×
13.01.2017
217.015.6f60

Результат интеллектуальной деятельности: УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем, содержащих измерители с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где наряду с достижением высокой надежности требуется достижение высокой точности. Технический результат заключается в повышении точности измеряемого параметра, в качестве которого используется «средний» сигнал измерителя из группы n измерителей с числоимпульсным выходом. Для достижения этого результата заявляемое устройство содержит блок выбора среднего сигнала и n блоков масштабирования, каждый из которых содержит регистры задания цены положительного и отрицательного приращения, регистр задания сигнала компенсации, сумматор, цифровой компаратор и триггер, которые производят компенсацию различного значения цены выходного импульса каждого датчика и его начального смещения, что обеспечивает повышение точности. При выходе из строя измерителя устройство фиксирует отказ и продолжает работу без потери информации. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области автоматического управления и может быть использовано при построении высоконадежных резервированных устройств и систем управления, содержащих измерители параметров движения с числоимпульсным выходом (датчики угловой скорости, акселерометры и т.д.), где требуется наряду с достижением высокой надежности достижение высокой точности.

Известно устройство для определения параметров пространственного положения объекта [1], содержащее сумматор, коммутатор, дешифратор и n каналов управления, каждый из которых включает в себя измеритель параметра движения с дискретным выходом.

Недостаток этого устройства состоит в большой избыточности и низкой точности.

Наиболее близким решением к предлагаемому является устройство для определения параметров пространственного положения объекта [2], содержащее измеритель параметра движения, блок выбора конфигурации, масштабирующий сумматор, первый счетчик и n измерительных каналов, каждый из которых содержит масштабирующий блок.

Недостаток этого устройства состоит в сложности реализации и низкой точности. Измеритель параметра движения имеет, как правило, дискретный выход, который характеризуется числом выходных импульсов измерителя за заданное время, при этом каждый импульс соответствует заданному приращению Δ измеряемого параметра. Низкая точность известного решения [2] обусловлена тем, что каждый измеритель параметра движения имеет свойственную ему цену выходного импульса Δi и свойственное ему смещение нулевого сигнала, что не учитывает известное устройство, а это приводит к значительному снижению точности.

Задача изобретения - повышение точности определения параметров пространственного положения объекта.

Эта задача достигается тем, что в устройство для определения параметров пространственного положения объекта, содержащее масштабирующий сумматор, первый счетчик и n масштабирующих блоков, дополнительно введены блок выбора среднего сигнала, первый и второй ключи, второй счетчик, первый и второй одновибраторы, первый и второй элементы задержки и генератор импульсов, выход которого соединен с входом первого счетчика, выход которого соединен с входом второго счетчика и входом первого одновибратора, соединенного своим выходом с входом первого элемента задержки и входом управления компенсацией всех блоков масштабирования, выход первого элемента задержки соединен с входом регистрации блока выбора среднего сигнала и входом управления первого ключа, вход которого соединен с выходом блока выбора среднего сигнала, вход первого, второго и n-го сигнала которого соединен соответственно с выходом первого, второго и n-го блока масштабирования, выход второго счетчика соединен с входом второго одновибратора, выход которого подключен к входу разрешения контроля всех блоков масштабирования и входу управления второго ключа, вход которого соединен с выходом масштабирующего сумматора, вход обнуления которого соединен с выходом второго элемента задержки и входом обнуления сумматора всех блоков масштабирования, выход первого ключа соединен с входом масштабирующего сумматора и входом сигнала управления всех блоков масштабирования, вход контрольного сигнала которых соединен с выходом второго ключа.

Блок масштабирования, содержащий первый, второй, третий и четвертый коммутаторы, дополнительно включает в себя регистр задания цены положительного приращения, регистр задания цены отрицательного приращения, регистр задания сигнала компенсации, сумматор, элемент ИЛИ, элемент выделения модуля, цифровой компаратор и триггер, при этом первый вход соединен с входом управления первого коммутатора, вход которого соединен с выходом с регистра задания цены положительного приращения, выход первого коммутатора соединен с первым входом сумматора, второй вход соединен с входом управления второго коммутатора, вход которого соединен с выходом регистра задания цены отрицательного приращения, выход второго коммутатора соединен с вторым входом сумматора, вход управления компенсацией соединен с входом управления третьего коммутатора, вход которого соединен с выходом регистра задания сигнала смещения, выход третьего коммутатора соединен с третьим входом сумматора, выход которого соединен с выходом блока масштабирования и входом элемента выделения модуля, выход которого соединен с входом четвертого коммутатора, выход которого соединен с шиной B цифрового компаратора, вход управления четвертого коммутатора соединен с входом разрешения контроля, вход контрольного сигнала соединен с шиной A цифрового компаратора, выход В>А которого соединен с входом S триггера, выход которого соединен с выходом неисправности и первым входом элемента ИЛИ, второй вход которого соединен с входом обнуления сумматора, выход элемента ИЛИ соединен с входом R сумматора.

