×
13.01.2017
217.015.791d

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ПАНТОВ ОЛЕНЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к фармацевтической промышленности, а именно к способу получения порошков из пантов оленей. Способ получения порошка из пантов оленей, в котором куски пантов погружают в жидкий азот между размещенными в жидком азоте высоковольтным и низковольтным электродами, создающими электрические разряды, разрушая находящиеся между ними куски пантов и одновременно осуществляя циркуляцию жидкого азота, при определенных условиях, при этом высота загрузки кусков пантов в рабочую камеру превышает межэлектродное расстояние в 10-14 раз, энергию разряда рассчитывают по формуле. Вышеописанный способ позволяет снизить энергозатраты на процесс разрушения кусков пантов оленей, а также позволяет получить чистый порошок без примесей металла. 2 ил., 3 табл., 1 пр.

Изобретение относится к технологии переработки сырья природного происхождения, в частности пантов оленей, с получением биологически активного порошка, который может быть использован в биотехнологии для получения стимуляторов роста микроорганизмов, в биохимической промышленности для производства гормонов и биологически активных пептидов, в пищевой и медицинской промышленности.

Известен способ получения биологически активного экстракта из пантов оленей по промышленному регламенту №35 на производство пантокрина в соответствии с ФС-42-2323-85 на этот препарат (Промышленный регламент №35 на производство пантокрина. Минмедбиопром. Московский эндокринный завод, 1986). При его осуществлении панты измельчают на костедробилке. Затем пантовую крошку трижды по 72 ч экстрагируют с периодическим перемешиванием в извлекателе.

Недостатком способа является загрязнение порошка аппаратурным металлом и длительность процесса.

Наиболее близким по технической сущности к изобретению является выбранный за прототип способ получения пантокрина (патент РФ №2019179, МПК 7 А61K 35/32, опубл. 15.09.1994), при котором измельчение пантов до порошкообразного состояния проводят в среде жидкого азота с помощью криогенной шаровой мельницы, а перемешивание измельченных пантов в извлекателе в процессе экстрагирования ведут непрерывно в режиме турбулентности.

Недостатком способа являются высокие энергозатраты на измельчение пантов, а также существенный износ мелющих тел криогенных шаровых мельниц и, как следствие этого, загрязнение готового продукта аппаратным металлом.

Задача - уменьшение энергозатрат на получение порошка из пантов оленей за счет измельчения электрическими разрядами в жидком азоте.

В способе получения порошков из пантов, в котором куски пантов погружают в жидкий азот, измельчая их, для этого между размещенными в жидком азоте высоковольтным и низковольтным электродами создают электрические разряды, разрушая находящиеся между ними куски пантов и одновременно осуществляя циркуляцию жидкого азота со скоростью не менее 0,08 м/с, при этом высота Н загрузки пантов в рабочую камеру превышает межэлектродное расстояние L в 10-14 раз, а энергию разряда выбирают из соотношения

где W - энергия разряда, Дж;

ρ - плотность материала, кг/м3;

L - межэлектродное расстоянием;

σ - предел прочности разрушаемого материала, н/м2.

Пример конкретного выполнения.

На фиг. 1 представлена схема установки для реализации способа. Она включает в себя повысительно-выпрямительное устройство 1 - ВТМ-20/50, генератор импульсных напряжений 2, соединенный с высоковольтным электродом 3, расположенным в криогенной рабочей камере 4, низковольтный электрод 5 сферической формы с отверстиями диаметром 1 мм, контейнер 6 для сбора порошка пантов оленей с сетчатой перегородкой 7 для отделения жидкого азота от частиц порошка, патрубок 8 для удаления жидкого азота из контейнера 6 в емкость 9, насос 10 для возврата жидкого азота в рабочую камеру 4 через штуцер 11, закрепленный на рабочей камере 4 и загрузочный бункер 12 с дозирующим устройством 13.

Измерительная система 14 соединена с высоковольтным электродом 3 и предназначена для регистрации параметров импульса.

Способ осуществляют следующим образом. Предварительно готовят 7 проб кусков пантов оленей по 3 кг каждая, состоящая из кусков размером 0,025-0,030 м. В рабочую камеру заливают жидкий азот с температурой -195°С и устанавливают межэлектродный промежуток, равный 0,028-0,032 м. Затем в рабочую камеру загружают 1-ю пробу кусков пантов, при этом высота Н составляет 0,18 м, и подвергают разрушению электрическими разрядами. После разрушения пробы, порошок пантов извлекают из контейнера и взвешивают. Также разрушали 2, 3, 4, 5, 6 пробы пантов, при этом высота их загрузки составляла соответственно 0.24, 0.30, 0.36, 0.42, 0.48, 0.54 м. Эффективность разрушения оценивают по удельным энергозатратам.

В табл. 1 представлены результаты разрушения проб кусков пантов электрическими разрядами в жидком азоте.

