×
13.01.2017
217.015.7762

Результат интеллектуальной деятельности: СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕПЛОПОТРЕБЛЕНИЕМ ЗДАНИЯ В СИСТЕМЕ ЦЕНТРАЛЬНОГО ТЕПЛОСНАБЖЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области теплотехники и может быть использовано для осуществления погодозависимого регулирования расхода тепла в системах центрального отопления зданий и сооружений. В способе регулирования режима работы системы отопления, заключающемся в периодической подаче теплоносителя в систему отопления здания в виде импульса длительностью меньшей или равной предварительно установленному периоду регулирования расхода теплоносителя в системе отопления здания, в измерении температуры теплоносителя в обратной магистрали системы отопления здания и в измерении температуры наружного воздуха, а также в коррекции длительности импульса теплоносителя, заданное значение температуры теплоносителя в обратной магистрали функционально связывают с температурой наружного воздуха, вводят минимальный шаг и задают кратный ему шаг изменения длительности импульса теплоносителя в каждом периоде регулирования, а также предопределяют шаг изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, равной минимальному шагу изменения длительности импульса теплоносителя в периоде регулирования, при этом в начале каждого периода регулирования сравнивают заданное значение температуры теплоносителя в обратной магистрали с температурой теплоносителя в обратной магистрали, определяют округленное значение k - коэффициента кратности коррекции шага изменения длительности импульса теплоносителя в данном периоде регулирования расхода теплоносителя и корректируют величину длительности импульса теплоносителя в i-м периоде регулирования расхода теплоносителя. Технический результат: повышение надежности, экономичности и точности управления теплопотреблением здания, входящего в систему центрального теплоснабжения. 1 ил.

Изобретение относится к области теплотехники и может быть использовано для осуществления погодозависимого регулирования расхода тепла в системах центрального отопления зданий и сооружений.

Известен способ регулирования режима работы системы водяного отопления (Авторское свидетельство СССР №1241029, F24D 3/00, 3/02, 1986 г.), заключающийся в периодической подаче и прекращении подачи теплоносителя в систему отопления в зависимости от соотношения заданной температуры и фактической температуры воздуха в отапливаемом помещении.

Недостатком данного способа является возникновение в системе отопления режима неконтролируемых автоколебаний температуры воздуха в отапливаемом помещении, что снижает ее надежность из-за необходимости регулярной проверки и корректировки настроек органов релейного регулирования температуры воздуха в отапливаемом помещении. Кроме того, применение циркуляционного насоса существенно усложняет и удорожает реализацию данного способа, а также не учитывается влияние изменения температуры наружного воздуха на процесс регулирования.

Наиболее близким к заявляемому, является «Способ регулирования режима работы системы отопления» (Патент на изобретение РФ №2474764, F24D 3/00, 2013 г.), принятый за прототип, заключающийся в периодической подаче теплоносителя в систему отопления здания в виде импульсов длительностью, меньшей или равной предварительно установленному периоду регулирования расхода теплоносителя в системе отопления здания, а также в измерении температуры теплоносителя в обратной магистрали системы отопления здания и в измерении температуры наружного воздуха.

Недостаток указанного способа заключается в сложности его реализации, что снижает надежность и повышает стоимость всей системы управления теплопотреблением здания, а также в его низком быстродействии, обусловленном наличием значительной тепловой инерции в контуре управления температурой воздуха внутри здания.

Технический результат предлагаемого способа заключается в повышении надежности, экономичности и точности управления теплопотреблением здания, входящего в систему центрального теплоснабжения.

Технический результат достигается тем, что в способе регулирования режима работы системы отопления, заключающемся в периодической подаче теплоносителя в систему отопления здания в виде импульса длительностью меньшей или равной предварительно установленному периоду регулирования расхода теплоносителя в системе отопления здания, в измерении температуры теплоносителя в обратной магистрали системы отопления здания и в измерении температуры наружного воздуха, а также в коррекции длительности импульса теплоносителя, заданное значение температуры теплоносителя в обратной магистрали функционально связывают с температурой наружного воздуха, вводят минимальный шаг и задают кратный минимальному шагу шаг изменения длительности импульса теплоносителя в каждом периоде регулирования расхода теплоносителя, причем знак шага изменения длительности импульса теплоносителя зависит от соотношения заданного значения температуры теплоносителя в обратной магистрали и температуры теплоносителя в обратной магистрали, а также предопределяют шаг изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, равной минимальному шагу изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, при этом в начале каждого периода регулирования расхода теплоносителя сравнивают заданное значение температуры теплоносителя в обратной магистрали с температурой теплоносителя в обратной магистрали, определяют округленное значение коэффициента кратности коррекции шага изменения длительности импульса теплоносителя в данном периоде регулирования расхода теплоносителя как:

