×
13.01.2017
217.015.86d2

СПОСОБ ПОЛУЧЕНИЯ ДИБОРИДА АЛЮМИНИЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия, являющегося перспективным энергетическим материалом для ракетных топлив. Диборид алюминия получают высокотемпературной обработкой смеси порошков бора и алюминия в инертной атмосфере путем приготовления смеси порошка алюминия с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1; формирования из полученной смеси брикетов с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и пористостью не более 44%; последующего помещения брикетов в атмосферу нейтрального газа; нагревания их до температуры 100-500°С; зажигания нагретой смеси путем локального нагрева части ее поверхности до температуры 950-1150°С; и синтеза диборида алюминия в режиме послойного горения при температуре 820-920°С. Изобретение позволяет при минимальном расходе электроэнергии получать практически однофазный продукт, содержащий более 95 масс. % AlB. 1 пр.
Реферат Свернуть Развернуть

Изобретение относится к бору и его соединениям, а именно к способам синтеза диборида алюминия.

Диборид алюминия (AlB2) является перспективным энергетическим материалом для ракетных топлив. Теплота его сгорания намного превышает теплоту сгорания металлического алюминия. Однако в настоящее время отсутствуют эффективные технологии производства диборида алюминия. Наибольшее распространение получили печные технологии синтеза диборида алюминия (Самсонов Г.В., Серебрякова Т.И., Неронов В.А. Бориды. М.: Атомиздат. 1975. - 376 с.).

В качестве прототипа выбран способ получения диборида алюминия, описанный в работе «The Preparation of Aluminum Diboride, AlB2», Edward J. Felten. Journal of the American Chemical Society. 1956. V. 78 №23. P. 5977-5978. В соответствии с ним диборид алюминия синтезируют нагреванием стехиометрической смеси порошков бора и алюминия в замкнутой графитовой трубке при температуре 800°С в течение примерно 12 часов.

Синтез осуществляется в атмосфере гелия с использованием порошка бора чистотой 99,5 масс. %. По данным рентгенофазового анализа продукт имел коричневато-серый цвет и состоял в основном из фазы AlB2.

Рентгенографически обнаруживались также фазы Al, С и В4С.

Способ-прототип позволяет синтезировать диборид алюминия без примесей других его боридов. Вместе с тем, продукт загрязнен другими примесями, а сам процесс синтеза весьма продолжителен и сопровождается расходом значительного количества электроэнергии.

В предлагаемом изобретении решается задача создания нового способа получения диборида алюминия, который при минимальном расходе электроэнергии позволял бы производить практически однофазный продукт, содержащий не менее 90 масс. % фазы AlB2.

Поставленная задача решается тем, что способ получения диборида алюминия путем высокотемпературной обработки смеси порошков бора и алюминия в инертной атмосфере соответствии с предлагаемым изобретением включает:

- приготовление смеси порошка алюминия Al с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1;

- формирование из смеси брикетов с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и пористостью не более 44%;

- помещение брикетов в атмосферу нейтрального газа;

- нагревание брикетов до температуры 100-500°С;

- зажигание нагретой смеси путем локального нагрева части ее поверхности до температуры 910-1160°С;

- синтез диборида алюминия в режиме послойного горения при температуре 810-960°С с получением продукта, содержащего более 92 масс. % AlB2.

Предлагаемое техническое решение позволяет получать диборид алюминия при использовании в качестве исходного сырья порошков бора различной дисперсности и чистоты. Образование продукта с преимущественным содержанием AlB2 происходит и при более низком содержании в исходных порошках бора и алюминия и при меньшем их размере частиц. Опытным путем было определено, что в производственных условиях оптимально использовать исходные порошки дисперсностью менее 0,001 мм для бора и менее 0,01 мм для алюминия.

Далее в соответствии с предлагаемым изобретением используют исходную смесь при атомном соотношении компонентов (В:Al) от 2,05: 1 до 2,1:1 Многочисленные лабораторные эксперименты показали, что небольшой избыток бора необходим для полного превращения компонентов шихты в диборид и исключить сохранение в продукте остаточного алюминия. Обусловлено это тем, что в качестве сырья используется порошок аморфного бора, на поверхности которого адсорбируется значительное количество примесей.

