×
13.01.2017
217.015.72cd

Результат интеллектуальной деятельности: СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Достигаемый технический результат - высокоточное устойчивое сопровождение сверхманевренных целей по направлению при использовании обычных инерционных приводов антенн, без требования изменения конструкции привода антенны. Предлагаемый способ позволяет учесть в законе управления угловую скорость линии визирования, курс носителя и их производные, при этом инерционные свойства привода антенны позволяют обеспечить устойчивое и точное сопровождение интенсивно маневрирующего объекта (ИМО). При этом сигнал управления формируется в системе управления определенным образом. 5 ил.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению, и может быть использовано для эффективного управления инерционными приводами антенн следящих угломеров в режиме сопровождения различных летательных объектов, в том числе и интенсивно маневрирующих.

Расширение номенклатуры сверхманевренных (СМЛА) и гиперзвуковых (ГЗЛА) летательных аппаратов приводит к усложнению процесса воздушного боя, что проявляется в значительном усложнении законов изменения входных воздействий для БРЛС. В связи с этим, к РЛС самолетов-истребителей, ракет и БЛА предъявляются высокие требования к точности, быстродействию и устойчивости сопровождения целей [1]. Однако, необходимо отметить, что в существующих одноконтурных системах радиолокационного сопровождения, которые базируются на использовании следящих систем с астатизмом второго (редко - третьего) порядка, требования точности противоречат требованиям устойчивости [2]. Следовательно, система сопровождения сверхманевренных целей должна быть многоконтурной, в которой различные контуры смогут обеспечивать раздельно точность и устойчивость сопровождения, реализуя высокие показатели системы сопровождения в целом.

Следует отметить, что входные воздействия для угломера в БРЛС определяются не только движением цели, но и движением носителя. В свою очередь, сигналы управления носителем зависят от оценок углов и угловых скоростей, формируемых БРЛС. В связи с этим, следящие системы БРЛС целесообразно рассматривать вместе с системой управления носителем, то есть задачи управления РЛС и наведения должны решаться совместно. Это позволит учесть маневр носителя РЛС на этапе синтеза алгоритма сопровождения, тем самым улучшив показатели сопровождения цели при маневрах ее и носителя. Поскольку наибольший вклад в ошибки наведения вносит угломерный канал БРЛС [2], то, прежде всего, необходимо улучшить устойчивость и точность сопровождения следящих угломеров.

Необходимо отметить, что при проектировании систем одноразового применения актуальной задачей является снижение их стоимости, однако безынерционные антенны являются дорогостоящими, поэтому использование ФАР (АФАР) является проблематичным. Кроме того, использование ФАР на конечных участках наведения вследствие дискретного характера формирования луча антенны приводит к усилению угловых шумов, а соответственно, к увеличению дальности окончания управления и промахов.

В связи с этим весьма актуальной является разработка угломеров на базе антенн с механическим инерционным приводом, в алгоритмах управления которыми учитываются высокие динамические свойства цели и инерционность привода.

Из известных технических решений наиболее близким является способ управления приводом антенны в угломере, приведенный в [2]. В данном алгоритме сигнал управления учитывает ошибки сопровождения по углу и угловой скорости в соответствии с формулой:

где ua - сигнал управления приводом антенны; Κφ - постоянный коэффициент усиления, определяющий вес ошибки управления по углу; - оценка пеленга цели; - оценка угла поворота антенны; Κω - постоянный коэффициент усиления, определяющий вес сигнала ошибки сопровождения по угловой скорости; - оценка угловой скорости цели; - оценка угловой скорости поворота антенны.

Недостатками прототипа являются:

1) отсутствие учета в способе управления приводом антенны несоответствия динамических свойств цели и угломера;

2) низкая точность и потеря устойчивости сопровождения при появлении в законах изменения угловых координат производных третьего и более высоких порядков, характерных для СМЛА и ГЗЛА.

Эти недостатки можно скомпенсировать, если на стадии синтеза угломера учесть инерционность привода [3].