Блок выбора среднего сигнала содержит n(n-1)/2 цифровых компараторов, программируемое запоминающее устройство, мультиплексор, ключ и регистр, при этом входы первого, второго и n-го сигналов соединены с соответствующими шинами A и B упомянутых цифровых компараторов и соответствующими входными шинами мультиплексора, шина управления которого соединена с выходной шиной программируемого запоминающего устройства, шина адреса которого соединена с выходами всех цифровых компараторов, выход мультиплексора соединен с входной шиной ключа, выходная шина которого соединена с входной шиной регистра, выходная шина которого является выходом устройства, вход регистрации соединен с входом управления ключа.

На фиг. 1 приведена блок-схема устройства для определения параметров пространственного положения объекта, на фиг. 2 приведена блок-схема блока масштабирования, на фиг. 3 приведена блок-схема блока выбора среднего сигнала.

На схеме фиг. 1: 1 и 2 - соответственно первый и второй входы блока масштабирования, 3 - вход управления компенсацией, 4 - вход разрешения контроля, 5 - вход обнуления сумматора, 6 - вход контрольного сигнала, 7 - вход сигнала управления, 8 - выход неисправности измерителя, 9 - выход блока масштабирования, 10, 11 и 12 - соответственно первый, второй и n-й блоки масштабирования, 13 - блок выбора среднего сигнала, 14, 15 и 16 - соответственно вход первого, второго и n-го сигналов, 17 - выход устройства, 18 - вход регистрации, 19 - первый ключ, 20 - масштабирующий сумматор, 21 - второй ключ, 22 - генератор импульсов, 23 и 26 - соответственно первый и второй счетчики, 24 и 27 - соответственно первый и второй одновибраторы, 25 и 28 - соответственно первый и второй элементы задержки. Показаны условно: 29, 30 и 31 - первый, второй и n-й измерители.

На фиг. 1 выход генератора импульсов 22 соединен с входом первого счетчика 23, выход которого соединен с входом второго счетчика 26 и входом первого одновибратора 24, соединенного своим выходом с входом первого элемента задержки 25 и входом управления компенсацией 3 всех блоков масштабирования, выход первого элемента задержки 25 соединен с входом регистрации 18 блока выбора среднего сигнала 13 и входом управления первого ключа 19, вход которого соединен с выходом блока выбора среднего сигнала 13, являющимся выходом устройства 17, вход первого 14, второго 15 и n-го 16 сигнала которого соединен соответственно с выходом 9 первого 10, второго 11 и n-го 12 блоков масштабирования, выход второго счетчика 26 соединен с входом второго одновибратора 27, выход которого подключен к входу разрешения контроля 4 всех блоков масштабирования и входу управления второго ключа 21, вход которого соединен с выходом масштабирующего сумматора 20, вход обнуления которого соединен с выходом второго элемента задержки 28 и входом обнуления сумматора 5 всех блоков масштабирования, выход первого ключа 19 соединен с входом масштабирующего сумматора 20 и входом сигнала управления 7 всех блоков масштабирования, вход контрольного сигнала 6 которых соединен с выходом второго ключа 21.

На схеме фиг. 2: 32 - регистр задания цены положительного приращения, 33, 35, 37 и 41 - соответственно первый, второй, третий и четвертый коммутаторы, 34 - регистр задания цены отрицательного приращения, 36 - регистр задания сигнала компенсации, 38 - сумматор, 39 - элемент ИЛИ, 40 - элемент выделения модуля, 42 - цифровой компаратор, 43 - триггер.

На схеме фиг. 2 первый вход 1 блока масштабирования соединен с входом управления первого коммутатора 33, вход которого соединен с выходом с регистра задания цены положительного приращения 32, выход первого коммутатора 33 соединен с первым входом сумматора 38, второй вход 2 блока масштабирования соединен с входом управления второго коммутатора 35, вход которого соединен с выходом с регистра задания цены отрицательного приращения 34, выход второго коммутатора 35 соединен с вторым входом сумматора 38, вход управления компенсацией 3 соединен с входом управления третьего коммутатора 37, вход которого соединен с выходом регистра задания сигнала компенсации 36, выход третьего коммутатора 37 соединен с третьим входом сумматора 38, выход которого соединен с выходом блока масштабирования 9 и входом элемента выделения модуля 40, выход которого соединен с входом четвертого коммутатора 41, выход которого соединен с шиной В цифрового компаратора 42, вход управления четвертого коммутатора 41 соединен с входом разрешения контроля 4, вход контрольного сигнала 6 соединен с шиной A цифрового компаратора 42, выход В>А которого соединен с входом S триггера 43, выход которого соединен с выходом неисправности измерителя 8 и первым входом элемента ИЛИ 39, второй вход которого соединен с входом обнуления сумматора 5, выход элемента ИЛИ 39 соединен с входом R сумматора 38.