Отличительной особенностью диборида алюминия AlB2 является сравнительно низкая термическая устойчивость. При нагреве свыше ~950°С он разлагается по реакции:

AlB2→AlB12+Al.

Вследствие формирования на поверхности частиц бора и алюминия защитных слоев оксидов, соответственно B2O3 и Al2O3, их твердофазное взаимодействие весьма затруднено. Заметная реакция Al и В обнаруживается только при расплавлении алюминия при температуре более ~700°С. Таким образом, фактический температурный диапазон, в котором возможен синтез AlB2, составляет приблизительно 700-950°С.

Известно, что для осуществления какого-либо процесса в режиме горения необходимо чтобы реакция, лежащая в его основе, была экзотермическая. Образование диборида алюминия по реакции:

2В+Al→AlB2+Q

происходит со значительным тепловыделением - 16±3 ккал/моль (Е.S. Domalski, G.Т. Armstrong. Heats of Formation of Aluminum Diboride and α-Aluminum Dodecaboride. Journal of applied physics and chemistry Vol. 71 A. No. 4. July-August 1967). Однако такого тепловыделения оказалось недостаточно для осуществления синтеза горением обычным способом.

Весьма неожиданно обнаружилось, что процесс низкотемпературного образования диборида алюминия можно интенсифицировать путем проведения процесса в режиме послойного горения. А именно посредством формирования исходной смеси порошков алюминия и бора с небольшим избытком бора (5-10 относит. % от стехиометрического содержания) в брикеты пористостью не более 44% с максимальным размером не более 22 мм и минимальным размером не менее 2 мм и предварительного нагревания их до температуры 100-500°С в атмосфере нейтрального газа, последующего зажигания нагретой смеси путем локального нагрева части ее поверхности до температуры 910-1160°С и синтеза диборида алюминия в режиме послойного горения при температуре 810-960°С.

Минимальная температура предварительного нагрева исходной шихты, при которой становится возможным синтез горением, равна 100°С. При меньшей начальной температуре смесь не горит. Нецелесообразно повышать исходную температуру и сверх 500°С. В этом случае из-за превышения температуры горения над температурой устойчивости AlB2 в продуктах горения появляется заметное количество додекаборида AlB12, доля которого с повышением температуры процесса быстро увеличивается.

Шихту для синтеза диборида алюминия, согласно предлагаемому техническому решению, необходимо предварительно брикетировать. Брикеты могут быть сформированы любым из известных способов. Важно, чтобы пористость их не превышала 44%. Такая пористость необходима для достижения оптимального уровня теплопроводности при формировании плоской волны горения. Опыты показали, что брикеты с пористостью более 44% не горят либо горение происходит в нестабильном режиме.

Критически важным параметром при реализации настоящего изобретения оказался размер брикетов. Оказалось, что при уменьшении хотя бы одного их геометрических размеров исходных брикетов менее 2 мм синтез горением становится невозможным. Причиной этого является превалирование скорости отвода тепла из зоны реакции над скоростью тепловыделения. Максимальный размер брикетов ограничен по причине формирования большого градиента температуры. Обнаружилось, что при увеличении минимального размера брикетов свыше 22 мм в их центральных областях появляется высокотемпературная фаза Al В12, доля которой с ростом размеров брикетов увеличивается.

Рассмотрим некоторые детали предлагаемого изобретения на примере конкретной его реализации.

Пример

Готовят смесь порошков бора аморфного с размером частиц менее 0,001 мм (CAS №7440-42-8) с содержанием бора 99,2 масс. % и алюминия (марка АСП-6) с размером частиц менее 0,01 мм с содержанием алюминия 99,1 масс. %, при их атомном соотношении (В:Al) 2,02:1. Смешивание осуществляют в шаровой мельнице с использованием спирта. После сушки смесь дозируют и прессуют, применяя гидравлический пресс и пресс-форму. Диаметр сформованных таким образом образцов 20 мм, высота - ~20 мм, пористость - 39-41%. Полученные образцы хаотично уложили в цилиндрический керамический тигель с внутренним диаметром 110 мм, высотой - 220 мм. Тигель помещается в атмосферу аргона. Нагретой электрической спиралью поверхностный слой одного или нескольких брикетов нагревают до -1050°С в течение времени, достаточном до начала реакции образования диборида алюминия по реакции:

2В+Al→AlB2.