Таким образом, задачей изобретения является разработка способа формирования сигнала управления приводом антенны, обеспечивающего высокоточное, устойчивое сопровождение интенсивно маневрирующих целей по направлению, без изменения конструкции привода.

Поставленная задача достигается тем, что сигнал управления, определяемый взвешенной суммой ошибок сопровождения по углу и угловой скорости, дополняется слагаемыми, учитывающими угловые скорости линии визирования, курса и их производные, вес которых зависит от соотношения коэффициентов усиления привода и его постоянной времени.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в обеспечении высокой точности и устойчивости сопровождения по направлению интенсивно маневрирующих объектов (ИМО).

Сущность предлагаемого изобретения заключается в разработке формирователя сигнала управления приводом антенны, обеспечивающего бессрывное высокоточное сопровождение ИМО, отличающегося от прототипа тем, что в нем дополнительно будут учтены производные угловой скорости линии визирования и курса носителя. Для решения поставленной задачи воспользуемся математическим аппаратом СТОУ, который позволяет [1] для системы

предназначенной для отработки процесса

сформировать сигнал управления

оптимальный по минимуму локального функционала качества

В (2)-(7):

t - текущее время;

xT и xУ - n-мерные векторы состояния цели и следящей системы;

FТ и FУ - динамические матрицы внутренних связей соответствующих векторов состояния;

u - r-мерный (r≤n) вектор сигналов управления;

BУ - матрица эффективности r-мерного (r≤n) вектора управления u;

ξУ и ξТ - векторы шумов состояния;

Q - неотрицательно определенная матрица штрафов за ошибки в момент времени tК окончания управления;

L - матрица штрафов за ошибки в текущий момент времени t;

К - положительно определенная матрица штрафов за величину сигналов вектора управления u;

РУ - матрица весовых коэффициентов текущего состояния хУ;

- оценка вектора, учитывающего внешние воздействия хT;

и - оптимальные оценки векторов xT и xУ;

Μ - знак условного математического ожидания.

В дальнейшем для упрощения записей зависимость векторов и матриц от времени будет опущена.

Необходимо отметить, что использование (4)-(6) не позволяет учесть в законе управления несоответствие динамических свойств цели и угломера. В связи с этим необходимо преобразовать исходные выражения к виду, в котором это несоответствие будет учтено. В общем случае несоответствие динамических свойств РЛС и цели можно выразить вектором ошибок:

изменение которого во времени можно найти посредством решения векторного уравнения:

Учитывая в (9) выражения (2) и (3), получим:

Решение этого неоднородного уравнения состоит из решения однородной части, определяемого первым слагаемым FУΔx, и частного решения неоднородного уравнения, определяемого вторым и третьим слагаемыми - Bуu+(FT-FУ)xT.

Отсюда следует, что выбором сигнала управления можно скомпенсировать несоответствие динамических свойств РЛС и цели. Если динамические свойства (2) РЛС соответствуют требуемым значениям (FУ=FT), то ошибка будет убывать вплоть до нуля со скоростью, определяемой динамическими свойствами РЛС (FУ). В такой ситуации убывание можно ускорить за счет сигнала управления. В случае несоответствия динамических свойств (FУ≠FT), в решении (10) появляется вынужденная составляющая, зависящая от характеристик изменения xТ.

Найдем управляющий сигнал, который будет минимизировать ошибку сопровождения при FУ≠FТ. При использовании общих соотношений (4)-(6) для (10), полагая, что Δx=y, получим:

где ξyu=(FT-FУ)xТ. Тогда сигнал управления:

Далее без ограничения общности будем полагать, что наведение осуществляется в горизонтальной плоскости.

