×
13.01.2017
217.015.7e6d

Результат интеллектуальной деятельности: СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области термозащитных и антиокислительных покрытий, и может быть использовано для повышения химической инертности и температуры эксплуатации материалов, используемых в авиакосмической промышленности, топливо-энергетическом комплексе и др. Способ нанесения газоплотного покрытия из карбида кремния на деталь из высокотемпературного материала включает размещение упомянутой детали в тепловой зоне печи и подачу к поверхности упомянутой детали газообразных кремнийсодержащего и углеродсодержащего компонентов. Газообразный кремнийсодержащий компонент получают с использованием источника паров кремния, в качестве которого используют расплав кремния, который размещают в тигле в тепловой зоне печи. В качестве углеродсодержащего компонента используют газообразные углеводороды. Обеспечивается уменьшение стоимости и сокращение времени технологического процесса получения покрытий из газоплотного карбида кремния, повышение термоокислительной стойкости защищаемых материалов, увеличение адгезии покрытия из карбида кремния, увеличение термоокислительной прочности покрываемых деталей из различных высокотемпературных материалов. 1 табл., 8 ил.

Изобретение относится к области высокотемпературных, коррозионностойких материалов, а именно термозащитных и антиокислительных покрытий, и может быть использовано для повышения химической инертности и температуры эксплуатации материалов (композиционные материалы на основе карбида кремния (SiC), углерод-углеродные композиционные материалы (УУКМ), высокотемпературные сплавы, тугоплавкие металлы и др.), используемых в авиакосмической промышленности, топливо-энергетическом комплексе и др.

Наиболее близким к заявляемому изобретению является способ осаждения из газовой (паровой) фазы (CVD). Так известен способ изготовления покрытий из карбида кремния заданного состава и свойств (US 2014356549, A1 опубл. 04.01.2014). Способ заключается в осаждении покрытия из карбида кремния на материале путем подачи к поверхности материала газообразных кремнийсодержащих и углеродсодержащих компонентов, в качестве которых используются органические прекурсоры. Данный способ позволяет получать на поверхности материалов газоплотные покрытия из карбида кремния с высокими защитными свойствами и однородностью.

Недостатком данного способа является малая производительность, высокая стоимость компонентов (реагентов) и затраты на производство за счет большой продолжительности процесса нанесения покрытия путем химического осаждения из газовой фазы.

Изобретение направлено на упрощение технологического процесса нанесения газоплотного покрытия из карбида кремния на поверхность материалов, уменьшение стоимости, сокращение времени процесса нанесения покрытий.

Технический результат состоит в уменьшении стоимости и сокращении времени технологического процесса получения покрытий газоплотного карбида кремния, повышении термоокислительной стойкости защищаемых материалов, увеличении адгезии покрытия из карбида кремния с материалом, на который оно наносится, увеличении термоокислительной прочности покрываемых деталей из различных высокотемпературных материалов (УУКМ, композиционный материал SiC-Si или SiC-C-Si, графит, металл, металлический сплав и т.д.).

Технический результат достигается за счет того, что способ нанесения газоплотного покрытия из карбида кремния заключается в осаждении покрытия из карбида кремния на установленном в тепловой зоне печи материале путем подачи к поверхности материала газообразных кремнийсодержащего и углеродсодержащего компонентов, в качестве кремнийсодержащего компонента используются пары кремния из расплава кремния, расположенного в тигле в тепловой зоне печи, в качестве углеродсодержащего компонента используются газообразные углеводороды.

Технический результат достигается также за счет того, что в способе нанесения газоплотного покрытия из карбида кремния в образовании покрытия участвует также расплав кремния, содержащийся в материале, на который наносится покрытие.

В заявляемом способе газоплотное покрытие из карбида кремния на материале формируется за счет прямого взаимодействия углерода, образующегося при высокотемпературном пиролитическом разложении молекул углеводорода (например, метана) с парами кремния, источником которого служит расплав кремния, размещенный в тепловой зоне печи и/или жидким кремнием, содержащимся в материале детали, на которую наносится покрытие. Использование паров и/или расплава кремния для проведения реакции образования карбида кремния на поверхности материала детали существенно упрощает конструкцию технологической зоны, сокращает время проведения процесса и снижает его себестоимость за счет более доступного и дешевого компонента по сравнению с кремнийсодержащими прекурсорами, используемыми в CVD процессах нанесения SiC покрытий. Адгезия защитного покрытия с поверхностью углерод-углеродного композиционного материала, композиционного материала SiC-Si или SiC-C-Si, графита и других углерод или кремнийсодержащих материалов при использовании предлагаемого способа существенно выше, т.к. процесс проводится при высокой температуре с частичным участием компонент, находящихся непосредственно в детали, на которую наносится покрытие. Также способ позволяет наносить SiC покрытия на металлы и металлические сплавы.

Реализация изобретения поясняется чертежами и примером реализации изобретения:

Фиг. 1. Схема установки для нанесения покрытий по заявляемому способу.