Далее от возникшего очага реакции инициируется экзотермическая реакция синтеза в прилегающих слоях. Формируется послойное распространение волны горения-синтеза, которое завершается после полного превращения исходной смеси в целевой продукт. Температура горения, измеренная термопарным методом, равна 910°С. Продолжительность процесса горения ~3,5 минут.

По завершении горения продукт остывает в инертной атмосфере. Далее спеченный в волне продукт измельчается в порошок и анализируется рентгенографически. По данным рентгенофазового анализа продукт горения содержит свыше 95,0 масс. % фазы AlB2.

Таким образом, предлагаемый способ позволяет получать с минимальными затратами электроэнергии и времени практически однофазный порошок диборида алюминия AlB2.

Способ получения диборида алюминия, включающий приготовление шихты, состоящей из порошков алюминия и бора, и последующую ее высокотемпературную обработку, отличающийся тем, что готовят смесь порошка алюминия с размером частиц не более 0,01 мм, с порошком бора с размером частиц не более 0,001 мм при атомном соотношении компонентов от 1:2,05 до 1:2,1, смесь формируют в брикеты пористостью не более 44% с максимальным размером не более 22 мм и минимальным размером не менее 2 мм, брикеты помещают в атмосферу нейтрального газа, нагревают до температуры 100-500°С, нагретую смесь зажигают путем локального нагрева части ее поверхности до температуры 950-1150°С и осуществляют синтез диборида алюминия в режиме послойного горения при температуре 820-920°С.
Источник поступления информации: Роспатент

Показаны записи 1-10 из 69.
27.02.2013
№216.012.2a7f

Способ получения пористого керамического материала

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию...
Тип: Изобретение
Номер охранного документа: 0002476406
Дата охранного документа: 27.02.2013
10.07.2013
№216.012.544f

Способ упрочнения легких сплавов

Изобретение относится к металлургии, в частности к получению легких сплавов на основе алюминия. В расплав на основе алюминия вводят лигатуру, содержащую частицы тугоплавкого соединения. В качестве лигатуры используют порошок микронных размеров тугоплавкого соединения, частицы которого покрывают...
Тип: Изобретение
Номер охранного документа: 0002487186
Дата охранного документа: 10.07.2013
27.07.2013
№216.012.5a33

Способ организации рабочего процесса в космической двигательной установке на газообразном топливе

Изобретение относится к области ракетной техники, а именно к организации процесса подготовки и сжигания газообразного топлива в камере сгорания. Предварительно газифицированные компоненты топлива, газообразный гелий из системы вытеснения и порошок алюминия подаются в форкамеру для смешения....
Тип: Изобретение
Номер охранного документа: 0002488712
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6018

Способ получения огнеупорного материала на основе бета-нитрида кремния β-sin

Изобретение относится к способам получения огнеупорных материалов на неоксидной основе, а именно к огнеупорным материалам на основе бета-нитрида кремния β-SiN, которые могут быть использованы в качестве упрочняющих добавок в неформованные огнеупорные массы. Для высокотемпературной обработки...
Тип: Изобретение
Номер охранного документа: 0002490232
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
10.11.2013
№216.012.7e29

Способ получения титансодержащего сплава для легирования стали

Изобретение относится к металлургии, в частности к производству легирующих сплавов для сталей и чугунов, и конкретно касается способа получения титансодержащего сплава для легирования стали. Готовят реакционную порошковую смесь, содержащую 45-88 мас.% титансодержащего компонента и 12-55 мас.%...
Тип: Изобретение
Номер охранного документа: 0002497970
Дата охранного документа: 10.11.2013
10.03.2014
№216.012.a8f1

Способ распыления расплавленных металлов

Изобретение относится к области порошковой металлургии, в частности к способам получения порошков распылением расплавленных металлов газовым потоком. Распыление проводят путем диспергирования расплава металла подаваемым через кольцевое сопло внешним потоком сжатого газа, концентричным струе...
Тип: Изобретение
Номер охранного документа: 0002508964
Дата охранного документа: 10.03.2014
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
Показаны записи 1-10 из 64.
27.02.2013
№216.012.2a7f

Способ получения пористого керамического материала

Изобретение относится к технологии получения пористого керамического материала и предназначено для получения искусственных эндопротезов костной ткани. Способ получения пористого керамического материала включает приготовление смеси из керамического порошка и добавки, выполняющей функцию...
Тип: Изобретение
Номер охранного документа: 0002476406
Дата охранного документа: 27.02.2013
27.07.2013
№216.012.5a33

