×
13.01.2017
217.015.7a50

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МАТЕРИАЛА ПРИ РАСТЯЖЕНИИ-СЖАТИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала. Сущность: измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны. Используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины двух полученных остаточных отпечатков. Определяют контактную жесткость испытуемого материала. Определяют предельную равномерную деформацию при статическом растяжении образца из испытуемого материала, по которой определяют предел выносливости испытуемого материала при растяжении-сжатии по зависимости. Технический результат: создание нового способа определения предела выносливости материала при растяжении-сжатии без разрушения материала деталей. 4 табл., 1 пр.

Изобретение относится к испытательной технике, а именно к способам определения предела выносливости материала.

Известен способ определения предела выносливости материала для симметричного цикла нагружения (патент №2416086, заявлен 29.12.2009 г., опубликован 10.04.2011 г.), заключающийся в том, что нагружение образца исследуемого материала осуществляют растяжением с постоянной скоростью деформирования и измеряют время развития упругой деформации и время до физического разрушения образца, а также определяют предел прочности образца, а о пределе выносливости судят с учетом максимальной величины нагрузки, отличающийся тем, что нагружение образца исследуемого материала осуществляют растяжением после предварительного однократного разгружения с величины нагрузки, равной полусумме (σТВ)/2 предела текучести материала (σТ) и предела прочности материала (σВ) до нулевого значения, измеряют время повторного нагружения до напряжения (σTB)/2 и время до физического разрушения образца, а о пределе выносливости судят по соотношению σ-1=ty/tp σу,

где σ-1 - предел выносливости материала для симметричного цикла нагружения;

ty - время развития упругой деформации;

tp - время до физического разрушения образца при повторном нагружении;

σу - напряжение развития упругой деформации при повторном нагружении, равное (σТВ)/2.

Недостатком этого способа является, во-первых то, что полученные значения σ-1 являются пределом выносливости материала образца только при его изгибе; этот способ не позволяет определить предел выносливости материала образца при его растяжении-сжатии, а значения пределов выносливости при различных видах нагружения существенно отличаются. Во-вторых способ предусматривает испытание материала образца на статическое растяжение с определением основных характеристик статической прочности (σТ и σВ) и времени развития деформации. Такое положение существенно усложняет технологию определения σ-1 и увеличивает время его определения, поскольку требует производить вырезку образцов из испытуемого материала или изделия, что, очевидно, приводит к частичному или полному разрушению этого изделия. Таким образом, этот способ не позволяет оперативно и без разрушения производить определение предела выносливости материала.

Наиболее близким по технической сущности является способ определения предела контактной выносливости материала (патент №2123175 М. Кл. G01N 3/00, 3/32, 3/48, заявл. 25.06.1996, опубл. 10.12.1998, бюл. №34), заключающийся в том, что испытуемый материал нагружают посредством сферического индентора радиусом R, после снятия нагрузки Ρ измеряют параметры отпечатка и определяют предел контактной выносливости испытуемого материала, при этом предварительно измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны Rпр, используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины двух полученных остаточных отпечатков, определяют коэффициент пластической нормальной контактной податливости испытуемого материала

по которому определяют предел контактной выносливости испытуемого материала по следующей зависимости

где σR - предел контактной выносливости испытуемого материала;

i - коэффициент пластической нормальной контактной податливости испытуемого материала;

Rпр - приведенный радиус кривизны в контакте индентора с поверхностью испытуемого материала;

P1 и Р2 - нагрузки на индентор;

h1 и h2 - глубины остаточных отпечатков, отвечающие нагрузкам P1 и Р2;

a, b - коэффициенты контактной прочности, зависящие от химического состава испытуемого материала и схемы нагружения его поверхности при эксплуатации.

Недостатком этого способа является то, что он полностью теряет свою достоверность в тех случаях, когда необходимо определить предел выносливости материала при растяжении-сжатии поскольку предназначен только для определения предела контактной выносливости материала.