,

где i - порядковый номер периода регулирования расхода теплоносителя;

ki - коэффициент кратности коррекции шага изменения длительности импульса теплоносителя в i-м периоде регулирования расхода теплоносителя;

Тоз - заданное значение температуры теплоносителя в обратной магистрали, °С;

То - температура теплоносителя в обратной магистрали, °С;

ΔТо - шаг изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, равной минимальному шагу изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, °С;

и корректируют величину длительности импульса теплоносителя в i-м периоде регулирования расхода теплоносителя в соответствии с выражением:

,

где tиi - длительность импульса теплоносителя в i-м периоде регулирования расхода теплоносителя, с;

Δtи - шаг изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, с;

при этом устанавливают значение коэффициента кратности коррекции ki=0 при

,

где δ - зона нечувствительности, °С.

На фиг. 1 приведена блок-схема устройства, реализующего предлагаемый способ автоматического управления теплопотреблением здания в системе центрального теплоснабжения.

Устройство содержит источник тепла 1, выход которого через теплорегулятор 2, систему отопления здания 3 и блок измерения температуры теплоносителя в обратной магистрали 4 системы отопления здания 3 связан с входом источника тепла 1. Второй выход блока измерения температуры теплоносителя в обратной магистрали 4 через блок управления 5, подключенный вторым входом к выходу блока измерения температуры наружного воздуха 6, соединен со вторым входом теплорегулятора 2.

Теплорегулятор 2 выполнен на базе нормально открытого электромагнитного клапана.

Способ осуществляется следующим образом.

В исходном состоянии теплоноситель от источника тепла 1 через последовательно соединенные теплорегулятор 2 с нормально открытым электромагнитным клапаном, систему отопления здания 3 и блок измерения температуры теплоносителя в обратной магистрали 4 возвращается в источник тепла 1. Блок управления 5 управляет работой теплорегулятора 2 на основе информации о температуре наружного воздуха Тн и температуры теплоносителя То в обратной магистрали 4.

Предварительно в блоке управления 5 устанавливается период регулирования расхода теплоносителя в системе отопления здания 3 в зависимости от допустимой частоты включения нормально открытого электромагнитного клапана теплорегулятора 2 и тепловой инерции системы отопления здания 3, а также вводится функциональная зависимость (например, табличная) заданного значения температуры теплоносителя Тоз в обратной магистрали системы отопления здания 3 от температуры наружного воздуха Тн Тоз=φ(Тн).

Кроме того, в блок управления 5 вводится динамический параметр, определяющий быстродействие устройства: шаг ΔТо изменения температуры То теплоносителя в обратной магистрали системы отопления здания 3 за период регулирования расхода теплоносителя при минимальном значении длительности импульса tиmin теплоносителя, равной минимальному шагу Δtиmin изменения длительности импульса tи теплоносителя в периоде регулирования расхода теплоносителя.

В начале каждого (i-го) периода регулирования расхода теплоносителя осуществляется измерение температуры То теплоносителя в обратной магистрали системы отопления здания 3 и ее сравнение с заданным значением температуры теплоносителя Тоз в обратной магистрали системы отопления здания 3, полученной из зависимости Тоз=φ(Тн), с целью вычисления разности (Тозо) для задания знака изменения длительности импульса tиi теплоносителя в i-м периоде регулирования расхода теплоносителя, а также для ввода величины шага Δtи с учетом расчета округленного значения коэффициента кратности коррекции ki шага Δtи изменения длительности tиi импульса теплоносителя в i-м периоде регулирования расхода теплоносителя в соответствии с зависимостью:

По коэффициенту кратности коррекции ki выполняется уточнение длительности tиi импульса теплоносителя в i-м периоде регулирования расхода теплоносителя в соответствии с выражением:

что обеспечивает ускоренную компенсацию больших ошибки регулирования температуры То теплоносителя в обратной магистрали системы отопления здания 3, поскольку при (Тозо)/ΔТо≥2 коэффициент кратности коррекции ki≥2.

Необходимая точность регулирования температуры То теплоносителя в обратной магистрали системы отопления здания 3 достигается при:

где δ - зона нечувствительности.

В этом случае устанавливается значение коэффициента кратности коррекции ki=0 и регулирование длительности импульса tи теплоносителя приостанавливается до момента выхода величины за пределы зоны нечувствительности δ.

При Тозо блок управления 5 обеспечивает увеличение длительности импульса tи теплоносителя, что ведет к росту температуры То теплоносителя в обратной магистрали системы отопления здания 3, а при Тозо по аналогии производится снижение температуры То теплоносителя в обратной магистрали системы отопления здания 3.