На схеме фиг. 3: 44, 45, 46, 47 и 48 - соответственно первый, второй, третий, четвертый и I-й цифровые компараторы, где I=n(n-1)/2, 49 - программируемое запоминающее устройство, 50 - мультиплексор, 51 - ключ, 52 - регистр.

На схеме фиг. 3 входы первого 14, второго 15 и n-го 16 сигналов соединены с соответствующими шинами A и B упомянутых цифровых компараторов 44, 45, 46, 47 и 48 и соответствующими входными шинами мультиплексора 50, шина управления которого соединена с выходной шиной программируемого запоминающего устройства 49, шина адреса которого соединена с выходами всех цифровых компараторов 44, 45, 46, 47 и 48, выход мультиплексора 50 соединен с входной шиной ключа 51, выходная шина которого соединена с входной шиной регистра 52, выходная шина которого является выходом устройства 17, вход регистрации 18 соединен с входом управления ключа 51.

Устройство для определения параметров пространственного положения объекта работает следующим образом. С выхода измерителей 29, 30 и 31 на первый 1 и второй 2 входы каждого блока масштабирования поступают соответственно импульсные сигналы +X1 и -X1 (первый блок масштабирования 10), +Х2 и -Х2 (второй блок масштабирования 11), +Xn и -Xn (n-й блок масштабирования 12). Измерители 29, 30 и 31 производят измерение параметров объекта управления (например, параметров угловой скорости космического аппарата). Знак «+» или «-» определяет направление вектора измеряемого параметра. Импульсные сигналы +X1 и -X1 с выхода измерителя 29 (также и с выходов других измерителей) никогда не совпадают по времени. Измерители 29, 30 и 31 характеризуются той особенностью, что их выходной сигнал имеет начальное смещение, т.е. при нулевом значении измеряемого параметра на выходе присутствует выходной импульсный сигнал +XCM или -XCM определенной частоты fCM. Кроме того, каждый выходной импульс измерителя, соответствующий приращению измеряемого параметра, может отличаться на стабильную величину от заданного значения.

Пусть входной сигнал Xi(i=1, 2, … n) определяется выражением (1)

где Y - измеряемый параметр, Mi - масштабный коэффициент, определяющий отличие фактического значения измеряемого параметра от значения выходного сигнала измерителя, YCMi - начальное смещение выходного сигнала. Считаем, что выходной сигнал измерителя представляет собой последовательность импульсов, частота следования которых fi пропорциональна алгебраической сумме измеряемого параметра Y и начального смещения YCM. При нулевом значении измеряемого параметра Y частота следования выходных импульсов fCMi пропорциональна начальному смещению измеряемого параметра YCMi.

Измеряемый параметр Y (например, угловая скорость или линейное ускорение) является векторной величиной, которая имеет знак «+» или «-». Будем предполагать, что сигнал измеряемого параметра Y знака «+» поступает на вход устройства по одной линии связи, сигнал измеряемого параметра Y знака «-» поступает на вход устройства по другой линии связи. Кроме того, будем считать, что каждый выходной импульс измерителя должен соответствовать заданному значению 9, определяемому из (2)

где Y - измеряемый параметр, YCM - начальное смещение, t - время, при котором интеграл величин (Y+YCM) (2) становится равным заданному значению Δ. В этом случае частота следования выходных импульсов fi измерителя, формируемых в моменты времени t, будет определяться выражением

Основная погрешность измеряемого параметра определяется точностью формирования величины Δ. Если Δi значение заданной величины, формируемой измерителем, то

Будем считать, что выходной сигнал Xi измерителя представляет собой последовательность импульсов с частотой следования fi (3) и ценой каждого импульса Δi (4).

В резервированных системах, содержащих n каналов, используются, как правило, и n измерителей. В таких системах информация об измеряемом параметре объекта управления должна поступать с исправно работающего измерителя. Наиболее распространенным и простым способом получения такой информации является способ мажоритарного выбора, т.е. получение сигнала с выхода мажоритарного устройства или иного устройства, реализующего указанный способ.

Пусть входные сигналы +Х1, +Х2, +Xn поступают на первые входы 1, входные сигналы -X1, -Х2, -Xn поступают на вторые входы 2 соответствующих блоков масштабирования устройства. Для наглядности примем n=3. Считаем, что в начальный момент времени все счетчики и сумматоры находятся в нулевом состоянии.