Таким образом, известные способы имеют низкий технический уровень, поскольку не позволяют определять предел выносливости материала при растяжении-сжатии. Следует подчеркнуть, что числовые значения пределов выносливости материала при растяжении-сжатии, изгибе или контактном нагружении значительно отличаются друг от друга.

В этой связи важнейшей задачей является создание нового способа определения предела выносливости материала при растяжении-сжатии, который позволял бы оперативно и без разрушения производить определение предела выносливости материала при растяжении-сжатии.

Техническим результатом заявленного способа является создание нового способа определения предела выносливости материала при растяжении-сжатии, который позволяет оперативно и без разрушения производить определение предела выносливости материала при растяжении-сжатии.

Указанный технический результат достигается тем, что в способе определения предела выносливости материала, заключающийся в том, что измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны Rпр, используя две различные нагрузки Ρ в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины h двух полученных остаточных отпечатков, при этом определяют контактную жесткость испытуемого материала

определяют предельную равномерную деформацию εр при статическом растяжении образца из испытуемого материала

по которой определяют предел выносливости испытуемого материала при растяжении-сжатии по следующей зависимости

где с - контактная жесткость испытуемого материала (Н/мм);

P1 и P2 - нагрузки на индентор (Н);

h1 и h2 - глубины остаточных отпечатков (мм), отвечающие нагрузкам P1 и P2;

σ-1,р - предел выносливости испытуемого материала при растяжении-сжатии (Н/мм2);

Rпр - приведенный радиус кривизны (мм) в контакте индентора с поверхностью испытуемого материала;

m, n - коэффициенты предела выносливости при растяжении-сжатии, зависящие от химического состава испытуемого материала.

Существенным отличием предлагаемого способа является то, что определяют контактную жесткость испытуемого материала. Это позволяет неразрушающим способом оценить пластические свойства испытуемого материала, от которых зависит способность материала сопротивляться пластическим деформациям и разрушению как при статическом нагружении, так и при переменных во времени нагрузках.

Существенным отличием является и то, что с учетом контактной жесткости и приведенного радиуса кривизны Rпр в контакте индентора с поверхностью испытуемого материала определяют предельную равномерную деформацию εр при статическом растяжении образца из испытуемого материала. Это позволяет также неразрушающим способом получить значение характеристики испытуемого материала - εр, которая позволяет количественно оценить склонность материала к разрушению, поскольку за пределами предельной равномерной деформации наблюдается наиболее интенсивный рост количества и размеров микродефектов в материале.

Существенным отличием способа является предложение при определении предела выносливости испытуемого материала при растяжении-сжатии учитывать коэффициенты шип, что позволяет повысить точность определения предела выносливости испытуемого материала при растяжении-сжатии, поскольку его значение зависит от химического состава материала.

Совокупность отличительных признаков предлагаемого способа и новые взаимосвязи, установленные авторами между ними, позволили предложить новые зависимости для определения предельной равномерной деформации при статическом растяжении образца из испытуемого материала и предела выносливости при растяжении-сжатии. Последняя зависимость в новой форме устанавливает взаимосвязи между всеми существенными параметрами, определяющими величину предела выносливости испытуемого материала при растяжении-сжатии: контактной жесткостью испытуемого материала (она входит вместе с приведенным радиусом кривизны в зависимость, определяющую предельную равномерную деформацию), предельной равномерной деформацией εр при статическом растяжении образца из испытуемого материала, коэффициентами m и n предела выносливости при растяжении-сжатии, зависящие от химического состава испытуемого материала. Это позволяет определять предел выносливости испытуемого материала при растяжении-сжатии оперативно и без разрушения материала детали или изделия.

Способ определения предела выносливости материала при растяжении-сжатии реализуется следующим образом.

Измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус R сферического индентора, по которым определяют приведенный радиус кривизны Rпр, (согласно, например, книге М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 41)

где А и В соответственно меньшая и большая из следующих двух сумм (см. книгу М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 32)

знаки "+" и "-" относятся соответственно к случаям контакта сферического индентора, ограниченного выпуклым контуром, с поверхностью испытуемого материала, сечение которой в данной плоскости кривизны ограничено выпуклым или вогнутым контуром;

R1,1, R2,1 - радиусы кривизны поверхности испытуемого материала в сечениях первой и второй плоскостями главных кривизн;

R - радиус сферического индентора;

np, nσ - коэффициенты, зависящие от соотношения главных кривизн А/В и приведены в указанной выше книге М.С. Дрозда, М.М. Матлина, Ю.И. Сидякина «Инженерные расчеты упругопластической контактной деформации». - М.: Машиностроение, 1986. - 221 с. на стр. 213-214 и на стр. 41 или в книге "Расчеты на прочность в машиностроении": в 3-х т./С.Д. Пономарев, В.Л. Бидерман, К.К. Лихарев и др. - М. Машгиз, т. 2, 1958. - 974 с, на стр. 425.

Необходимо отметить, что в частном случае, когда поверхность испытуемого материала плоская R1,1=R2,1=∞, а приведенный радиус Rпр равен радиусу индентора R.

Используя две различные нагрузки Ρ в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в поверхность испытуемого материала. Диапазон нагрузок может быть выбран, например, согласно ГОСТ 18835-73 "Металлы. Метод измерения пластической твердости". Эта операция может быть выполнена с использованием различных нагружающих устройств: пресса Бринелля, прибора Роквелла, ручных винтовых прессов и т.п.

Измеряют глубины h1 и h2 двух полученных остаточных отпечатков. Эту операцию можно выполнить, например, с помощью индикатора часового типа (установленного в индикаторную стойку) с ценой деления 0,001 мм или 0,01 мм в зависимости от значения измеряемой глубины.

По зависимости (3) определяют контактную жесткость испытуемого материала

по которой с учетом приведенного радиуса кривизны определяют по формуле (4) предельную равномерную деформацию εр при статическом растяжении образца из испытуемого материала

Предел выносливости испытуемого материала при растяжении-сжатии определяют по зависимости (5)

При этом для определения числовых значений коэффициентов m и n предела выносливости при растяжении-сжатии используют два вспомогательных образца с известными величинами пределов выносливости материала при растяжении-сжатии; материал вспомогательных образцов (черный или цветной металл выбирают в зависимости от того предел выносливости какого материала при растяжении-сжатии предполагается определять). Предел выносливости вспомогательных образцов при растяжении-сжатии определяют согласно ГОСТ 25.502-79 "Методы механических испытаний металлов. Методы испытаний на усталость": для первого вспомогательного образца σ-1,р,1, для второго -σ-1,р,2

Для каждого из двух вспомогательных образцов измеряют радиусы кривизны поверхности в сечениях двумя плоскостями главных кривизн и радиус R сферического индентора, по которым по формуле (6) определяют приведенные радиусы кривизны Rпр1 и Rпр2. Используя две различные нагрузки Ρ в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в поверхность каждого из двух вспомогательных образцов, измеряют на каждом из них глубины h1 и h2 двух полученных остаточных отпечатков (на первом вспомогательном образце h1,1 и h2,1, на втором - h1,2 и h2,2) и определяют по зависимости (3) контактную жесткость первого (c1) и второго (с2) вспомогательного образца.

где P1,1, Ρ2,1 и Ρ1,2, Р2,2 - нагрузки, использованные при внедрении индентора в поверхность первого и второго вспомогательного образца соответственно.

Затем определяют согласно формуле (4) предельную равномерную деформацию при статическом растяжении первого (εр,1) и второго (εр,2) вспомогательного образца

Вычисляют значения коэффициентов m и n предела выносливости при растяжении-сжатии по следующим формулам

Пример. Проведена экспериментальная проверка предложенного способа.