В качестве модели состояния системы сопровождения воспользуемся типовым уравнением привода антенны [2]:

а в качестве модели движения цели используем кинематические уравнения [2]:

где uа - сигнал управления приводом, φa и ωa - угол поворота антенны относительно продольной оси носителя и угловая скорость ее перемещения, Τ - постоянная времени привода угломера, b - коэффициент его усиления, φц и ωц - пеленг цели и угловая скорость линии визирования, ψ и V0 - курс и скорость носителя, Д и - дальность до цели и ее производная, jц и jн - поперечные ускорения цели и носителя, ξa и ξц - шумы состояния привода и цели. Взаимное геометрическое расположение цели и носителя РЛС показано на фигуре 1, на которой точками Oоу и Оц показано расположение объекта управления (ОУ) и цели. Тогда, исходя из (8) и (15), (16), можно определить ошибки сопровождения по углу и угловой скорости:

Сопоставляя (15)-(17) и (2), (3), запишем в явном виде векторы состояния и динамические матрицы связей системы:

В свою очередь несоответствие динамических свойств РЛС и цели определяется матрицей:

Из (19) следует, что для соответствия динамических свойств цели и следящей системы необходимо выполнение условия . Однако при T=const обеспечить это условие невозможно, поскольку Д и меняются в процессе сопровождения. В связи с этим, целесообразно для решения этой задачи использовать расчет сигнала управления по правилу (12)-(14), при условии, что матрицы Py, Q, L и вектор ρ введены в общем виде:

где p11, p12, p22 - весовые коэффициенты текущего состояния следящей системы; q11 и q22 - коэффициенты штрафов по углу и угловой скорости за ошибки сопровождения в момент окончания управления; l11 и l22 - коэффициенты штрафов по углу и угловой скорости за ошибки сопровождения в текущий момент; ρ1 и ρ2 - величины учета внешнего воздействия на угол и угловую скорость.

Тогда используя (19) и (20) в формулах (12)-(14), получим:

где k - коэффициент штрафа за величину сигнала управления.

Можно заметить, что система уравнений (22), не решаемая в общем случае в аналитическом виде, должна решаться численно в обратном времени. Следовательно, сигнал управления (21) не может быть получен в режиме реального времени. Графики зависимостей p11, p12 и p22, используемых в (21) и (22) для некоторых соотношений коэффициентов штрафов, показаны на фигуре 2. Из графиков видно, что на большей части временного диапазона работы эти зависимости имеют установившийся характер.

Поскольку момент окончания управления неизвестен, то будет достаточно выбрать конечное время работы системы заведомо больше максимально возможного времени работы следящей системы:

В таком случае можно считать, что требуемое условие будет выполняться на всем участке работы следящей системы. Тогда может быть найдено стационарное решение системы (22) при условии , , , которое имеет место при t<tк.

Анализ переходных процессов, имеющих место при вычислении p11, p12, p22, при различных соотношениях коэффициентов штрафов свидетельствует о том, что время регулирования не превышает двух секунд (фигура 2). Принимая во внимание условие (23), можно утверждать, что в течение всего времени работы tРЛС значения p11, p12, p22 будут постоянными. Это дает возможность при вычислении (21) использовать их установившееся значение. Тогда:

где были учтены выводы теоремы статистической эквивалентности о замене координат состояния их оценками [1].

Анализ закона управления (24) позволяет сделать следующие заключения:

- полученный закон отличается от прототипа (1) тем, что в нем учтены наравне с угловой скоростью линии визирования еще и производные курса;

- варьируя значениями коэффициентов b, p12, p22, k, Τ, можно получить широкий спектр законов управления, обеспечивающих сопровождение ИМО, адаптированных под конкретный тип привода антенны;

- для реализации полученного закона сопровождения в угломере требуется оценивать пеленг цели, угол поворота антенны, угловую скорость линии визирования и ее производную, а также первую и вторую производные курса носителя;

- предложенный алгоритм управления инерционным приводом угломера не накладывает принципиальных ограничений на возможность его реализации.

На основе результатов проведенного анализа следует отметить, что описанный способ управления приводом следящего угломера, в котором дополнительно учитываются угловая скорость и ее производные, является принципиально новым, устраняя недостатки и негативные последствия применения классических методов управления в существующих системах сопровождения по направлению, обеспечивая устойчивое высокоточное сопровождение ИМО. Также следует отметить, что информационное обеспечение алгоритма управления (24) может быть осуществлено в существующих угломерах с учетом реальных ограничений, что свидетельствует о возможности практической реализации метода.

