×
13.01.2017
217.015.7861

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ

Вид РИД

Изобретение

Аннотация: Использование: для определения прочности покрытия из керамических наночастиц. Сущность изобретения заключается в том, что способ определения прочности покрытия из керамических наночастиц заключается в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия. Технический результат: обеспечение возможности определения прочности покрытия из керамических наночастиц. 2 з.п. ф-лы, 4 ил.

Изобретение относится к испытательной технике и может быть использовано при определении прочности покрытия из керамических наночастиц.

В настоящее время в микроэлектронике актуальной задачей является повышение эффективности охлаждения с помощью микроканалов при высокой плотности теплового потока. Одним из наиболее перспективных методов интенсификации теплообмена в микроканале является создание покрытия из керамических наночастиц толщиной от долей микрона до нескольких микрон на его поверхности, что позволяет повысить надежность и эффективность микроканальных теплообменников.

При исследовании кипения воды в микроканале с покрытием из керамических наночастиц обнаружен рост критической тепловой нагрузки до 50% по сравнению с каналом без покрытия [Yu. Kuzma-Kichta, A. Leontyev, A. Lavrikov, M. Shustov, K. Suzuki. «Boiling investigation in the microchannel with nanoparticles coating», Proceedings of the 15th International Heat Transfer Conference, IHTC-15, 10-15 August, 2014, Kyoto, Japan]. Эксперименты показывают, что эффект повышения теплоотдачи при кипении на поверхности с керамическим нанопокрытием сохраняется в течение двух месяцев. Для оценки срока службы покрытия из керамических наночастиц на поверхности микроканала требуется оценить его прочность.

Известен способ контроля адгезии материала пленочного покрытия на подложке, заключающийся в том, что на пленочное покрытие контролируемого изделия и эталонного образца воздействуют одинаковыми импульсами лазерного излучения с длительностью, не приводящей к его отслаиванию, и плотностью потока мощности, не приводящей к его плавлению. О качестве адгезии пленочного покрытия судят по отношению площади его участков, температура которых больше, чем у пленочного покрытия эталонного образца, к площади всего покрытия контролируемого изделия [Авторское свидетельство СССР №1732238, G01N 19/04, 1992]. Однако данным способом определить адгезию покрытий из керамических наночастиц не представляется возможным, поскольку при воздействии импульсами лазерного излучения происходит их спекание и охрупчивание.

Существует ГОСТ Р 54473-2011 «Нанопокрытия режущего инструмента на основе алмаза и кубического нитрида бора. Общие технические требования и методы испытаний», где адгезию контролируют адгезиометром или Роквелл-тестом на тест-образце или на нерабочей части изделия. Однако метод согласно данному ГОСТу не может быть применен для определения адгезии покрытий из керамических наночастиц в микроканалах, имеющих вид не пленки, а неоднородной структуры.

Из предшествующего уровня техники авторами не выявлен ближайший аналог (прототип), поскольку ни одно из приведенных выше известных технических решений не позволяет определить не только адгезию, но и когезию покрытия из керамических наночастиц, для оценки срока его службы в том числе и на поверхности микроканала.

Задачей, на решение которой направлено данное изобретение, является разработка способа определения прочности покрытий из керамических наночастиц.

Поставленная задача решается в способе определения прочности покрытия из керамических наночастиц, заключающемся в том, что подложку с нанесенным на ее поверхность покрытием из керамических наночастиц размещают в растровом электронном микроскопе, вакуумируют микроскоп до состояния глубокого вакуума, задают увеличение сканирования, достаточное для визуализации наночастиц, осуществляют сканирование покрытия по касательной к подложке электронным пучком максимально допустимой энергии при постепенном увеличении силы тока электронного пучка до отрыва наночастицы от покрытия, а о прочности покрытия судят по величине силы тока, при которой происходит отрыв наночастицы от покрытия.

Сканирование покрытия из керамических наночастиц электронным пучком необходимо осуществлять по касательной к подложке, для того чтобы убедиться в исчезновении наночастиц из поля зрения и достоверности их отрыва от подложки.