Способ организации рабочего процесса в космической двигательной установке на газообразном топливе

Изобретение относится к области ракетной техники, а именно к организации процесса подготовки и сжигания газообразного топлива в камере сгорания. Предварительно газифицированные компоненты топлива, газообразный гелий из системы вытеснения и порошок алюминия подаются в форкамеру для смешения....
Тип: Изобретение
Номер охранного документа: 0002488712
Дата охранного документа: 27.07.2013
20.08.2013
№216.012.6018

Способ получения огнеупорного материала на основе бета-нитрида кремния β-sin

Изобретение относится к способам получения огнеупорных материалов на неоксидной основе, а именно к огнеупорным материалам на основе бета-нитрида кремния β-SiN, которые могут быть использованы в качестве упрочняющих добавок в неформованные огнеупорные массы. Для высокотемпературной обработки...
Тип: Изобретение
Номер охранного документа: 0002490232
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.7432

Способ определения дисперсного состава капель в факеле распыла форсунки

Изобретение относится к методам исследования жидкокапельных аэрозолей и предназначено для определения дисперсных характеристик распыла форсунок в широком диапазоне размеров частиц, в том числе нанометровом. Способ основан на распылении раствора неиспаряемой примеси в исследуемой жидкости с...
Тип: Изобретение
Номер охранного документа: 0002495403
Дата охранного документа: 10.10.2013
10.11.2013
№216.012.7e29

Способ получения титансодержащего сплава для легирования стали

Изобретение относится к металлургии, в частности к производству легирующих сплавов для сталей и чугунов, и конкретно касается способа получения титансодержащего сплава для легирования стали. Готовят реакционную порошковую смесь, содержащую 45-88 мас.% титансодержащего компонента и 12-55 мас.%...
Тип: Изобретение
Номер охранного документа: 0002497970
Дата охранного документа: 10.11.2013
27.06.2014
№216.012.d826

Способ определения максимального размера и концентрации субмикронных аэрозольных частиц

Изобретение относится к области измерения характеристик аэрозольных частиц оптическими методами. Способ заключается в измерении ослабления оптического излучения в видимой и ближней инфракрасной областях спектра. Максимальный размер и концентрацию аэрозольных частиц определяют по формулам
Тип: Изобретение
Номер охранного документа: 0002521112
Дата охранного документа: 27.06.2014
20.01.2015
№216.013.1f87

Устройство для распыления расплавленных металлов

Изобретение относится к области порошковой металлургии. Устройство для распыления расплавленных металлов содержит корпус с крышкой и кольцевой полостью, соединенной с газопроводом для подачи нагретого сжатого газа, ниппель с центральным каналом для подачи расплава металла и дополнительный...
Тип: Изобретение
Номер охранного документа: 0002539512
Дата охранного документа: 20.01.2015
27.06.2015
№216.013.58bc

Форсунка для распыления расплавленных металлов

Изобретение относится к порошковой металлургии, а именно к получению порошка распылением расплава металла. Форсунка содержит корпус с кольцевой щелью для подачи газа, ниппель с центральным каналом для подачи расплава и защитный стальной чехол, ниппель изготовлен из пьезоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002554257
Дата охранного документа: 27.06.2015
27.06.2015
№216.013.5a0c

Способ определения глинистых минералов

Использование: для определения глинистых минералов с помощью рентгеноструктурного анализа. Сущность изобретения заключается в том, что выполняют отбор проб минералов, возбуждение в них рентгенолюминесценции в оптическом диапазоне длин волн с последующим определением минерала, при этом для...
Тип: Изобретение
Номер охранного документа: 0002554593
Дата охранного документа: 27.06.2015
20.07.2015
№216.013.6452

Катализатор низкотемпературного окисления монооксида углерода и способ его применения

Изобретение относится к области гетерогенного катализа, а именно к низкотемпературному окислению CO, и может быть использовано для систем очистки воздуха в замкнутых помещениях, например в салонах автотранспорта, производственных, офисных и жилых помещениях. Предложен катализатор...
Тип: Изобретение
Номер охранного документа: 0002557229
Дата охранного документа: 20.07.2015
+ добавить свой РИД