Определение предела выносливости материала при растяжении-сжатии проводили на образцах, изготовленных их сталей различного уровня прочности.

В качестве индентора использовали стальной закаленный шарик диаметром 5 мм. Форма и кривизна испытуемой поверхности материала были следующие: в опытах №1 и 6 - плоская поверхность (R1,1=R2,1=∞), в этом случае приведенный радиус Rпр равен радиусу сферического индентора R=2,5 мм. В опытах №2…5 и 7 - цилиндрическая поверхность (R1,1=5 мм, R2,1=∞); при этом согласно формулам (7) и (8)

Для отношения А/В=0,666 нашли nр=0,9911, nσ=0,9908. Приведенный радиус кривизны по формуле (6)

Для определения коэффициентов m и n предела выносливости при растяжении-сжатии использовали вспомогательные образцы с плоской поверхностью (R1,1-R2,1=∞) изготовленные из стали 10 с известным пределом выносливости при растяжении-сжатии, равном σ-1,р,1=160 МПа, и из стали 20ХН3А с известным пределом выносливости при растяжении-сжатии, равном σ-1,р,2=320 МПа. В данном случае приведенный радиус Rпр равен радиусу сферического индентора R=2,5 мм. Внедрение сферического индентора в плоскую поверхность вспомогательных образцом проводили с использованием пресса Бринелля при нагрузках P1=4905 H и Р2=2453 Н. Глубины остаточных отпечатков, измеренные индикатором часового типа:

для первого вспомогательного образца h1,1=0,312 мм, h2,1=0,156 мм;

для второго вспомогательного образца h1,2=0,074 мм, h2,2=0,037 мм.

По зависимости (3) определяют контактную жесткость для первого вспомогательного образца (с1) и второго вспомогательного образца (с2):

По формулам (10) и (11) определяют предельную равномерную деформацию при статическом растяжении первого (εр,1) и второго (εр,2) вспомогательного образца

Отметим, что коэффициент 1540 имеет размерность напряжения то есть - Н/мм2.

По формулам (12) и (13) вычисляют значения коэффициентов m и n предела выносливости при растяжении-сжатии

Таким образом, полученные значения коэффициентов m и n предела выносливости при растяжении-сжатии позволяют определять предел выносливости при растяжении-сжатии испытуемых материалов из сталей. При этом формула (5) с учетом числовых значений коэффициентов m и n примет вид

В таблице 1 представлены механические свойства испытанных материалов. При этом предел прочности σΒ, предел текучести σт и предельную равномерную деформацию εр,э определяли согласно ГОСТ 1497-84 (ИСО 6892-84) "Металлы. Методы испытания на растяжение", а предел выносливости при растяжении σ-1,р,э - по ГОСТ 25.502-79 "Методы механических испытаний металлов. Методы испытаний на усталость", принятому в качестве эталонного способа.

Результаты сравнительных испытаний приведены в таблицах 2 и 3. Как видно из таблицы 2, при использовании предлагаемого способа погрешность определения предельной равномерной деформации не превышает, как правило, 5% по сравнению с данными эксперимента, погрешность определения предела выносливости при растяжении-сжатии не превышает 13% и имеет характер двухстороннего разброса.

Как видно из таблицы 4 погрешность определения предела выносливости при растяжении-сжатии у способа-прототипа может быть более 100%. Такой результат вполне закономерен, поскольку способ-прототип предназначен для определения предела контактной выносливости материала, а значения пределов выносливости при растяжении-сжатии и контактном нагружении существенно отличаются.

Таким образом, результаты экспериментальной проверки свидетельствуют о пригодности предлагаемого способа для практического использования.

Использование предлагаемого способа по сравнению с известными обеспечивает следующие преимущества.

Способ обладает достаточно высокой точностью: погрешность определения предела выносливости при растяжении-сжатии не превышает 13%, что для оценки усталостной прочности материала вполне удовлетворительно. При этом способ сохраняет свою достоверность в широком диапазоне изменения прочностных свойств материала.