В результате осуществляется стабилизация температуры То теплоносителя в обратной магистрали системы отопления здания 3 с заданной точностью и высоким быстродействием, а следовательно, обеспечивается требуемый тепловой режим в помещениях здания.

В случае неработоспособности устройства, реализующего предлагаемый способ автоматического управления теплопотреблением здания в системе центрального теплоснабжения, подача теплоносителя в систему отопления здания 3 сохранится через нормально открытый электромагнитный клапан теплорегулятора 2 с максимальным расходом теплоносителя.

Таким образом, учитывая низкую энергоемкость электромагнитного клапана и блока управления, а также простоту осуществления и точность функционирования технического решения, реализация предложенного способа позволяет обеспечить высокие точность, надежность и экономичность автоматического управления теплопотреблением здания в системе центрального теплоснабжения.

Способ автоматического управления теплопотреблением здания в системе центрального теплоснабжения, заключающийся в периодической подаче теплоносителя в систему отопления здания в виде импульса длительностью меньшей или равной предварительно установленному периоду регулирования расхода теплоносителя в системе отопления здания, в измерении температуры теплоносителя в обратной магистрали системы отопления здания и в измерении температуры наружного воздуха, а также в коррекции длительности импульса теплоносителя, отличающийся тем, что заданное значение температуры теплоносителя в обратной магистрали функционально связывают с температурой наружного воздуха, вводят минимальный шаг и задают кратный минимальному шагу шаг изменения длительности импульса теплоносителя в каждом периоде регулирования расхода теплоносителя, причем знак шага изменения длительности импульса теплоносителя зависит от соотношения заданного значения температуры теплоносителя в обратной магистрали и температуры теплоносителя в обратной магистрали, а также предопределяют шаг изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, равной минимальному шагу изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, при этом в начале каждого периода регулирования расхода теплоносителя сравнивают заданное значение температуры теплоносителя в обратной магистрали с температурой теплоносителя в обратной магистрали, определяют округленное значение коэффициента кратности коррекции шага изменения длительности импульса теплоносителя в данном периоде регулирования расхода теплоносителя как:k=INT[(Т-Т)/ΔТ],где i - порядковый номер периода регулирования расхода теплоносителя;k - коэффициент кратности коррекции шага изменения длительности импульса теплоносителя в i-м периоде регулирования расхода теплоносителя;Т - заданное значение температуры теплоносителя в обратной магистрали, °C;Т - температура теплоносителя в обратной магистрали, °C;ΔТ - шаг изменения температуры теплоносителя в обратной магистрали за период регулирования расхода теплоносителя при минимальном значении длительности импульса теплоносителя, равной минимальному шагу изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, °C;и корректируют величину длительности импульса теплоносителя в i-м периоде регулирования расхода теплоносителя в соответствии с выражением:t=t+k·Δt,где t - длительность импульса теплоносителя в i-м периоде регулирования расхода теплоносителя, с;Δt - шаг изменения длительности импульса теплоносителя в периоде регулирования расхода теплоносителя, с;при этом устанавливают значение коэффициента кратности коррекции k=0 при|Т-Т|<δ,где δ - зона нечувствительности, °C.
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕПЛОПОТРЕБЛЕНИЕМ ЗДАНИЯ В СИСТЕМЕ ЦЕНТРАЛЬНОГО ТЕПЛОСНАБЖЕНИЯ
СПОСОБ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ТЕПЛОПОТРЕБЛЕНИЕМ ЗДАНИЯ В СИСТЕМЕ ЦЕНТРАЛЬНОГО ТЕПЛОСНАБЖЕНИЯ
Источник поступления информации: Роспатент

Показаны записи 21-26 из 26.
25.08.2017
№217.015.a176

Способ переработки нефелиновой руды

Изобретение относится к cпособу переработки глиноземсодержащего сырья и может быть использовано в спекательной технологии получения глинозема и содопродуктов из нефелиновой руды. Для сокращения расхода нефелиновой руды в нефелиново-известняково-содовую шихту добавляют золошлаковые отходы в...
Тип: Изобретение
Номер охранного документа: 0002606821
Дата охранного документа: 10.01.2017
25.08.2017
№217.015.affc

Изолирующее фланцевое соединение

Изобретение относится к трубопроводным соединительным устройствам и предназначено для секционирования и разделения на электроизолированные участки трубопроводов с различными номинальными диаметрами и рабочим давлением до 10 МПа включительно. Изолирующее фланцевое соединение (ИФС) содержит...
Тип: Изобретение
Номер охранного документа: 0002611130
Дата охранного документа: 21.02.2017
26.08.2017
№217.015.e511