Фиг. 2. Защитное газоплотное SiC покрытие со средним размером кристаллитов ~80 нм на графите. Температура Т=1600°С, давление Р=4 мм рт.ст., скорость V=0,39 литр/мин.

Фиг. 3. Защитное газоплотное SiC покрытие со средним размером кристаллитов ~50 мкм на графите. Температура Т=1480°С, давление Р=2 мм рт.ст., скорость V=0,6 литров/мин.

Фиг. 4. Защитное газоплотное SiC покрытие на углерод-углеродном композиционном материале (УУКМ).

Фиг. 5. Защитное газоплотное SiC покрытие карбидокремниевой керамики с участием в качестве источника кремния остаточного кремния материала.

Фиг. 6. Микроструктура композиционного материала SiC-C-Si/50-40-10 без покрытия (а) и с газоплотным SiC покрытием (б) после отжига при 1000°С на воздухе в течение 60 часов.

Фиг. 7. Защитное газоплотное SiC покрытие на биоморфной керамике.

Фиг. 8. Защитное газоплотное SiC покрытие на молибденовом нагревателе.

Пример реализации изобретения

Для нанесения газоплотного покрытия из карбида кремния на материал 1 (графит) использовалась вакуумная высокотемпературная печь резистивного нагрева с графитовым нагревателем 2 и углеродной теплоизоляцией 3 (Фиг. 1). Печь готовили следующим образом: открыли тепловую зону печи 4, произвели загрузку кремния в тигель 5, расположенный в нижней части тепловой зоны на подставке 6. Над тиглем на высоте 100 мм разместили покрываемую деталь 1 из графита с помощью графитовой оснастки 7. Далее произвели закрытие тепловой зоны 4 углеродной теплоизоляцией 3, установку рассекателя на магистраль подачи углеводорода 8. В качестве углеводорода был использован метан. Далее печь вакуумировали с использованием форвакуумного насоса, провели нагревание тепловой зоны 4 печи до температуры 1600°С для получения расплава кремния, находящегося в тигле 5. После этого осуществили подачу метана в тепловую зону (давление Р=4 мм рт.ст., скорость V=0,39 литр/мин). Покрытие выращивалось со скоростью 100 мкм/час. Когда необходимая толщина покрытия была достигнута (30 мкм), прекратили подачу метана в камеру печи, в течение 1 часа снизили рабочую мощность нагревателя 2 до нуля. После этого была выключена система обеспечения вакуума 9, и после полного охлаждения печи последовала ее разгрузка. Увеличенное изображение структуры полученного покрытия с размером частиц карбида кремния 80 нм показано на Фиг. 2.

В зависимости от определенного сочетания температуры, времени протекания реакции, скорости потока газообразного углеводорода через камеру, степени его разложения, парциального давления углеводорода в зоне реакции можно получать нано- и микрокристаллические газонепроницаемые покрытия с разной структурой, регулируемым политипным составом и толщиной (от 300 нм до сотен микрон) с размером частиц карбида кремния от 50 нм до сотен микрон. Пример газоплотного SiC покрытия из кристаллитов размером несколько десятков микрон на графите показан на Фиг. 3. Температура, при котором наносилось покрытие составляла Т=1480°С, параметры подачи метана при этом составили: давление Р=2 мм рт.ст., скорость V=0,6 литров/мин.

На Фиг. 4 показан материал УУКМ с нанесенным по предлагаемому способу газоплотным покрытием из карбида кремния. Хорошая адгезия SiC покрытия к УУКМ достигалась за счет частичного участия углерода, находящегося в УУКМ. Использовались режимы для получения покрытия на графите с размером частиц карбида кремния 80 нм, приведенные в примере реализации изобретения. Также газоплотное покрытие из карбида кремния по предлагаемому способу может быть нанесено на материалы с содержанием остаточного кремния, такие как силицированные графиты и реакционносвязанные графиты (композиционные материалы SiC-C-Si) и реакционно-связанный карбид кремния (SiC-Si), биоморфную карбидокремниевую керамику для существенного повышения их термоокислительной стойкости. Участие свободного кремния, содержащегося в данных материалах, позволяет получать газоплотные покрытия с высокой адгезией к поверхности материала. На Фиг. 5 показана микроструктура композиционного материала SiC-C-Si/50-40-10% масс., с защитным карбидокремниевым покрытием, полученным с параметрами нанесения, приведенными в примере реализации. На Фиг. 6 приведены структуры данного материала без защитного покрытия (Фиг. 6а) и с SiC газоплотным покрытием (Фиг. 6б), после отжига на воздухе при температуре 1000°С в течение 60 часов. Видно, что структура материала без защитного покрытия сильно нарушена за счет выгорания углерода из керамики. Потеря веса детали без покрытия составила 36% вес. Вес детали с SiC покрытием не изменился.

На Фиг. 7 показана микроструктура газоплотного покрытия из карбида кремния по предлагаемому способу, нанесенного на биоморфную карбидокремниевую керамику, где в качестве углеродного компонента используется пиролизованная древесина (в данном случае - береза). Покрытие позволяет защитить от окисления остаточные углерод и кремний в объеме биоморфной керамики.