Каждый измеритель пространственного положения объекта характеризуется свойственным ему значением цены каждого импульса Δi и величиной начального смещения YCM. Эти величины носят обычно стабильный характер. Величина Δi может отличаться от заданного значения Δ на значительную величину (до 10%), начальное смещение YCM может достигать нескольких процентов от максимального значения измеряемого параметра Y Значения Δi и YCM являются известными величинами. Эти значения в виде соответствующего кода (фиг. 2) заносятся в регистр задания цены положительного приращения 32 (+Δi), регистр задания цены отрицательного приращения 34 (-Δi) и регистр задания сигнала компенсации 36 (ΔCM).

Импульсы +Xi, поступающие на первый вход 1 блока масштабирования, открывают первый коммутатор 33 (фиг. 2) и содержимое регистра задания цены положительного приращения 32 подается на вход сумматора 38, выходной сигнал которого Di изменяется на величину +Δi. При каждом поступлении импульса +Xi выходной сигнал Di сумматора 38 изменяется на величину +Δi. Импульсы -Xi, поступающие на второй вход 2 блока масштабирования, открывают второй коммутатор 35 и содержимое регистра задания цены отрицательного приращения 34 подается на вход сумматора 38, выходной сигнал которого Di изменяется на величину -Δi. При каждом поступлении импульса -Xi выходной сигнал Di сумматора 38 изменяется на величину -Δi. Сигнал Т0, поступающий с выхода первого одновибратора 24 (фиг. 1) на вход управления компенсацией 3 блока масштабирования, открывает третий коммутатор 37 (фиг. 2) и содержимое регистра задания сигнала компенсации 36 подается на вход сумматора 38, выходной сигнал которого Di изменяется на величину ΔCM.

При известных значениях величины и знака начального смещения YCM и цены импульса Δi можно определить величину ΔCM, записываемую в регистр задания сигнала компенсации 36. При заданных значениях YCM и Δi определяется частота fCM, соответствующая начальному смещению YCM при нулевом сигнале Y Если, например, начальное смещение YCM имеет положительный знак, то

Период Т0 определяется произведением коэффициента деления первого счетчика 23 и периода следования импульсов генератора 22.

При выполнении равенства (5) начальное смещение YCM измерителя будет компенсироваться сигналом с регистра задания сигнала компенсации 36, периодически подаваемым на вход сумматора 38 с периодом Т0.

Определим содержимое Di сумматора 38 в моменты времени Т0. Сигнал с выхода первого одновибратора 24 (фиг. 1) поступает на вход первого элемента задержки 25, а с его выхода на вход регистрации 18 блока выбора среднего сигнала 13 и вход управления первого ключа 19. Если в начальный момент времени сумматоры 38 всех блоков масштабирования находились в нулевом состоянии, то по истечении времени Т0 содержимое Di сумматора 38 будет определяться выражением

где fi - частота следования выходных импульсов измерителя в данный момент времени. С учетом (4) можно считать, что с точностью до стабильности исправно работающего измерителя (а это не хуже 0,1%) содержимое сумматоров 38 всех блоков масштабирования равны, т.е. D1=D2=Dn. Если, например, при измерении некоторой величины Y при заданном значении Δ частота следования выходного сигнала равна f, то при заданном значении Δi=МΔ частота следования выходных импульсов fi·=f/M. Иначе говоря, Δi·fi=Δf.

Сигналы D1, D2, Dn могут отличаться незначительно, а со временем в случае отказа какого-либо измерителя это отличие становится существенным. Рассмотрим работу устройства на примере использования трех измерителей и трех блоков масштабирования (n=3). Сигналы D1 с выхода первого блока масштабирования 10, D2 с выхода второго блока масштабирования 11 и D3 с выхода n-го блока масштабирования 12 поступают соответственно на входы 14, 15 и 16 блока выбора среднего сигнала 13 (фиг. 3). Этот блок содержит n(n-1)/2 цифровых компараторов, в рассматриваемом случае при n=3 блок содержит три цифровых компаратора. Эти компараторы сравнивают сигналы D1, D2, D3 каждый с каждым. Результат сравнения каждого цифрового компаратора обозначим S12, S13, S23. Символ S12 означает сравнение сигналов D1 и D2, причем первая цифра символа указывает также на то, что сигнал D с этой цифрой поступает на шину A соответствующего цифрового компаратора, а вторая цифра указывает на то, что сигнал D с этой цифрой поступает на шину B этого же цифрового компаратора. Аналогично и для символов S13, S23. Пусть

Сигналы S12, S13, S23 с выхода цифровых компараторов поступают на шину адреса программируемого запоминающего устройства 49, и их кодовая комбинация образует шину адреса этого запоминающего устройства. Рассмотрим формирование «среднего» сигнала DM из сигналов D1, D2, D3 на выходе мультиплексора 50. «Средним» сигналом DM будем считать, например, сигнал D2, если выполняется условие (8)

Рассмотрим возможные кодовые комбинации сигналов S12, S13, S23, являющихся шиной адреса программируемого запоминающего устройства 49, и определим при этом «средний» сигнал DM. Результаты отразим в таблице фиг. 4.