Технический результат, который может быть получен от использования предлагаемого изобретения, заключается в обеспечении высокой точности и устойчивости сопровождения по направлению ИМО. При этом сигнал управления является функцией не только ошибок сопровождения, но и угловой скорости линии визирования, ее первой и второй производных, первой и второй производных курса носителя, что собственно и позволяет учесть и скомпенсировать инерционность привода угломера. В этом случае инерционный угломер способен сопровождать цель, двигающуюся по сложному закону.

Проверка работоспособности предложенного способа управления приводом антенны осуществлялась в процессе имитационного моделирования маневра цели и движения антенны в соответствии с моделью (15). Для управления приводом антенны использовались предложенный алгоритм (24) и прототип (1). Проведенное моделирование позволяет сделать следующие заключения:

1. Алгоритм способен отрабатывать начальные ошибки сопровождения любого знака и в любом сочетании, что иллюстрируется графиками зависимостей относительных ошибок сопровождения цели по пеленгу и угловой скорости, приведенными на фигуре 3, где различными линиями изображены зависимости для различных знаков ошибок захвата.

2. Сигнал управления способен обеспечить сопровождение цели, двигающейся по сложным законам, включая синусоидальный, характерный для гиперзвуковых летательных аппаратов:

что иллюстрируется графиками зависимостей ошибок сопровождения цели по углу и по угловой скорости при использовании прототипа (сплошная линия) и предложенного алгоритма (пунктирная линия), которые приведены на фигуре 4, где пеленг цели изменяется по синусоидальному закону.

Таким образом, на основании проведенных исследований можно сделать вывод, что алгоритм способен сопровождать цели, двигающиеся по любым реальным законам.

В более общем виде алгоритм (24) можно представить в виде

где, - оценка угла поворота антенны и его производная; , , - оценка пеленга цели и его производные; и - оценка первой и второй производных курса; , , , , , - постоянные коэффициенты, зависящие от параметров привода антенны, определяющие вес измеряемых параметров в сигнале управления приводом антенны.

Пример структурной схемы угломера, в котором использован закон управления (26), приведен на фигуре 5, где

1 - датчик положения антенны

2 - привод угломера

3 - фильтр датчика положения антенны

4 - пеленгатор

5 - датчик курса

6, 7 - вычитающие устройства

8 - фильтр угломера

9 - фильтр курса

10, 11, 12, 13, 14, 15 - усилители

16 - сумматор

Примечание: двойная пунктирная линия обозначает механическую связь. Функциональное назначение представленной на фигуре 5 структурной схемы системы управления приводом угломера заключается в формировании сигнала ошибки сопровождения по углу , вычитанием из значения оценки пеленга цели значения оценки угла поворота антенны и усиление его постоянным коэффициентом Κ1, зависящим от свойств привода антенны, формировании сигнала ошибки сопровождения по угловой скорости , вычитанием из значения оценки угловой скорости цели значения оценки угловой скорости поворота антенны и усиление его постоянным коэффициентом К2, зависящим от свойств привода антенны, формировании сигналов оценки угловой скорости цели , его первой , первой и второй производных курса и , усилении их с коэффициентами К3, К4, К5, К6 соответственно. Коэффициенты назначают на стадии разработки угломера и по их значениям определяют коэффициенты усиления соответствующих усилителей.

Использование изобретения позволит осуществлять в угломерах высокоточное устойчивое сопровождение сверхманевренных целей по направлению при использовании обычных инерционных приводов антенн, не требуя изменения конструкции привода антенны.

Кроме того, заявленный способ формирования сигнала управления инерционным приводом антенны позволяет получить большое количество реализаций, адаптированных под конкретный вид привода антенны и требуемый закон изменения сопровождаемых координат. Причем эти реализации, соответствующие в общем случае соотношению (24), будут отличаться лишь значениями весовых коэффициентов.