Из табл. 1 видно, что разрушение кусков пантов при выполнении условия H/L=10-14 происходит с минимальными удельными энергозатратами, равными 0,142-0,145 кВт·ч/кг. При разрушении кусков пантов в условиях, отличных от предложенных в данном техническом решении, удельные энергозатраты выше, так например при H/L=6 они составляют 0,163 кВт·ч/кг, что на 15% выше, чем по заявляемому способу. При Н/L=18 удельные энергозатраты равны 0,184 кВт·ч/кг, что на 31,4% больше, чем по предлагаемому техническому решению.

Это объясняется следующим образом. При большой загрузке пантов оленей в рабочую камеру, когда H/L>14, затрудняется замена материала в межэлектродном промежутке и его удаление в контейнер из рабочей камеры через отверстия в низковольтном электроде, что ведет к переизмельчению кусков пантов. В результате выход порошка с требуемой крупностью частиц снижается, что приводит к росту удельных энергозатрат. При H/L<10 происходит сильный разброс кусков пантов под действием гидродинамических возмущений, сопровождающих разряд. Это приводит к тому, что в момент подачи высоковольтного импульса на электроды в межэлектродном промежутке может не оказаться куска пантов и произойдет пробой жидкого азота. По этой причине эффективность разрушения кусков пантов снижается и удельные энергозатраты на разрушение пантов становятся больше по сравнению с режимом, когда обеспечивается возможность пробоя кусков пантов.

На втором этапе оценивают энергозатраты на разрушение кусков пантов оленей в жидком азоте электрическими импульсными разрядами с энергией, выбранной из соотношения (1). Результаты расчета представлены в табл. 2.

На фиг. 2 представлена зависимость энергоемкости разрушения кусков пантов оленей в жидком азоте электрическими импульсными разрядами из соотношения (1), из которого видно, что при использовании разрядов с энергией 324-593 Дж, выбранной из этого соотношения, величина энергоемкости стабильна и не превышает 0,141-0,143 кВт·ч/кг. В том случае, если величина энергии выбрана за пределами этих параметров энергоемкость растет.

На третьем этапе проверки осуществимости предлагаемого способа подтверждена необходимость проведения разрушения кусков пантов оленей в потоке жидкого азота. Результаты экспериментов представлены в табл. 3.

Из табл. 3 следует, что в процессе разрушения кусков пантов оленей необходимо осуществлять циркуляцию жидкого азота со скоростью не менее 0,08 м/с. При отсутствии циркуляции жидкого азота (скорость потока равна нулю) в процессе разрушения кусков пантов удельные энергозатраты в 1,27 раза выше, чем в случае, когда разрушение кусков пантов осуществляется в потоке жидкого азота со скоростью не менее 0,08 м/с. Это объясняется рядом причин. С одной стороны в потоке улучшаются условия инициирования разряда, повышается вероятность пробоя кусков пантов и соответственно снижаются энергозатраты на их разрушение. С другой стороны ускоряется процесс удаления частиц разрушенного материала из рабочей камеры в контейнер, что исключает возможность его переизмельчения, благодаря чему увеличивается выход частиц материала заданного размера.

При разрушении кусков пантов оленей по прототипу, т.е. на шаровой мельнице от 5 мм до 0,5 мм энергозатраты составляют 0.261 кВт·ч/кг, т.е. в 1,76 раза выше, чем по заявляемому способу, а износ шаров за счет эрозии составил 2,3 г/кг порошка пантов, что в 12 раз выше эрозионного износа электродов по заявляемому способу. Это убедительно подтверждает возможность получения чистого порошка пантов, т.е. без примесей металла.

Способ получения порошков из пантов оленей, в котором куски пантов погружают в жидкий азот, измельчая их, отличающийся тем, что между размещенными в жидком азоте высоковольтным и низковольтным электродами создают электрические разряды, разрушая находящиеся между ними куски пантов и одновременно осуществляя циркуляцию жидкого азота со скоростью не менее 0,08 м/с, при этом высота Н загрузки кусков пантов в рабочую камеру превышает межэлектродное расстояние L в 10-14 раз, а энергию разряда выбирают из соотношения: где W - энергия разряда, Дж;ρ - плотность материала, кг/м;L - межэлектродное расстояние, м;σ - предел прочности разрушаемого материала, Н/м.
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ПАНТОВ ОЛЕНЕЙ
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВ ИЗ ПАНТОВ ОЛЕНЕЙ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 78.
03.07.2019
№219.017.a3db

Трёхосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники и может быть использовано для одновременного измерения линейного ускорений вдоль трех взаимно перпендикулярных осей. Акселерометр содержит подложку, неподвижные анкерные блоки, внешнюю прямоугольную раму, расположенную с зазором...
Тип: Изобретение
Номер охранного документа: 0002693010
Дата охранного документа: 01.07.2019
03.07.2019
№219.017.a461

