×
13.01.2017
217.015.75a0

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к способу получения нанокапсул адаптогенов в альгинате натрия, в котором действующее вещество при перемешивании диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества, затем добавляют осадитель, а сушку осадка проводят при комнатной температуре, отличающемуся тем, что в качестве действующего вещества используют адаптогены растительного происхождения: экстракты элеутерококка, или женьшеня, или лимонника китайского, или родиолы розовой, или аралии маньчжурской, в качестве осадителя используют этилацетат при соотношении адаптоген: этилацетат 1:1-10, а перемешивание ведут со скоростью 1300 об/мин. 9 пр., 4 ил.

Изобретение относится к области нанотехнологии и может быть использовано в медицине и пищевой промышленности.

Ранее были известны способы получения микрокапсул.

В патенте РФ №2173140, опубликованном 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.

Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.

В патенте РФ №2359662 (опубликован 27.06.2009) предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.

Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).

Известен способ, предложенный в патенте РФ №2134967 (опубликован 27.08.1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.

Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.

Наиболее близким является способ по патенту РФ №538 719 (опубликованный 10.01.2015), характеризующийся тем, что действующее вещество антисептик-стимулятор Дорогова (АСД)2 фракция диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества при перемешивании 1300 об/с, добавляют в качестве осадителя четыреххлористый углерод, а сушку осадка проводят при комнатной температуре. В результате получают микрокапсулы в оболочке из альгината натрия.

Недостатком данного технического решения является невозможность при его использовании получить нанокапсулы адаптогенов в альгинате натрия.

Техническая задача - разработка способа получения нанокапсул адаптогенов растительного происхождения в альгинате натрия.

Технический результат - реализация назначения изобретения.

Решение технической задачи достигается предлагаемым способом получения нанокапсул адаптогенов в альгинате натрия, в котором действующее вещество при перемешивании диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества, затем добавляют осадитель, а сушку осадка проводят при комнатной температуре, в который внесены следующие новые признаки:

- в качестве действующего вещества используют адаптогены растительного происхождения: экстракты элеутерококка, или женьшеня, или лимонника китайского, или родиолы розовой, или аралии маньчжурской;

- в качестве осадителя используют этилацетат;

- соотношение адаптоген: этилацетат 1: 1-10;

- перемешивание ведут со скоростью 1300 об/мин.

Новым в предлагаемом изобретении является то, что получают нанокапсулы, в которых в качестве оболочки нанокапсул используется альгинат натрия, а в качестве ядра - адаптогены растительного происхождения: экстракты элеутерококка, женьшеня, лимонника китайского, родиолы розовой, аралии маньчжурской.

Для подтверждения того, что при реализации способа были получены нанокапсулы, проводили определение размеров капсул методом NTA на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM E2834. Для измерения были выбраны оптимальное разведение 1: 100 и параметры прибора: Camera Level=16, Detection Threshold=10 (multi), Min Track Length:Auto, Min Expected Size: Auto, длительность единичного измерения 215s, использование шприцевого насоса.

Результаты измерений представлены на следующих графических изображениях.

Фиг.1. Распределение частиц по размерам в образце нанокапсул элеутерококка в альгинате натрия при соотношении ядро:оболочка 1:3.

Фиг.2. В таблице 1 приведены статистические характеристики распределений в образце частиц по размерам нанокапсул элеутерококка в альгинате натрия при соотношении ядро:оболочка 1:3.

Фиг.3. Распределение частиц по размерам в образце нанокапсул женьшеня в альгинате натрия при соотношении ядро:оболочка 1:3.

Фиг.4. В таблице 2 приведены статистические характеристики распределений частиц по размерам в образце нанокапсул женьшеня в альгинате натрия при соотношении ядро:оболочка 1:3.

Примеры осуществления изобретения.

ПРИМЕР 1. Получение нанокапсул экстракта элеутерококка в альгинате натрия, соотношение ядро:оболочка 1:3

100 мг экстракта элеутерококка добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) при перемешивании со скоростью 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 2. Получение нанокапсул экстракта женьшеня в альгинате натрия, соотношение ядро:оболочка 1:3

100 мг экстракта женьшеня добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 300 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 3. Получение нанокапсул экстракта женьшеня в альгинате натрия, соотношение ядро:оболочка 5:1

500 мг экстракта женьшеня добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 100 мг полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 6 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 0,6 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 4. Получение нанокапсул лимонника китайского в альгинате натрия, соотношение ядро:оболочка 1:3

1 мл экстракта лимонника китайского добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 5. Получение нанокапсул лимонника китайского в альгинате натрия, соотношение ядро:оболочка 1:1

1 мл экстракта лимонника китайского добавляют в суспензию альгинате натрия в изопропаноле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 6. Получение нанокапсул аралии маньчжурской в альгинате натрия, соотношение ядро:оболочка 1:1

1 мл экстракта аралии маньчжурской добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 5 мл этилацетат. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 7. Получение нанокапсул аралии маньчжурской в альгинате натрия, соотношение ядро:оболочка 1:3

1 мл экстракта аралии маньчжурской добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 8. Получение нанокапсул родиолы розовой в альгинате натрия, соотношение ядро:оболочка 1:3

1 мл экстракта родиолы розовой добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 3 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетат. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 4 г порошка нанокапсул. Выход составил 100%.