Определим содержимое AM ячеек программируемого запоминающего устройства 49, которое является шиной адреса мультиплексора 50. Мультиплексор 50 должен подключать к своему выходу DM тот из сигналов D1, D2, D3, который является «средним». Будем считать, что при кодовой комбинации шины адреса AM «01» мультиплексор 50 подключает к выходу сигнал D1, при кодовой комбинации «10» мультиплексор 50 подключает к выходу сигнал D2, при кодовой комбинации «11» мультиплексор 50 подключает к выходу сигнал D3. Таким образом, согласно таблице на выходе мультиплексора 50 формируется «средний» сигнал DM из входных сигналов D1, D2, D3.

Сигнал DM с выхода мультиплексора 50 поступает на вход 18 ключа 51, управляемого сигналом Т3 с выхода первого элемента задержки 25 (фиг.1). Сигнал T3 открывает ключ 51 и сигнал DM подается на вход регистра 52 и в нем хранится. Выходная шина регистра 52 является выходом устройства 17. Содержимое регистра 52 DK=DM на момент поступления сигнала T3 с выхода первого элемента задержки 25 определяет изменение за время Т0 сигнала того измерителя, сигнал которого соответствует «среднему» значению в соответствии с (8). Одновременно сигнал Т3 открывает первый ключ 19 (фиг. 1) и сигнал DK подается на вычитающий вход 7 сумматора 38 всех блоков масштабирования. Если из трех сигналов D1, D2 и D3 «средним» является сигнал D2, то состояние сумматоров 38 в момент поступления сигнала Т3 определяется равенствами

где Dij - состояние сумматора 38 на момент времени tj (j=1, 2, 3…), tj=j T0.

Если в качестве измеряемого параметра рассматривается угловая скорость вращения космического аппарата, то в соответствии с (2) и (6) сигнал DK представляет собой изменение углового положения космического аппарата за время Т0, при этом сигнал DK является «средним» (и достоверным) сигналом из D1, D2 и D3. Этот сигнал используется для определения пространственного положения осей аппарата относительно выбранного базиса путем решения кинематических уравнений [3]. Сигнал DK остается достоверным и при отказе любого измерителя.

Если в устройстве используются более 3-х измерителей, то на шину А первых (n-1) цифровых компараторов подается первый сигнал D1, на шину В этих же цифровых компараторов подаются соответственно второй D2, третий D3 и n-й Dn сигналы, на шину A следующих (n-2) цифровых компараторов подается второй сигнал D2, на шину B этих же цифровых компараторов подаются соответственно третий D3, четвертый D4 и n-й Dn сигналы и т.д. На шину A последнего цифрового компаратора подается (n-1)-й сигнал D(n-1), на шину B этого цифрового компаратора подается n-й сигнал Dn. Выходные сигналы цифровых компараторов S12, S13, … S(n-1)n образуют шину адреса программируемого запоминающего устройства 49, выходной сигнал которого в соответствии с ранее приведенной таблицей формирует адрес для мультиплексора 50, что однозначно позволяет определить «средний» выходной сигнал DK.

Рассмотрим работу устройства в случае отказа одного из измерителей. При исправной работе всех измерителей выходные сигналы D1j, D2j и D3j будут отличаться друг от друга незначительно. Текущие значения этих сигналов определяются (9) и, если, например, при измерении параметра Y в течение длительного времени будет выполняться соотношение

то в соответствии с (9) содержимое сумматора 38 D1j первого блока масштабирования 10 будет постоянно возрастать, содержимое сумматора 38 D2j второго блока масштабирования 11 будет близко к нулю, содержимое сумматора 38 D3j третьего блока масштабирования 12 будет постоянно уменьшаться. За заданное время TH при исправной работе измерителей разность сигналов D1j, D2j и D3j не должна превышать некоторого заданного значения D. Это значение можно определить в виде

где δ - коэффициент, ΔK и fK - соответственно «цена» импульса и частота импульсов измерителя «среднего» сигнала.

Допустимое значение коэффициента δ составляет (0,01-0,05) и заранее известно. Выходной сигнал устройства DK в каждые моменты времени Т0 подается на вход масштабирующего сумматора 20 с выхода первого ключа 19, открываемого выходным сигналом первого элемента задержки 25. Масштабирующий сумматор 20 производит суммирование сигналов DK с умножением на коэффициент δ. В результате суммирования в течение времени TH выходной сигнал D масштабирующего сумматора 20 определяется выражением (11). В моменты времени TH (интервал времени формируется последовательно включенными первым 23 и вторым 26 счетчиками) сигнал с выхода второго одновибратора 27 открывает второй ключ 21 и сигнал D с выхода масштабирующего усилителя 20 подается на вход контрольного сигала 6 всех блоков масштабирования. Этот сигнал поступает на шину A цифрового компаратора 42 (фиг. 3), на шину B которого в этот же момент времени подается сигнал с выхода элемента выделения модуля 40 через замкнутый четвертый коммутатор 41, управляемый выходным сигналом TH второго одновибратора 27.