Прочность покрытия из керамических наночастиц можно определить в соответствии с законом Кулона по формуле:

,

где k - коэффициент пропорциональности в законе Кулона, равный 9·109 H·м2/Кл2;

q0 - остаточный заряд на наночастице после первого прохождения электронного пучка с минимальным значением силы тока;

q - заряд электронного пучка, при котором происходит отрыв наночастицы от покрытия;

r - расстояние рассеивания электронного пучка от заряженной наночастицы, примерно равное 10-5 м;

i0 - минимальное значение силы тока при сканировании;

i - сила тока электронного пучка, при которой происходит отрыв наночастицы от покрытия;

d - диаметр сканируемой наночастицы;

ν - скорость движения электронного пучка,

для чего в процессе сканирования определяют скорость движения электронного пучка и диаметр сканируемой наночастицы.

Минимальное значение силы тока электронного пучка, при котором начинают сканирование, может быть выбрано в диапазоне 10-10÷10-8 A, поскольку в данном диапазоне визуализация наночастиц оптимальна и диаметр электронного пучка сравним с диаметром сканируемых наночастиц.

Таким образом, как показали эксперименты, на поверхности покрытий из керамических наночастиц, сформированных на подложке, в процессе сканирования в электронном микроскопе в условиях глубокого вакуума с помощью электронного пучка максимально допустимой энергии и с минимальной силой тока возникает остаточный заряд. В процессе сканирования силу тока электронного пучка поднимают до предельного значения, достаточного для отрыва наночастицы от покрытия с помощью кулоновской силы. Если значение силы тока электронного пучка меньше предельного, при котором происходит отрыв, то покрытие из наночастиц будет прочным, т.е. сохранится.

Сущность заявленного изобретения иллюстрируется фигурами графических изображений и поясняется нижеследующими примерами конкретного осуществления.

На фиг. 1 представлен снимок (увеличением 100.000 крат) сканированных керамических наночастиц по касательной к поверхности цилиндрической подложки электронным пучком с минимальной силой тока и выделена наночастица диаметром 55 нм в покрытии.

На фиг. 2 представлен снимок (увеличением 100.000 крат) с оторванной наночастицей при сканировании электронным пучком с увеличенной силой тока.

На фиг. 3 представлен снимок (увеличением 50.000 крат) сканированных керамических наночастиц по касательной к поверхности плоской подложки электронным пучком с минимальной силой тока и выделена наночастица диаметром 110 нм на подложке.

На фиг. 4 представлен снимок (увеличением 50.000 крат) с оторванной наночастицей при сканировании электронным пучком с увеличенной силой тока.

Пример 1

Покрытие из керамических наночастиц дисперсностью порядка 50 нм наносили на трубчатую металлическую подложку диаметром 1 мм длиной 20 мм. Подложку с покрытием размещали горизонтально в растровом электронном микроскопе. Вакуумировали микроскоп до давления порядка 10-2 Па. Устанавливали энергию электронного пучка 30 КэВ, его минимальную силу тока, измеренную в цилиндре Фарадея, порядка 5,1·10-10 A, его скорость движения порядка 11 мкм/с. Задавали увеличение сканирования 100.000 крат и осуществляли сканирование керамической наночастицы диаметром 55 нм по касательной к поверхности цилиндрической подложки электронным пучком (см. фиг. 1).

После каждого попадания электронного пучка на наночастицу постепенно увеличивали силу тока. Фиксировали значение силы тока, при котором происходит отрыв керамической наночастицы от покрытия, с помощью цилиндра Фарадея, которое составило 7,4·10-9 A (см. фиг. 2).

Оценили когезию покрытия из керамических наночастиц по величине энергии, необходимой для их отрыва, в соответствии с законом Кулона по формуле:

Пример 2

Покрытие из керамических наночастиц дисперсностью порядка 100 нм наносили на плоскую подложку длиной 30 мм шириной 15 мм. Подложку с покрытием размещали вертикально в растровом электронном микроскопе. Вакуумировали микроскоп до давления порядка 10-2 Па. Устанавливали энергию электронного пучка 30 КэВ, его минимальную силу тока, измеренную в цилиндре Фарадея, порядка 4,6·10-10 A, его скорость движения порядка 19 мкм/с. Задавали увеличение сканирования 50.000 крат и осуществляли сканирование керамической наночастицы диаметром 110 нм по касательной к поверхности подложки электронным пучком (см. фиг. 3).