ПРИМЕР 9. Получение нанокапсул родиолы розовой в альгинате натрия, соотношение ядро:оболочка 1:1

1 мл экстракта родиолы розовой добавляют в суспензию альгината натрия в изопропаноле, содержащую указанного 1 г полимера в присутствии 0,01 г препарата Е472 с при перемешивании 1300 об/мин. Далее приливают 10 мл этилацетата. Полученную суспензию отфильтровывают и сушат при комнатной температуре.

Получено 2 г порошка нанокапсул. Выход составил 100%.

Способ получения нанокапсул адаптогенов в альгинате натрия, в котором действующее вещество при перемешивании диспергируют в суспензию альгината натрия в изопропаноле в присутствии препарата Е472 в качестве поверхностно-активного вещества, затем добавляют осадитель, а сушку осадка проводят при комнатной температуре, отличающийся тем, что в качестве действующего вещества используют адаптогены растительного происхождения: экстракты элеутерококка, или женьшеня, или лимонника китайского, или родиолы розовой, или аралии маньчжурской, в качестве осадителя используют этилацетат при соотношении адаптоген: этилацетат 1:1-10, а перемешивание ведут со скоростью 1300 об/мин.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АЛЬГИНАТЕ НАТРИЯ
Источник поступления информации: Роспатент

Показаны записи 741-747 из 747.
12.04.2023
№223.018.430f

Металломатричный композит на основе высокоэнтропийного сплава

Изобретение относится к металломатричным композитам на основе высокоэнтропийного сплава и может быть использовано для конструкционных применений в авиастроении и энергетическом машиностроении, в том числе при высоких температурах. Металломатричный композит AlNbTiVZr/TiB, полученный путем...
Тип: Изобретение
Номер охранного документа: 0002793620
Дата охранного документа: 04.04.2023
20.05.2023
№223.018.6771

Устройство для измерения деформаций на стенках горных выработок

Изобретение представляет собой устройство для измерения деформаций на стенках горных выработок, относится к геомеханике и предназначено для оценки и прогноза устойчивости проходимых и находящихся в эксплуатации горных выработок с последующим измерением линейных деформаций, возникающих в горном...
Тип: Изобретение
Номер охранного документа: 0002794875
Дата охранного документа: 25.04.2023
21.05.2023
№223.018.6aee

Способ получения основы синтетических моющих средств

Изобретение относится к получению линейных алкилбензолсульфонатов. Способ получения включает алкилирование бензола внутренними олефинами в присутствии фтористого водорода, последующее сульфирование алкилбензолов газообразным SO и нейтрализацию полученных алкилбензолсульфокислот щелочью, причем...
Тип: Изобретение
Номер охранного документа: 0002795626
Дата охранного документа: 05.05.2023
21.05.2023
№223.018.6aef

Способ получения основы синтетических моющих средств

Изобретение относится к получению линейных алкилбензолсульфонатов. Способ получения включает алкилирование бензола внутренними олефинами в присутствии фтористого водорода, последующее сульфирование алкилбензолов газообразным SO и нейтрализацию полученных алкилбензолсульфокислот щелочью, причем...
Тип: Изобретение
Номер охранного документа: 0002795626
Дата охранного документа: 05.05.2023
22.05.2023
№223.018.6b49

Способ прогнозирования риска развития рака молочной железы у женщин без ожирения

Изобретение относится к медицине, а именно к клинической онкологии, медицинской генетике, молекулярной диагностике, и может быть использовано для прогнозирования риска развития рака молочной железы (РМЖ) у женщин без ожирения русской национальности. Из периферической венозной крови выделяют...
Тип: Изобретение
Номер охранного документа: 0002795726
Дата охранного документа: 11.05.2023
22.05.2023
№223.018.6b92

Способ прогнозирования риска развития люминального подтипа рака молочной железы

Изобретение относится к медицине, а именно к клинической онкологии, медицинской генетике, молекулярной диагностике, и может быть использовано для прогнозирования риска развития люминального подтипа рака молочной железы (РМЖ) у женщин русской национальности. Из периферической венозной крови...
Тип: Изобретение
Номер охранного документа: 0002795720
Дата охранного документа: 11.05.2023
26.05.2023
№223.018.7057

Способ создания ориентированных структур на основе сегнетоэлектрического порошка

Изобретение относится к способам создания ориентированных структур из порошковых сегнетоэлектриков, которые могут быть использованы в различных устройствах регистрации и управления электромагнитным излучением. Сущность: на первый электрод насыпают сегнетоэлектрический порошок, второй электрод...
Тип: Изобретение
Номер охранного документа: 0002796209
Дата охранного документа: 17.05.2023
Показаны записи 741-750 из 750.
27.05.2023
№223.018.70a2