ЛИТЕРАТУРА

1. Меркулов В.И. [и др.]. Авиационные системы радиоуправления. Т.1. Принципы построения систем радиоуправления. Основы синтеза и анализа / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: Радиотехника, 2003. - 190 с.

2. Меркулов В.И. [и др.]. Авиационные системы радиоуправления. Т.2. Радиоэлектронные системы самонаведения / Под ред. А.И. Канащенкова и В.И. Меркулова. - М.: Радиотехника, 2003. - 390 с.

3. Меркулов В.И. Динамичность авиационных комплексов и бортовые радиоэлектронные системы. - М.: Радиотехника. - 2010, №1. - С. 88-96.

4. Верба B.C., Меркулов В.И., Соколов Д.А. Сопровождение интенсивно маневрирующих целей инерционным угломером в системах одноразового применения. Информационно-измерительные и управляющие системы. - 2014, №3. - С. 13-18.

5. Меркулов В.И., Соколов Д.А. Исследование эффективности инерционного угломера при сопровождении интенсивно маневрирующих целей. Информационно-измерительные и управляющие системы. - 2014, №2. - С. 44-49.

Способ управления инерционным приводом антенны, обеспечивающий устойчивое сопровождение интенсивно маневрирующих и высокоскоростных летательных аппаратов с повышенной адаптацией к маневру носителя, состоящий в том, что формируют сигналы ошибок сопровождения по пеленгу и угловой скорости цели вычитанием из значения оцененного сигнала пеленга цели значения оцененного сигнала угла поворота антенны и вычитанием из значения оцененного сигнала угловой скорости цели значения оцененного сигнала угловой скорости поворота антенны , усиливая их постоянными коэффициентами и , зависящими от свойств привода антенны, отличающийся тем, что дополнительно учитывают в сигнале оценки угловой скорости линии визирования , ее первой и второй производных , усиленных с различными коэффициентами , и , зависящими от параметров привода антенны угломера, и складывают их с усиленными сигналами ошибок сопровождения , образуя сигнал управления приводом антенны где и - оценки угла поворота антенны и ее угловой скорости, и - оценки пеленга цели и угловой скорости линии визирования, и - оценки первой и второй производных угловой скорости линии визирования, Т - постоянная времени привода угломера, b - коэффициент усиления привода угломера, p, p и p - весовые коэффициенты оценки текущего состояния следящей системы, k - коэффициент штрафа за величину сигнала управления.
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
СПОСОБ УПРАВЛЕНИЯ ИНЕРЦИОННЫМ ПРИВОДОМ АНТЕННЫ, ОБЕСПЕЧИВАЮЩИЙ УСТОЙЧИВОЕ СОПРОВОЖДЕНИЕ ИНТЕНСИВНО МАНЕВРИРУЮЩИХ И ВЫСОКОСКОРОСТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ С ПОВЫШЕННОЙ АДАПТАЦИЕЙ К МАНЕВРУ НОСИТЕЛЯ И СИСТЕМА ДЛЯ ЕГО РЕАЛИЗАЦИИ
Источник поступления информации: Роспатент

Показаны записи 71-80 из 89.
01.05.2019
№219.017.4824

Способ оценки эффективности радиоэлектронных средств в условиях действия непреднамеренных помех и система для его реализации

Изобретение относится к измерительной области техники. Способ оценки эффективности радиоэлектронных средств в условиях действия непреднамеренных помех (НП), заключающийся в том, что на основании определения текущего режима работы, например, i-го РЭС, а также его параметров (время работы на...
Тип: Изобретение
Номер охранного документа: 0002686582
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
04.06.2019
№219.017.7342

Способ автоматического группового целераспределения истребителей с учетом приоритета целей

Изобретение относится к системам управления летательными аппаратами (ЛА) и может быть использовано в комплексе функциональных программ управления и наведения ЛА авиационных комплексов для назначения целей перехватчикам при противостоянии групп ЛА. Предлагаемый способ позволяет определить...
Тип: Изобретение
Номер охранного документа: 0002690234
Дата охранного документа: 31.05.2019
19.06.2019
№219.017.83d1