После каждого попадания электронного пучка на наночастицу постепенно увеличивали силу тока. Фиксировали значение силы тока, при котором происходит отрыв керамической наночастицы от покрытия, с помощью цилиндра Фарадея, которое составило 3,1·10-8 A (см. фиг. 4).

Оценили адгезию покрытия из керамических наночастиц по величине энергии, необходимой для их отрыва, в соответствии с законом Кулона по формуле:

Таким образом, данное изобретение позволило с необходимой достоверностью определить прочность (адгезию и когезию) покрытия из керамических наночастиц для последующей оценки его срока службы на поверхности микроканала.


СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ПОКРЫТИЯ ИЗ КЕРАМИЧЕСКИХ НАНОЧАСТИЦ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 79.
10.05.2018
№218.016.3ade

Способ изготовления мишени для наработки изотопа мо

Изобретение относится к способу изготовления мишеней для наработки изотопа Мо. Способ изготовления мишени для наработки изотопа Мо включает изготовление сердечника на основе фольги, который формируют путем послойной укладки биметаллической фольги или ее навивки на основу из циркония или его...
Тип: Изобретение
Номер охранного документа: 0002647492
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.3b3e

Способ испытания высокотемпературных тепловыделяющих элементов

Изобретение относится к способам испытаний высокотемпературных твэлов в исследовательском реакторе в составе ампульного облучательного устройства и может быть использовано при разработке и обосновании конструкции невентилируемых высокотемпературных твэлов, например, термоэмиссионного...
Тип: Изобретение
Номер охранного документа: 0002647486
Дата охранного документа: 16.03.2018
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
29.05.2018
№218.016.577c

Устройство для получения сферических частиц из жидких вязкотекучих материалов

Изобретение относится к технике диспергирования жидкотекучих сред, в частности вязкотекучих шликерных материалов, и может быть использовано в порошковой металлургии, химической, пищевой и других отраслях промышленности в процессах получения гранул. Устройство для получения сферических частиц из...
Тип: Изобретение
Номер охранного документа: 0002654962
Дата охранного документа: 23.05.2018
25.08.2018
№218.016.7eab

Способ электронно-лучевой сварки тонкостенных труб из молибденовых сплавов

Изобретение относится к способу электронно-лучевой сварки труб из молибденовых сплавов и может быть использовано при изготовлении тонкостенных трубных сварных изделий для атомной и космической техники, в частности для изготовления гильз канала системы управления и защиты. Перед стыковкой труб...
Тип: Изобретение
Номер охранного документа: 0002664746
Дата охранного документа: 22.08.2018
26.10.2018
№218.016.962b

Радиоизотопный элемент электрического питания с полупроводниковым преобразователем, совмещенным с источником излучения

Использование: для питания микроэлектронной аппаратуры. Сущность изобретения заключается в том, что радиоизотопный элемент электрического питания включает источник излучения, выполненный в виде содержащей радиоактивный изотоп фольги, и по крайней мере один полупроводниковый преобразователь, при...
Тип: Изобретение
Номер охранного документа: 0002670710
Дата охранного документа: 24.10.2018
01.03.2019
№219.016.ce20

Устройство контроля газа в жидкометаллическом теплоносителе

Изобретение относится к области диагностики энергетических установок и может использоваться преимущественно в атомной энергетике для контроля герметичности парогенераторов, в которых греющим теплоносителем является жидкий металл (натрий, свинец, свинец-висмут), передающий тепло воде и водяному...
Тип: Изобретение
Номер охранного документа: 0002426111
Дата охранного документа: 10.08.2011
08.03.2019
№219.016.d35f

Способ получения металлического урана

Изобретение относится к получению металлического урана. Способ включает смешивание тетрафторида урана с металлическим кальцием, взятым с избытком от стехиометрического количества, загрузку смеси в реактор и инициирование плавки с помощью нижнего электрозапала. Загрузку смеси осуществляют...
Тип: Изобретение
Номер охранного документа: 0002681331
Дата охранного документа: 06.03.2019
20.03.2019
№219.016.e306

Способ реакторных испытаний высокотемпературных вентилируемых тепловыделяющих элементов