Если, например, отказал первый измеритель 29, то за время TH содержимое сумматора 38 D1 первого блока масштабирования 10 превысит значение D и цифровой компаратор 42 сформирует сигнал В>А, который поступит на вход S триггера 43 и установит его в единичное состояние. На выходе 8 первого блока масштабирования 10 формируется сигнал неисправности N1, который поступает на вход элемента ИЛИ 39 и далее на вход R сумматора 38, удерживая его в нулевом состоянии, блокируя тем самым поступление сигналов с отказавшего измерителя 29. По истечении времени задержки τ32 выходной сигнал второго элемента задержки 28 поступает на вход R масштабирующего сумматора 20 и вход обнуления сумматора 5 всех блоков масштабирования (на вход элемента ИЛИ 39 и с его выхода на вход R сумматора 38).

Таким образом, при исправной работе всех измерителей в моменты времени T0 производится компенсация начального смещения YCMi выходного сигала каждого измерителя, с задержкой τ31 первого элемента задержки 25 производится установка в регистр 52 выходного сигнала устройства DK, соответствующего изменению углового положения объекта за время Т0. В моменты времени TH производится контроль исправности каждого измерителя и при фиксации отказа формируется сигнал неисправности Ni и блокировка сигнала отказавшего измерителя. Сигнал DK соответствует выходному сигналу того измерителя, сигнал которого является «средним» в соответствии с (10). Использование этого сигнала позволяет достоверно определить пространственное положение объекта даже в случае отказа измерителя без потери информации.

Погрешность определения пространственного положения объекта зависит от точности измеренного сигнала DK. Известное устройство [2] предполагает использование n(n>3) не ортогонально расположенных измерителей. Масштабирующий блок известного устройства позволяет при использовании заданной конфигурации из четырех измерителей для каждого измерителя выбрать из своей памяти значения направляющих косинусов оси чувствительности относительно исходного базиса. При этом учет масштабного коэффициента и начального смещения выходного сигнала измерителя не предусматривается.

Оценим погрешность известного [2] и предлагаемого решений. Оценку погрешности будем производить по отношению фактического значения измеряемого параметра Y (D) к измеренной величине этого параметра Yi (DK). В соответствии с (2) заданное значение Δ представляет собой приращение угла поворота объекта. Предположим, что объект вращается с постоянной угловой скоростью Y0. За время Т0 объект повернется на угол D

где f0 - частота следования выходных импульсов измерителя при угловой скорости Y0. Измеренная известным устройством эта величина DK1 будет равна

где М - масштабный коэффициент измерителя, fCM - частота следования выходных импульсов измерителя из-за начального смещения нулевого сигнала.

Относительную погрешность определения пространственного положения объекта δ11 известного устройства можно определить в виде

Погрешность определения пространственного положения объекта зависит также от погрешности фактического расположения оси чувствительности измерителя относительно исходного базиса. Если угловое положение оси чувствительности измерителя относительно исходного базиса известно с точностью Δα, то относительная дополнительная погрешность определения пространственного положения объекта δ12 будет равна

Суммарная относительная погрешность δ1 известного устройства будет равна

Оценим относительную погрешность предлагаемого устройства. Измеренная предлагаемым устройством величина DK2 будет равна

где ΔK - цена импульса измерителя со «средней» частотой выходного сигнала, fK -частота выходного сигнала. Относительная погрешность δ21 предлагаемого устройства будет равна

В предлагаемом устройстве оси чувствительности измерителей совпадают с осями исходного базиса. Относительная дополнительная погрешность определения пространственного положения объекта δ22 вследствие погрешности расположения оси чувствительности измерителя относительно исходного базиса будет равна

Суммарная относительная погрешность δ2 предлагаемого устройства будет равна

Пусть Δ=3 угл. с, Y=1 0/с, f0=1200 Гц, М=1,1, YCM=0,05 0/с, fCM=80 Гц, α=600, Δα=0,50, ΔK=3,3 угл. с, fK=1090 Гц. В этом случае δ11=0,167, δ12=0,008, δ21=0,001, δ22=0,00004, δ1=0,175 или 17,5%, δ2=0,00104 или 0,104%.

Как следует из приведенного анализа, относительная погрешность δ2 предлагаемого устройства для определения параметров пространственного положения объекта значительно меньше погрешности δ1 известного устройства [2].