В связи с этим предлагаемый способ позволяет повысить точность определения предела выносливости при растяжении-сжатии без разрушения материала и может быть использован для контроля усталостной прочность различных деталей, работающих в условиях нагружения растяжением-сжатием (стержни, резьбовые соединения, детали металлоконструкций и т.п.).

Таким образом, способ, воплощающий заявленное изобретение, предусматривает, что измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны Rпр, используя две различные нагрузки Ρ в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины h двух полученных остаточных отпечатков, при этом определяют контактную жесткость испытуемого материала и предельную равномерную деформацию εр при статическом растяжении образца из испытуемого материала, по которой определяют предел выносливости испытуемого материала при растяжении-сжатии.

Способ предназначен для использования в промышленности для определения предела выносливости при растяжении-сжатии без разрушения материала деталей.

Способ определения предела выносливости материала при растяжении-сжатии, заключающийся в том, что измеряют радиусы кривизны поверхности испытуемого материала в сечениях двумя плоскостями главных кривизн и радиус сферического индентора, по которым определяют приведенный радиус кривизны R, используя две различные нагрузки в диапазоне, соответствующем измерению твердости, внедряют сферический индентор в испытуемый материал и измеряют глубины двух полученных остаточных отпечатков, отличающийся тем, что определяют контактную жесткость испытуемого материалаc=(P-P)/(h-h),определяют предельную равномерную деформацию ε при статическом растяжении образца из испытуемого материала по которой определяют предел выносливости испытуемого материала при растяжении-сжатии по следующей зависимостиσ=mε+n,где с - контактная жесткость испытуемого материала (Н/мм);P и Р - нагрузки на индентор (Н);h и h - глубины остаточных отпечатков (мм), отвечающие нагрузкам Р и Р;σ - предел выносливости испытуемого материала при растяжении-сжатии (Н/мм);R - приведенный радиус кривизны (мм) в контакте индентора с поверхностью испытуемого материала;m, n - коэффициенты прочности на растяжение-сжатие, зависящие от химического состава испытуемого материала.
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МАТЕРИАЛА ПРИ РАСТЯЖЕНИИ-СЖАТИИ
Источник поступления информации: Роспатент

Показаны записи 111-120 из 213.
10.06.2015
№216.013.5267

Способ механической обработки глубокого отверстия в трубной заготовке

Изобретение относится к машиностроению и может быть использовано при обработке глубоких отверстий в трубных заготовках. Обработку осуществляют устройством, содержащим борштангу с режущим инструментом, расположенную на эксцентричных подшипниках в пиноли с режущими и дорнующими зубьями, которую...
Тип: Изобретение
Номер охранного документа: 0002552616
Дата охранного документа: 10.06.2015
27.06.2015
№216.013.58c2

Матричный сплав на основе свинца для получения композиционных материалов пропиткой

Изобретение относится к области металлургии, а именно к получению армированных композиционных материалов, и может быть использовано для получения пропиткой композиционных материалов с углеграфитовым каркасом, работающих в агрессивных средах в качестве торцовых уплотнителей, подшипников...
Тип: Изобретение
Номер охранного документа: 0002554263
Дата охранного документа: 27.06.2015
10.07.2015
№216.013.5bf5

Дисковый тормоз с функцией динамического гасителя колебаний

Изобретение относится к дисковым тормозам, в частности к тормозным механизмам, обладающим, в выключенном состоянии, функцией динамического гасителя колебаний. Дисковый тормоз имеет суппорт, содержащий тормозные колодки и охватывающий один или более тормозных дисков. Тормозные колодки являются...
Тип: Изобретение
Номер охранного документа: 0002555082
Дата охранного документа: 10.07.2015
10.07.2015
№216.013.5e84