Система обнаружения движущихся объектов за преградой

Изобретение относится к системам обнаружения и может быть использовано для охраны подвижных и стационарных объектов при установлении факта проникновения нарушителей в охраняемое пространство и передачи тревожных сигналов с использованием ближнего поля излучения, основанного на использовании...
Тип: Изобретение
Номер охранного документа: 0002626460
Дата охранного документа: 28.07.2017
16.05.2023
№223.018.5fac

Гнатическое устройство

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования в гнатической стоматологии, а также для разобщения зубных рядов во время медицинских манипуляций в полости рта. Гнатическое устройство включает выполненный из медицинского силикона корпус с окклюзионным...
Тип: Изобретение
Номер охранного документа: 0002744236
Дата охранного документа: 04.03.2021
16.05.2023
№223.018.5fad

Гнатическое устройство

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования в гнатической стоматологии, а также для разобщения зубных рядов во время медицинских манипуляций в полости рта. Гнатическое устройство включает выполненный из медицинского силикона корпус с окклюзионным...
Тип: Изобретение
Номер охранного документа: 0002744236
Дата охранного документа: 04.03.2021
23.05.2023
№223.018.6c1d

Фотодиодный анализатор капиллярного кровотока

Изобретение относится к медицинской технике, а, именно к оптоэлектронным диагностическим аппаратам. Фотодиодный анализатор капиллярного кровотока содержит корпус, внутри которого расположены оптоэлектронный датчик фотоплетизмографии, фильтр, модуль Bluethooth для связи с удаленным внешним...
Тип: Изобретение
Номер охранного документа: 0002736807
Дата охранного документа: 20.11.2020
Показаны записи 21-27 из 27.
25.08.2017
№217.015.affc

Изолирующее фланцевое соединение

Изобретение относится к трубопроводным соединительным устройствам и предназначено для секционирования и разделения на электроизолированные участки трубопроводов с различными номинальными диаметрами и рабочим давлением до 10 МПа включительно. Изолирующее фланцевое соединение (ИФС) содержит...
Тип: Изобретение
Номер охранного документа: 0002611130
Дата охранного документа: 21.02.2017
26.08.2017
№217.015.e511

Система обнаружения движущихся объектов за преградой

Изобретение относится к системам обнаружения и может быть использовано для охраны подвижных и стационарных объектов при установлении факта проникновения нарушителей в охраняемое пространство и передачи тревожных сигналов с использованием ближнего поля излучения, основанного на использовании...
Тип: Изобретение
Номер охранного документа: 0002626460
Дата охранного документа: 28.07.2017
13.09.2018
№218.016.86f7

Универсальная делительная головка для малогабаритных сверлильных и сверлильно-фрезерных станков

Изобретение относится к оснастке малогабаритных сверлильных и сверлильно-фрезерных станков, применяемых в нефтегазодобывающей промышленности, и может быть использовано для получения плоскостных поверхностей на круглых заготовках небольшого диаметра. Универсальная делительная головка содержит...
Тип: Изобретение
Номер охранного документа: 0002666788
Дата охранного документа: 12.09.2018
27.06.2019
№219.017.9934

Катализатор, способ его получения и процесс дегидрирования c-c-парафиновых углеводородов в олефины

Изобретение относится к области получения олефиновых углеводородов каталитическим дегидрированием соответствующих парафиновых С-С углеводородов и может найти применение в химической и нефтехимической промышленности. Описан катализатор дегидрирования С-С-парафиновых углеводородов в олефины,...
Тип: Изобретение
Номер охранного документа: 0002322290
Дата охранного документа: 20.04.2008
16.05.2023
№223.018.5fac

Гнатическое устройство

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования в гнатической стоматологии, а также для разобщения зубных рядов во время медицинских манипуляций в полости рта. Гнатическое устройство включает выполненный из медицинского силикона корпус с окклюзионным...
Тип: Изобретение
Номер охранного документа: 0002744236
Дата охранного документа: 04.03.2021
16.05.2023
№223.018.5fad

Гнатическое устройство

Изобретение относится к медицине, а именно к стоматологии, и предназначено для использования в гнатической стоматологии, а также для разобщения зубных рядов во время медицинских манипуляций в полости рта. Гнатическое устройство включает выполненный из медицинского силикона корпус с окклюзионным...
Тип: Изобретение
Номер охранного документа: 0002744236
Дата охранного документа: 04.03.2021
23.05.2023
№223.018.6c1d

Фотодиодный анализатор капиллярного кровотока

Изобретение относится к медицинской технике, а, именно к оптоэлектронным диагностическим аппаратам. Фотодиодный анализатор капиллярного кровотока содержит корпус, внутри которого расположены оптоэлектронный датчик фотоплетизмографии, фильтр, модуль Bluethooth для связи с удаленным внешним...
Тип: Изобретение
Номер охранного документа: 0002736807
Дата охранного документа: 20.11.2020
+ добавить свой РИД