Предлагаемая совокупность признаков в рассмотренных авторами решениях не встречалась для решения поставленной задачи и не следует явным образом из уровня техники, что позволяет сделать вывод о соответствии технического решения критериям "новизна" и "изобретательский уровень". В качестве элементов для реализации устройства можно использовать стандартные сумматоры, цифровые компараторы, элементы задержки, логические микросхемы, коммутаторы, регистры, одновибраторы, генераторы, ключи, счетчики импульсов, элементы выделения модуля.

Литература

1. Авторское свидетельство СССР №613291, кл. G05B 15/02, G05D 1/02. Устройство для управления пространственным положением объекта, от 30.06.1975.

2. Патент РФ №2179736, кл. G05D 1/08, G05B 15/02, от 20.02.2002. Устройство для определения параметров пространственного положения объекта.

3. В.Н. Бранец, И.П. Шмыглевский. Введение в теорию бесплатформенных инерциальных навигационных систем. М., «Наука», 1992, с. 107-127.


УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ПРОСТРАНСТВЕННОГО ПОЛОЖЕНИЯ ОБЪЕКТОВ
Источник поступления информации: Роспатент

Показаны записи 301-310 из 375.
11.03.2019
№219.016.d941

Радиальный вентилятор

Изобретение относится к вентиляторостроению и может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники, а также в других областях техники. Технический результат заключается в повышении надежности радиального вентилятора за счет устранения возможности...
Тип: Изобретение
Номер охранного документа: 0002354850
Дата охранного документа: 10.05.2009
11.03.2019
№219.016.d96f

Космическая головная часть ракеты-носителя

Изобретение относится к ракетно-космической технике и может быть использовано при проектировании и создании космической головной части. Космическая головная часть ракеты-носителя содержит обтекатель, космический аппарат, состоящий из, по крайней мере одного отсека, на поверхности которого...
Тип: Изобретение
Номер охранного документа: 0002355607
Дата охранного документа: 20.05.2009
11.03.2019
№219.016.d9c7

Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции

Изобретение относится к области очистки или защиты окружающей среды внутри обитаемых орбитальных станций от разрушающего воздействия микроорганизмов. Способ разрушения микроорганизмов-биодеструкторов на поверхностях объектов в жилых отсеках космической станции включает периодическое облучение...
Тип: Изобретение
Номер охранного документа: 0002372942
Дата охранного документа: 20.11.2009
11.03.2019
№219.016.d9d4

Резервированный счетчик для формирования меток времени

Использование: в области вычислительной и импульсной техники при построении высоконадежных резервированных систем для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит...
Тип: Изобретение
Номер охранного документа: 0002379829
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.d9e0

Резервированный счетчик

Изобретение используется в области вычислительной и импульсной техники для счета и обработки цифровой информации. Технический результат заключается в упрощении схемной реализации устройства. Устройство состоит из m каналов, каждый из которых содержит n-разрядный счетчик, блок из n мажоритарных...
Тип: Изобретение
Номер охранного документа: 0002379828
Дата охранного документа: 20.01.2010
11.03.2019
№219.016.da87

Устройство для старта полезного груза с планет без атмосферы

Изобретение относится к космической технике, в частности к устройствам доставки полезного груза с Луны на Землю, например для транспортировки с Луны одноатомного газа гелий 3 (Hе), который может быть использован в качестве дополнительного источника термоядерной энергии. Устройство содержит...
Тип: Изобретение
Номер охранного документа: 0002368543
Дата охранного документа: 27.09.2009
11.03.2019
№219.016.dac1

Система теплозащиты космического аппарата

Изобретение относится к конструкции теплозащиты космического аппарата, выводимого ракетой-носителем в космическое пространство. Система теплозащиты космического аппарата содержит экранно-вакуумную тепловую изоляцию (ЭВТИ). Для ЭВТИ предусмотрено устройство обеспечения ее прочностных и...
Тип: Изобретение
Номер охранного документа: 0002360849
Дата охранного документа: 10.07.2009
11.03.2019
№219.016.db2c

Блок центробежных вентиляторов

Изобретение относится к вентиляторостроению, может быть использовано в составе систем терморегулирования изделий космической техники и обеспечивает уменьшение поперечных габаритов и расширение компоновочных возможностей блока центробежных вентиляторов. Указанный технический результат...
Тип: Изобретение
Номер охранного документа: 0002415306
Дата охранного документа: 27.03.2011
11.03.2019
№219.016.db53

Устройство для фиксации ручного инструмента

Изобретение относится к приспособлениям для фиксации ручного инструмента и касается устройства для фиксации ручного инструмента. Устройство для фиксации ручного инструмента, содержащее закрепленную на основании гребенку с зубцами, выполненными в виде лепестков, зазор между которыми, а также...
Тип: Изобретение
Номер охранного документа: 0002414342
Дата охранного документа: 20.03.2011
11.03.2019
№219.016.db6b