Способ производства смоквы, содержащей аралию маньчжурскую

Изобретение относится к пищевой промышленности, в частности к способу производства смоквы с функциональными свойствами. Предложенный способ предусматривает размягчение сильно пектиновых фруктов в пароконвектомате при температуре 75°С, которые затем очищают от твердых составляющих, измельчают до...
Тип: Изобретение
Номер охранного документа: 0002737550
Дата охранного документа: 01.12.2020
27.05.2023
№223.018.70a6

Способ производства смоквы с функциональными свойствами

Изобретение относится к пищевой промышленности, в частности к способу производства кондитерских изделий с функциональными свойствами. Способ получения смоквы с функциональными свойствами предусматривает получение пюре путем размягчения сильно пектиновых фруктов в пароконвектомате при...
Тип: Изобретение
Номер охранного документа: 0002737549
Дата охранного документа: 01.12.2020
27.05.2023
№223.018.70b4

Способ получения нанокапсул антоцианов краснокачанной капусты в альгинате натрия

Изобретение относится к области капсулирования активного вещества. Способ получения нанокапсул антоцианов краснокочанной капусты в альгинате натрия осуществляют, добавляя к спиртовому раствору, содержащему антоцианы краснокачанной капусты, суспензию альгината натрия в циклогексане в присутствии...
Тип: Изобретение
Номер охранного документа: 0002736641
Дата охранного документа: 19.11.2020
27.05.2023
№223.018.70c4

Способ получения майонезного соуса с наноструктурированным сухим экстрактом крапивы

Изобретение относится к масложировой промышленности. Способ получения майонезного соуса на основе аквафабы предусматривает смешивание аквафабы, соли, сахара, растительного масла и горчицы, полученную смесь взбивают до белого цвета, добавляют наноструктурированный сухой экстракт крапивы в...
Тип: Изобретение
Номер охранного документа: 0002739602
Дата охранного документа: 28.12.2020
27.05.2023
№223.018.70c7

Способ получения майонезного соуса

Изобретение относится к масложировой промышленности. Способ получения майонезного соуса на основе аквафабы, включающий смешивание аквафабы, соли, сахара, растительного масла и горчицы, полученную смесь взбивают до белого цвета, затем добавляют наноструктурированный сухой экстракт гуараны в...
Тип: Изобретение
Номер охранного документа: 0002739600
Дата охранного документа: 28.12.2020
27.05.2023
№223.018.711d

Способ получения кефира с наноструктурированным сухим экстрактом барбариса

Изобретение относится к молочной промышленности. Способ получения кефира включает подготовку молока, заквашивание, внесение наполнителя, сквашивание при температуре 40-41°С, перемешивание и охлаждение полученного продукта в течение 8 ч, перемешивание, спустя 3 ч после начала заквашивания и за...
Тип: Изобретение
Номер охранного документа: 0002767349
Дата охранного документа: 17.03.2022
27.05.2023
№223.018.712a

Способ получения йогурта, содержащего наноструктурированный сухой экстракт алоэ

Изобретение относится к молочной промышленности. Способ производства йогурта предусматривает следующие этапы: подогрев молока до 40-41°С, заквашивание, внесение наполнителя, сквашивание в течение 6 часов и перемешивание спустя 3 часа после начала заквашивания и за 1 час до окончания процесса...
Тип: Изобретение
Номер охранного документа: 0002768856
Дата охранного документа: 25.03.2022
27.05.2023
№223.018.722e

Способ получения йогурта, содержащего наноструктурированный сухой экстракт босвеллии

Изобретение относится к пищевой промышленности, в частности к молочной. Способ получения йогурта включает подготовку молока, заквашивание, внесение наполнителя, сквашивание при температуре 40-41°С, перемешивание спустя 3 ч после начала заквашивания и за час до окончания процесса сквашивания и...
Тип: Изобретение
Номер охранного документа: 0002746226
Дата охранного документа: 09.04.2021
27.05.2023
№223.018.7232

Способ получения йогурта, содержащего наноструктурированный сухой экстракт крапивы

Изобретение относится к пищевой промышленности, в частности к молочной. Способ производства йогурта включает подогрев до 40-41°С нормализованного коровьего молока, заквашивание и внесение наноструктурированной добавки сухого экстракта крапивы в альгинате натрия, или в гуаровой камеди, или в...
Тип: Изобретение
Номер охранного документа: 0002746767
Дата охранного документа: 20.04.2021
27.05.2023
№223.018.7233

Способ получения кефира с наноструктурированным сухим экстрактом босвеллии

Изобретение относится к пищевой промышленности, в частности к молочной. Способ включает подготовку молока, заквашивание, внесение наполнителя, сквашивание при температуре 40-41°С в течение 8 ч, перемешивание спустя 3 ч после начала заквашивания и за час до окончания процесса сквашивания и...
Тип: Изобретение
Номер охранного документа: 0002746227
Дата охранного документа: 09.04.2021
+ добавить свой РИД