Изобретение относится к способу реакторных испытаний высокотемпературных вентилируемых твэлов в составе ампульного облучательного устройства и может быть использовано при разработке конструкции и обосновании ресурса высокотемпературных, например, термоэмиссионных твэлов космической ЯЭУ. В...
Тип: Изобретение
Номер охранного документа: 0002682238
Дата охранного документа: 18.03.2019
18.05.2019
№219.017.59cc

Способ получения монокристаллов сплава вольфрам-тантал

Изобретение относится к металлургии тугоплавких металлов и сплавов и может быть использовано при выращивании однородных монокристаллов сплава вольфрам - тантал методом бестигельной зонной плавки с электронно-лучевым нагревом (ЭБЗП). Исходные компоненты - порошки вольфрама и тантала смешивают и...
Тип: Изобретение
Номер охранного документа: 0002453624
Дата охранного документа: 20.06.2012
Показаны записи 61-67 из 67.
10.05.2018
№218.016.40ee

Способ подготовки поверхности изделий из циркония или сплавов на его основе перед гальваническим никелированием

Изобретение относится к гальваностегии, в частности к нанесению защитных никелевых покрытий на изделия из циркония и сплавов на его основе, и может найти применение в области атомной энергии при производстве уран-циркониевых твэлов при подготовке поверхности перед гальваническим никелированием....
Тип: Изобретение
Номер охранного документа: 0002649112
Дата охранного документа: 29.03.2018
01.09.2018
№218.016.8216

Способ получения наночастиц оксида алюминия

Изобретение относится к неорганической химии и нанотехнологиям и может быть использовано для формирования нанорельефа в микроканале, в качестве гидрофильного покрытия, подложки для катализаторов. Для получения ультрадисперсного порошка оксида алюминия растворяют соль алюминия в дистиллированной...
Тип: Изобретение
Номер охранного документа: 0002665524
Дата охранного документа: 30.08.2018
29.04.2019
№219.017.42d7

Способ изготовления микротвэлов ядерного реактора

Изобретение относится к области ядерной энергетики, в частности к микротвэлам ядерного реактора. Способ изготовления микротвэлов ядерного реактора заключается в последовательном осаждении на топливную микросферу в кипящем слое покрытий из низкоплотного пироуглерода, высокоплотного изотропного...
Тип: Изобретение
Номер охранного документа: 0002368965
Дата охранного документа: 27.09.2009
09.05.2019
№219.017.4fb7

Способ формирования нанорельефа на теплообменных поверхностях изделий

Изобретение относится к области нанотехнологии и может быть использовано при изготовлении изделий, содержащих теплообменные поверхности с микро- и нанорельефом с целью интенсификации теплообмена, уменьшения гидравлического сопротивления и отложений. Способ формирования нанорельефа на...
Тип: Изобретение
Номер охранного документа: 0002433949
Дата охранного документа: 20.11.2011
24.07.2020
№220.018.3735

Способ формирования пористого покрытия из наночастиц

Способ относится к области нанотехнологии и может быть использован при изготовлении изделий, содержащих теплообменные поверхности с микро- и нанорельефом с целью интенсификации теплообмена, уменьшения гидравлического сопротивления и улучшения капиллярных свойств поверхности. Способ формирования...
Тип: Изобретение
Номер охранного документа: 0002727406
Дата охранного документа: 21.07.2020
23.05.2023
№223.018.6d9d

Способ формирования комбинированной супергидрофобной структуры поверхности

Изобретение относится к области теплоэнергетики и может быть использовано для стабилизации капельной конденсации на поверхности металлов и её защиты от коррозии. Для формирования супергидрофобной структуры металлической поверхности сначала сферическими частицами продавливают микротекстуру с...
Тип: Изобретение
Номер охранного документа: 0002769107
Дата охранного документа: 28.03.2022
17.06.2023
№223.018.7e89

Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Группа изобретений относится к материалу ядерного топлива и представляет собой высокотемпературный плотный композитный материал ядерного топлива и способ его получения. Высокотемпературный плотный композитный материал ядерного топлива содержит керамическую, инертную к облучению матрицу, в...
Тип: Изобретение
Номер охранного документа: 0002770890
Дата охранного документа: 25.04.2022
+ добавить свой РИД