Анод электроракетного двигателя с замкнутым дрейфом электронов

Изобретение относится к области электроракетных двигателей. Анод электроракетного двигателя с замкнутым дрейфом электронов включает корпус и входной и выходной коллекторы, при этом входной коллектор связан с изолированными друг от друга анодными магистралями и имеет отверстия, сообщающие его с...
Тип: Изобретение
Номер охранного документа: 0002421630
Дата охранного документа: 20.06.2011
Показаны записи 301-309 из 309.
19.04.2019
№219.017.2e36

Устройство для мажоритарного выбора сигналов

Изобретение относится к области автоматики и вычислительной техники и может быть использовано при построении высоконадежных резервированных устройств и систем с возможностью обеспечения синхронной работы всех резервных каналов. Техническим результатом изобретения является повышение надежности...
Тип: Изобретение
Номер охранного документа: 0002396591
Дата охранного документа: 10.08.2010
19.04.2019
№219.017.2e9a

Способ определения угловых координат измерительной оси акселерометра

Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. Способ включает измерение сигнала в исходном положении и после двух разворотов вокруг двух горизонтальных осей, положение которых известно...
Тип: Изобретение
Номер охранного документа: 0002316009
Дата охранного документа: 27.01.2008
19.04.2019
№219.017.3090

Способ определения угловых координат альфа, бета, гамма измерительной оси акселерометра относительно ортогонального базиса x, y, z

Изобретение относится к области измерения и может быть использовано для настройки и калибровки акселерометров и приборов, содержащих акселерометры. Способ определения угловых координат, включающий по два разворота вокруг двух горизонтальных осей, положение которых известно относительно...
Тип: Изобретение
Номер охранного документа: 0002323445
Дата охранного документа: 27.04.2008
09.05.2019
№219.017.5030

Релейный регулятор

Изобретение относится к автоматике и может быть использовано в резервированных системах управления различными инерционными объектами, например поворотными платформами, промышленными роботами, летательными аппаратами. Технический результат - повышение надежности. Релейный регулятор содержит...
Тип: Изобретение
Номер охранного документа: 0002441265
Дата охранного документа: 27.01.2012
16.05.2019
№219.017.528a

Двухрежимный ракетный двигатель твердого топлива

Изобретение относится к области ракетной техники, а именно к ракетным двигателям твердого топлива – РДТТ, и предназначено для использования в ракетах различного назначения. Технический результат – повышение эффективности работы РДТТ. Устройство содержит цилиндрический корпус, стартовую и...
Тип: Изобретение
Номер охранного документа: 0002687500
Дата охранного документа: 14.05.2019
24.05.2019
№219.017.5f94

Релейный регулятор

Изобретение относится к технике автоматического управления, в частности к технике формирования управляющих сигналов. Технический результат заключается в повышении надежности. Релейный регулятор содержит в каждом из (2m+1) канале аналого-цифровой преобразователь (АЦП), запоминающее устройство...
Тип: Изобретение
Номер охранного документа: 0002342690
Дата охранного документа: 27.12.2008
19.06.2019
№219.017.887b

Стабилизатор сверхзвукового реактивного снаряда

Изобретение относится к области ракетной техники, а именно к реактивным снарядам систем залпового огня. Передние и задние кромки лопастей выполнены в виде сочетания плоского притупления шириной 0,1...0,3 средней вдоль размаха толщины лопасти и клина с выпуклой стороны лопасти с углом 7°...12° в...
Тип: Изобретение
Номер охранного документа: 0002328695
Дата охранного документа: 10.07.2008
26.06.2019
№219.017.9276

Сорбент для очистки воды от токсичных фосфорорганических соединений, цианидов и мышьяковистых соединений и способ его получения

Изобретение относится к области экологии. Предложен сорбент, полученный на основе угля из косточкового сырья. Способ получения сорбента включает приготовление пропиточного раствора путём разбавления концентрированного раствора солей железа и меди дистиллированной водой, подогретой до 30-40°С,...
Тип: Изобретение
Номер охранного документа: 0002692344
Дата охранного документа: 24.06.2019
20.04.2023
№223.018.4e7c

Отделяемый боеприпас

Изобретение относится к области ракетной техники и может быть использовано при проектировании реактивных снарядов, ракет с отделяемыми боеприпасами - отделяемыми головными частями (ОГЧ). Отделяемый боеприпас содержит цилиндрический корпус (1) с донным срезом и с затупленной носовой частью (2) и...
Тип: Изобретение
Номер охранного документа: 0002793906
Дата охранного документа: 07.04.2023
+ добавить свой РИД