Приемная мультипликативная фар

Изобретение относится к антенной технике и может быть использовано в системах связи и радиолокации. Техническим результатом изобретения является получение высокого коэффициента усиления антенной решетки при низком уровне боковых лепестков (УБЛ) диаграммы направленности (ДН). Приемная...
Тип: Изобретение
Номер охранного документа: 0002691672
Дата охранного документа: 17.06.2019
17.07.2019
№219.017.b52c

Способ сканирования луча гибридной зеркальной антенны

Способ сканирования луча гибридной зеркальной антенны, отличающийся тем, что сканирование луча производят включением группы излучателей, при этом количество излучателей в группе одинаково для всех лучей, а смежные лучи формируются отключением крайнего излучателя группы с одной стороны и...
Тип: Изобретение
Номер охранного документа: 0002694460
Дата охранного документа: 15.07.2019
17.07.2019
№219.017.b536

Устройство для измерения амплитудно-фазовых шумов источников свч радиоимпульсного сигнала с высокой скважностью передатчиков высококогерентных систем локации и связи

Устройство для измерения амплитудно-фазовых (АФ) шумов источников СВЧ радиоимпульсного сигнала с высокой скважностью высококогерентных систем локации и связи относится к измерительной технике и может быть использовано для контроля уровня амплитудно-фазовых (АФ) шумов на различных стадиях...
Тип: Изобретение
Номер охранного документа: 0002694451
Дата охранного документа: 15.07.2019
27.07.2019
№219.017.b9c0

Радиометр влагомер

Изобретение относится к области приборостроения, а именно к СВЧ-радиометрическим приемникам для техники дистанционного зондирования земной поверхности и экологии. В частности, к СВЧ радиометрии. Радиометр влагомер содержит последовательно соединенные трехвходовый СВЧ-переключатель,...
Тип: Изобретение
Номер охранного документа: 0002695764
Дата охранного документа: 25.07.2019
02.10.2019
№219.017.d130

Способ управления летательным аппаратом

Изобретение относится к способу построения траектории летательного аппарата (ЛА) обхода опасных зон. Для построения траектории по известным координатам начальной и конечной точек пути, направлению скорости ЛА в начальной точке, допустимому радиусу разворота, а также множеству опасных зон...
Тип: Изобретение
Номер охранного документа: 0002700157
Дата охранного документа: 12.09.2019
19.10.2019
№219.017.d82e

Облучатель гибридной зеркальной антенны поляриметрического космического радиолокатора

Использование: для радиолокационного наблюдения объектов на различных поляризациях. Сущность изобретения заключается в том, что облучатель состоит из рупора, решеток волноводных и дипольных излучателей, при этом в его состав введена плоская решетка из тонких проводников, направленных...
Тип: Изобретение
Номер охранного документа: 0002703490
Дата охранного документа: 17.10.2019
22.12.2019
№219.017.f0cd

Способ определения экстраполированных значений дальности и скорости сближения летательного аппарата с радиолокационным объектом

Изобретение относится к радиолокационным системам и заключается в том, что по принятым от радиолокационного объекта (РЛО) радиосигналам оценивают значения расстояния от летательного аппарата (ЛА) - носителя РЛС до РЛО. Достигаемый технический результат – возможность определения...
Тип: Изобретение
Номер охранного документа: 0002709785
Дата охранного документа: 20.12.2019
Показаны записи 71-80 из 97.
10.04.2019
№219.017.0054

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях

Способ измерения дальности в импульсно-доплеровских радиолокационных станциях (РЛС) заключается в том, что излучают линейно-частотно-модулированное(ЛЧМ) радиоимпульсы с крутизной, обеспечивающей однозначное измерение дальности до любого летательного аппарата (ЛА), находящегося в пределах...
Тип: Изобретение
Номер охранного документа: 0002296346
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.0055