Двухосевой микромеханический акселерометр

Изобретение относится к области микросистемной техники, в частности к приборам для измерения линейного ускорения. Акселерометр содержит подложку из диэлектрического материала, анкерные блоки, неподвижно закрепленные на подложке, инерционную массу, Ω-образные упругие элементы, образующие подвес...
Тип: Изобретение
Номер охранного документа: 0002693030
Дата охранного документа: 01.07.2019
01.09.2019
№219.017.c5c5

Устройство для измерения сопротивления изоляции

Изобретение относится к области измерения электрических величин, а именно к электроизмерительной технике, и может быть использовано для измерения сопротивления изоляции кабелей, конденсаторов и других объектов. Устройство для измерения сопротивления изоляции содержит источник опорного...
Тип: Изобретение
Номер охранного документа: 0002698505
Дата охранного документа: 28.08.2019
02.10.2019
№219.017.cc65

Способ рециклинга отходов гранатового песка от гидроабразивной резки

Изобретение относится к области рециклинга абразивов, применяемых в гидроабразивной резке материалов, и может быть использовано как в общем технологическом цикле резки, так и отдельно от установки гидроабразивной резки для регенерации используемых абразивов, в частности гранатового песка....
Тип: Изобретение
Номер охранного документа: 0002701017
Дата охранного документа: 24.09.2019
22.10.2019
№219.017.d8f4

Устройство компенсации собственных колебаний иглы зонда сканирующего микроскопа

Изобретение относится к технике сканирующего зонда, а именнок мониторингу положения зонда с помощью оптических средств и может быть использовано в туннельной, атомно-силовой, емкостной и других видах сканирующей зондовой микроскопии. Устройство компенсации собственных колебаний иглы зонда...
Тип: Изобретение
Номер охранного документа: 0002703607
Дата охранного документа: 21.10.2019
26.10.2019
№219.017.dac8

Тренажер

Изобретение относится к устройствамдля тренировки быстроты или координации движений, а именно к балансировочным устройствам, и может быть использовано в тренажерных залах, в быту или в офисе для проведения тренировки или профилактического лечения вестибулярного аппарата. Тренажер содержит полый...
Тип: Изобретение
Номер охранного документа: 0002704143
Дата охранного документа: 24.10.2019
15.11.2019
№219.017.e27c

Способ определения параметров электродвигателя постоянного тока

Изобретение относится к автоматизированному электроприводу и может быть использовано для определения параметров электродвигателей постоянного тока. Способ определения параметров двигателя постоянного тока заключается в том, что одновременно измеряют мгновенные величины тока и напряжения в...
Тип: Изобретение
Номер охранного документа: 0002705939
Дата охранного документа: 12.11.2019
15.11.2019
№219.017.e294

Двухканальный сцинтилляционный счетчик ионизирующего излучения

Изобретение относится к области измерения ядерных излучений. Двухканальный сцинтилляционный счетчик ионизирующего излучения двух различных потоков энергий содержит сцинтиллятор, связанный через оптический герметик с кремниевым фотоэлектронным умножителем, источник питания,...
Тип: Изобретение
Номер охранного документа: 0002705933
Дата охранного документа: 12.11.2019
01.12.2019
№219.017.e8be

Состав и способ получения материала, поглощающего электромагнитное излучение

Использование: для поглощения электромагнитного излучения в диапазоне высоких частот. Сущность изобретения заключается в том, что состав для получения материала, поглощающего электромагнитное излучение, включает стекло и карбид кремния, при этом в качестве стекла содержит жидкое стекло с...
Тип: Изобретение
Номер охранного документа: 0002707656
Дата охранного документа: 28.11.2019
14.12.2019
№219.017.edf9

Индуктивно-импульсный генератор

Изобретение относится к импульсной технике. Технический результат: увеличение величины и мощности импульса тока в нагрузке путём увеличения доли энергии, передаваемой в нагрузку. Для этого предложен индуктивно-импульсный генератор, который содержит первую катушку индуктивности, подключённую...
Тип: Изобретение
Номер охранного документа: 0002708937
Дата охранного документа: 12.12.2019
Показаны записи 51-52 из 52.
16.08.2019
№219.017.c028

Устройство для теплового неразрушающего контроля крупногабаритных цилиндрических изделий

Изобретение относится к неразрушающему контролю скрытых дефектов в тепло- и гидроизоляционных обшивках крупногабаритных цилиндрических изделий, относящихся к химической, нефтегазовой и ракетно-космической отраслям промышленности с использованием активного теплового метода. Устройство для...
Тип: Изобретение
Номер охранного документа: 0002697437
Дата охранного документа: 14.08.2019
17.06.2023
№223.018.7d8b

Сканирующий тепловизионный дефектоскоп

Изобретение относится к исследованию материалов, а именно, к неразрушающему контролю материалов и изделий активным тепловым методом и может быть использовано для сплошного автоматизированного контроля подповерхностных дефектов в крупногабаритных плоских изделиях, выполненных из композиционных...
Тип: Изобретение
Номер охранного документа: 0002786045
Дата охранного документа: 16.12.2022
+ добавить свой РИД