Нанесение SiC покрытия на композиционные SiC-C-Si также может улучшать механические характеристики материала за счет снижения вклада поверхностных дефектов при испытании образцов на изгиб, сжатие и растяжение. В таблице 1 представлены результаты испытаний деталей из карбидокремниевой керамики с карбидокремниевым покрытием.

Из таблицы следует, что показатели прочности изделий из карбидокремниевой керамики на сжатие и изгиб увеличены для изделий с нанесенным карбидокремниевым покрытием с частичным источником кремния, находящимся в структуре покрываемого материала.

Защитное газоплотное покрытие из карбида кремния по предлагаемому способу может быть нанесено также на металлы и металлические сплавы. На Фиг. 8 показана молибденовая пластина с SiC покрытием, которая использовалась в качестве нагревателя (контактные зоны нагревателя на краях не защищены покрытием), работающего в окислительной атмосфере при температуре 1500°С свыше 100 часов.

Способ нанесения газоплотного покрытия из карбида кремния на деталь из высокотемпературного материала, включающий размещение упомянутой детали в тепловой зоне печи и подачу к поверхности упомянутой детали газообразных кремнийсодержащего и углеродсодержащего компонентов, отличающийся тем, что газообразный кремнийсодержащий компонент получают с использованием источника паров кремния, в качестве которого используют расплав кремния, который размещают в тигле в тепловой зоне печи, а в качестве углеродсодержащего компонента используют газообразные углеводороды.
СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ
СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ
СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ
СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ
СПОСОБ НАНЕСЕНИЯ ГАЗОПЛОТНОГО ПОКРЫТИЯ ИЗ КАРБИДА КРЕМНИЯ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 92.
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
04.04.2018
№218.016.3094

Зубной имплантат и способ его имплантации

Группа изобретений относится к ортопедической стоматологии, а именно протезированию зубов, и предназначено для использования при установке зубных протезов на альвеолярных отростках, как верхней, так и нижней челюсти. Проводят операцию по установке одноэтапного имплантата. Осуществляют лечение...
Тип: Изобретение
Номер охранного документа: 0002644851
Дата охранного документа: 14.02.2018
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
12.07.2018
№218.016.6fa1

Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера

Изобретение относится к исследованию и анализу газов. Способ изготовления смесей для калибровки газоаналитического оборудования, включает: электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение...
Тип: Изобретение
Номер охранного документа: 0002661074
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
Показаны записи 31-40 из 44.
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
04.04.2018
№218.016.3094

Зубной имплантат и способ его имплантации

Группа изобретений относится к ортопедической стоматологии, а именно протезированию зубов, и предназначено для использования при установке зубных протезов на альвеолярных отростках, как верхней, так и нижней челюсти. Проводят операцию по установке одноэтапного имплантата. Осуществляют лечение...
Тип: Изобретение
Номер охранного документа: 0002644851
Дата охранного документа: 14.02.2018
04.06.2019
№219.017.7349

Способ внутриволноводной терагерцовой интерферометрии и сапфировая ячейка для его реализации

Группа изобретений относится к интерферометрии. При осуществлении способа излучение вводят в двухмодовый волновод, часть которого занимает анализируемое вещество, и выводят через фигурную диафрагму, где на расстоянии, превышающем на порядок среднюю длину волны используемого излучения (>10λ),...
Тип: Изобретение
Номер охранного документа: 0002690319
Дата охранного документа: 31.05.2019
25.04.2020
№220.018.197c

Способ слежения за глубиной промораживания ткани при криодеструкции и система для его осуществления

Группа изобретений относится к медицинской технике. Технический результат состоит в упрощении способа слежения за положением ледяного фронта при криодеструкции, повышении пространственной чувствительности измерения глубины ледяного фронта в ткани с применением спектроскопии рассеяния, не...
Тип: Изобретение
Номер охранного документа: 0002719911
Дата охранного документа: 23.04.2020
31.05.2020
№220.018.22bb

Сапфировый роликовый аппликатор для криохирургии и криотерапии

Изобретение относится к криогенной технике, а именно криоаппликаторам иммерсионного типа, и может использоваться в криомедицине и ветеринарии. Криоаппликатор содержит ролик и ручку, ролик выполнен из сапфира в виде шлифованного или полированного шара или цилиндра с углублениями на торцах, в...
Тип: Изобретение
Номер охранного документа: 0002722352
Дата охранного документа: 29.05.2020
20.04.2023
№223.018.4ab9

Композиция для высокотемпературной керамики и способ получения высокотемпературной керамики на основе карбида кремния и силицида молибдена

Группа изобретений относится к области получения керамических материалов на основе карбида кремния (SiC) и силицида молибдена, которые могут использоваться при получении изделий повышенной термостойкости, при изготовлении деталей турбин, авиационных двигателей, фрикционных элементов,...
Тип: Изобретение
Номер охранного документа: 0002788686
Дата охранного документа: 24.01.2023
+ добавить свой РИД