Способ обнаружения и анализа радиосигналов

Способ обнаружения и анализа радиосигналов заключается в том, что задают: первый порог, определяемый уровнем шума приемного устройства, третий порог, определяемый мощностью помеховых сигналов, четвертый порог, определяемый величиной эффективной площади отражения (ЭПО) обнаруживаемых объектов, а...
Тип: Изобретение
Номер охранного документа: 0002296349
Дата охранного документа: 27.03.2007
10.04.2019
№219.017.02ed

Радиолокационная система для обнаружения проводов линий электропередач

Изобретение относится к радиолокации и может быть использовано на летательных аппаратах при совершении ими маловысотных полетов. Предлагаемая радиолокационная система для обнаружения проводов линий электропередач за счет использования специального вычислителя, оптимизированного на решение...
Тип: Изобретение
Номер охранного документа: 0002310885
Дата охранного документа: 20.11.2007
19.04.2019
№219.017.1d96

Способ автоматического группового целераспределения истребителей с учетом возможного выбывания участников

Изобретение относится к способу автоматического группового целераспределения истребителей с учетом возможного выбывания участников, который заключается в том, что для каждого перехватчика формируют функционал эффективности перехвата, путем решения множества численных уравнений получают...
Тип: Изобретение
Номер охранного документа: 0002684963
Дата охранного документа: 16.04.2019
29.04.2019
№219.017.3f37

Следящий измеритель с обнаружителем маневра и адаптивной коррекцией прогноза

Изобретение относится к радиотехнике и может использоваться в радиотехнических системах измерения параметров траекторий летательных аппаратов, а именно: дальность - скорость, скорость - ускорение, угловая координата - скорость изменения угловой координаты. Техническим результатом является...
Тип: Изобретение
Номер охранного документа: 0002296348
Дата охранного документа: 27.03.2007
29.04.2019
№219.017.410a

Многоканальный радиотермограф

Изобретение относится к области радиотехники и может быть использовано для измерения радиотеплового излучения тел, в частности в медицине, для измерения температурного поля внутренних тканей человека. Многоканальный радиотермограф содержит N антенн, соединенных с N СВЧ-выключателями,...
Тип: Изобретение
Номер охранного документа: 0002310876
Дата охранного документа: 20.11.2007
29.04.2019
№219.017.44d1

Способ скрытного самонаведения самолетов на воздушные объекты

Изобретение относится к области приборостроения и может быть использовано в системах самонаведения летательных аппаратов. Технический результат - расширение функциональных возможностей. Для достижения данного результата траектория наводимого летательного аппарата все время находится в секторе...
Тип: Изобретение
Номер охранного документа: 0002408845
Дата охранного документа: 10.01.2011
01.05.2019
№219.017.47fe

Способ двухэтапного ранжирования воздушных целей по степени опасности в радиолокационных информационно-управляющих системах

Изобретение относится к радиолокации и радиоуправлению и может быть использовано при модернизации существующих и разработке перспективных радиолокационных систем. Достигаемый технический результат: повышение достоверности ранжирования воздушных целей при решении задач многоцелевого...
Тип: Изобретение
Номер охранного документа: 0002686482
Дата охранного документа: 29.04.2019
02.05.2019
№219.017.489e

Система информационного обеспечения скрытного наведения летательных аппаратов в зоне обнаружения импульсно-доплеровской рлс

Система информационного обеспечения метода скрытного наведения летательных аппаратов (ЛА) в зоне обнаружения импульсно-доплеровской РЛС (ИД РЛС) содержит формирователь косвенных измерений, формирователь оценок, регулятор. Формирователь оценок содержит фильтр дальномерного канала, фильтр канала...
Тип: Изобретение
Номер охранного документа: 0002686802
Дата охранного документа: 30.04.2019
09.05.2019
№219.017.4eb3

Способ распознавания надводных кораблей на взволнованной морской поверхности

Способ распознавания надводных кораблей основан на сопоставлении информативных признаков наблюдаемых кораблей, полученных по их радиолокационным изображениям с эталонными признаками, соответствующими определенным классам надводных кораблей. Сущность способа заключается в том, что формирование...
Тип: Изобретение
Номер охранного документа: 0002423722
Дата охранного документа: 10.07.2011
+ добавить свой РИД