Литейный сплав на основе алюминия для получения пропиткой композиционных материалов с углеграфитовым каркасом

Изобретение относится к области металлургии, в частности для получения пропиткой композиционных материалов, имеющих пористый углеграфитовый каркас, и может быть использовано для получения вкладышей радиальных и упорных подшипников, направляющих втулок, пластин, поршневых колец, щеток, вставок...
Тип: Изобретение
Номер охранного документа: 0002555737
Дата охранного документа: 10.07.2015
10.08.2015
№216.013.68bd

Способ переамидирования амидов карбоновых кислот

Изобретение относится к способу получения производных карбоновых кислот, в частности к новому способу переамидирования амидов карбоновых кислот. Способ осуществляют путем взаимодействия амида карбоновой кислоты с амином при нагревании в присутствии катализатора - наночастицы меди. В качестве...
Тип: Изобретение
Номер охранного документа: 0002558366
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69a9

Огнезащитная вспучивающаяся композиция

Изобретение относится к огнезащитным вспучивающимся композициям для получения покрытий, которые могут быть использованы в строительстве, авиастроении, автомобилестроении, химической промышленности для защиты от воздействия огня в условиях пожара стальных и металлических поверхностей....
Тип: Изобретение
Номер охранного документа: 0002558602
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69aa

Композиция для покрытий

Изобретение относится к композициям для покрытий на основе жидких каучуков, предназначенных для устройства покрытий спортплощадок, полов, кровельных и изоляционных покрытий в строительстве. Композиция для покрытий включает гидроксилсодержащий низкомолекулярный каучук на основе бутадиена,...
Тип: Изобретение
Номер охранного документа: 0002558603
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.69ae

Резиновая смесь на основе бутадиен-метилстирольного каучука

Изобретение относится к резиновой промышленности, в частности к разработке резиновой смеси на основе бутадиен-метилстирольного каучука. Резиновая смесь на основе бутадиен-метилстирольного каучука включает вулканизирующий агент, смесь ускорителей вулканизации - дибензотиазолдисульфида и...
Тип: Изобретение
Номер охранного документа: 0002558607
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6ac4

Композиция для покрытий

Изобретение относится к каучуковым покрытиям на основе жидких углеводородных каучуков, предназначенным для устройства покрытий преимущественно для полов, кровельных и изоляционных покрытий в строительстве. Композиции для покрытий включает низкомолекулярный каучук-сополимер бутадиена с изопреном...
Тип: Изобретение
Номер охранного документа: 0002558890
Дата охранного документа: 10.08.2015
10.08.2015
№216.013.6d06

Смола для повышения клейкости резиновых смесей

Изобретение относится к получению смолы для повышения клейкости резиновых смесей и может быть использовано в шинной и резинотехнической промышленности. Смола содержит, мас.%: канифоль - 55-70, эвтектический расплав ε-капролактама - 5-8 с N-изопропил-N′-фенил-n-фенилендиамином - 15-25 и оксид...
Тип: Изобретение
Номер охранного документа: 0002559468
Дата охранного документа: 10.08.2015
Показаны записи 111-120 из 289.
27.08.2014
№216.012.ed9b

Способ получения композиционных изделий с внутренними полостями сваркой взрывом

Изобретение может быть использовано при изготовлении с помощью энергии взрыва изделий с внутренними полостями, например деталей термического и химического оборудования, теплорегуляторов и т.п. Составляют два трехслойных пакета с размещением в каждом из них никелевой пластины между пластинами из...
Тип: Изобретение
Номер охранного документа: 0002526646
Дата охранного документа: 27.08.2014
27.08.2014
№216.012.eee9

Огнезащитная композиция

Изобретение относится к химической промышленности, а именно к получению огнезащитных покрытий на основе полимерного связующего, и может быть использовано в разных отраслях промышленности для защиты стеклопластика. Огнезащитная композиция для покрытия стеклопластиков включает перхлорвиниловую...
Тип: Изобретение
Номер охранного документа: 0002526980
Дата охранного документа: 27.08.2014
20.09.2014
№216.012.f46b

