер охранного документа: 0002694819
Дата охранного документа: 17.07.2019
04.05.2020
№220.018.1ac0

Вакуумный рентгеновский диод для регистрации мягкого рентгеновского излучения

Изобретение относится к области измерительной техники и может быть использовано для регистрации мягкого рентгеновского излучения (МРИ) в лабораторных и полигонных экспериментах. Технический результат - повышение надежности работы вакуумного рентгеновского диода и технологичности обслуживания...
Тип: Изобретение
Номер охранного документа: 0002720214
Дата охранного документа: 28.04.2020
+ добавить свой РИД