Способ получения 1-(1-адамантил)-3,4,5-тринитро-1н-пиразола

Изобретение относится к химии производных адамантана, а именно к способу получения 1-(1-адамантил)-3,4,5-тринитро-1H-пиразола, приведенной ниже формулы, который может являться исходным соединением для синтеза терапевтически активных веществ. Предложенный способ получения...
Тип: Изобретение
Номер охранного документа: 0002528404
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f578

Комплексный противостаритель для резин

Изобретение относится к области шинной и резинотехнической промышленности. Комплексный противостаритель для резин содержит порошкообразный носитель - оксид цинка - и жидкий сплав противостарителей, полученный при 70-90°C, содержащий N-изопропил-N-фенил-n-фенилендиамин, борную кислоту в виде...
Тип: Изобретение
Номер охранного документа: 0002528673
Дата охранного документа: 20.09.2014
20.09.2014
№216.012.f625

Магниевая лактамсодержащая комплексная соль в качестве вулканизующего агента для фторкаучуков и способ ее получения

Изобретение относится к нефтехимической промышленности, к производству резинотехнических изделий и может быть использовано для вулканизации резиновых смесей на основе фторкаучуков. Получают магниевую лактамсодержащую комплексную соль [Mg(CHNO)](CHO). Способ получения магниевой лактамсодержащей...
Тип: Изобретение
Номер охранного документа: 0002528846
Дата охранного документа: 20.09.2014
27.09.2014
№216.012.f6d4

Способ получения производных 2,2-адамантиленспирооксирана

Изобретение относится к способу получения эпоксисоединений, в частности к способу получения производных 2,2-адамантиленспирооксирана приведенной ниже общей формулы, в которой R=H, R=CN; R=H, R=CO(O)CH; R=CH, R=CO(O)CHДанные соединения могут найти применение в качестве полупродуктов в синтезе...
Тип: Изобретение
Номер охранного документа: 0002529025
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f6d5

Способ получения насыщенных карбоновых кислот

Изобретение относится к способу получения насыщенных карбоновых кислот, в частности к новому способу гидрирования непредельных карбоновых кислот, и позволяет получать насыщенные карбоновые кислоты, которые находят применение в качестве полупродуктов в органическом синтезе. Способ получения...
Тип: Изобретение
Номер охранного документа: 0002529026
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f6d6

Способ получения адамантилсодержащих спирогетероциклов

Изобретение относится к способу получения адамантилсодержащих гетероциклических соединений. Способ заключается во взаимодействии адамантанона-2 с 2-аминоэтанолом, о-аминофенолом или антраниловой кислотой при мольном соотношении 1:1-1.25 соответственно в среде толуола с азеотропной отгонкой...
Тип: Изобретение
Номер охранного документа: 0002529027
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f6d8

Способ получения 1-(3-феноксифенил)бутан-1,3-диона

Изобретение относится к улучшенному способу получения 1-(3-феноксифенил)бутан-1,3-диона. Способ включает взаимодействие производного 3-феноксибензойной кислоты с натриевым енолятом ацетоуксусного эфира, причем в качестве производного 3-феноксибензойной кислоты используется хлорангидрид...
Тип: Изобретение
Номер охранного документа: 0002529029
Дата охранного документа: 27.09.2014
27.09.2014
№216.012.f6db

Способ гидрирования альфа, бета-ненасыщенных кетонов

Изобретение относится к способу гидрирования α,β-ненасыщенных кетонов общей формулы где R, R=Н или R-R=-(СН)-, который заключается в гидрировании бензальалканона газообразным водородом в среде растворителя в присутствии катализатора. При этом в качестве бензальалканона используют...
Тип: Изобретение
Номер охранного документа: 0002529032
Дата охранного документа: 27.09.2014
+ добавить свой РИД