×
13.01.2017
217.015.6eeb

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ

Вид РИД

Изобретение

Аннотация: Изобретение относится к порошковой металлургии. Способ получения нанопорошка меди из отходов электротехнической медной проволоки, содержащих не менее 99,5% меди, включает их электроэрозионное диспергирование в дистиллированной воде при частоте следования импульсов 100-120 Гц, напряжении на электродах 200-220 В и емкости разрядных конденсаторов 25,5-35,5 мкФ, с последующим центрифугированием раствора для отделения наноразмерных частиц от крупноразмерных. Обеспечивается получение сферического нанопорошка меди с незначительным количеством примесей. 3 ил., 1 табл., 1 пр.

Предлагаемое изобретение относится к области порошковой металлургии, а именно к получению медных нанопорошковых материалов.

Известен способ получения нанодисперсного порошка меди [Патент RU на изобретение 2426805]. Способ получения нанодисперсного порошка меди восстановлением включает смешение соли меди с раствором глюкозы, растворение соли при нагревании, введение гидроксида натрия, выдержку в изотермическом режиме и последующее выделение металлической меди в виде нанодисперсного порошка.

Недостатками данного метода являются использование в качестве исходных веществ дорогостоящих реактивов, экологические проблемы (сточные воды, вредные выбросы).

Наиболее близким к заявляемому является способ получения композитных нанопорошков [Патент RU на изобретение №2412784]. Существенным отличием предложенного способа является то, что для получения композитных нанопорошков составляющие его части предварительно нагревают до получения однородного расплава, причем вещества подбираются с определенными соотношениями их температур конденсации и плавления. Далее мощность пучка электронов увеличивается и расплав испаряется. Вследствие отличия температур конденсации двух веществ их пары будут конденсироваться в разных местах камеры (температурных зонах).

Недостатками этого и вышеизложенного способов являются:

1. Большая энергоемкость процесса.

2. Высокая температура при проведении процесса конденсации меди - 2590°C.

3. Экологические проблемы (сточные воды, вредные выбросы).

4. Довольно высокая себестоимость получаемого порошка. Заявляемое изобретение направлено на решение задачи получения медных нанопорошков из отходов с низкой себестоимостью, невысокими энергетическими затратами и экологической чистотой процесса.

Поставленная задача достигается способом получения медного нанопорошка из отходов, отличающимся от прототипа тем, что отходы электротехнической медной проволоки (например, ТУ 16-705.492-2005), содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 100-120 Гц; напряжении на электродах 200…220 В и емкости конденсаторов 25,5…35,5 мкФ.

На фигуре 1 описаны этапы получения медного нанопорошка; на фигуре 2 - схема процесса ЭЭД, на фигуре 3 - микрофотография наночастиц медного порошка; в таблице 1 - распределение по размерам микрочастиц образца медного порошка.

Процесс ЭЭД представляет собой разрушение токопроводящего материала в результате локального воздействия кратковременных электрических разрядов между электродами [Немилов, Е.Ф. Электроэрозионная обработка материалов. - Л.: Машиностроение, Ленингр. отд-ние, 1983. - 160 с.]. Получение медного порошка на экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов [Патент RU на изобретение №2449859] проводилось по схеме, представленной на фигуре 1, в четыре этапа [6]:

- 1 этап - подготовка к процессу электроэрозионного диспергирования;

- 2 этап - процесс электроэрозионного диспергирования;

- 3 этап - выгрузка порошка из реактора и его центрифугирование.

- 4 этап - сушка и взвешивание нанопорошка меди.

Получаемые этим способом порошковые материалы имеют в основном сферические частицы размером от 0,001 до 100 мкм. Причем, изменяя электрические параметры процесса диспергирования (напряжение на электродах, емкость конденсаторов и частоту следования импульсов), можно управлять шириной и смещением интервала размера частиц, а также производительностью процесса. Для отделения наночастиц от крупноразмерных используется центрифуга.

На первом этапе производили сортировку медных отходов, их промывку, сушку, обезжиривание и взвешивание. Реактор заполняли рабочей средой - дистиллированной водой, отходы загружали в реактор. Монтировали электроды. Смонтированные электроды подключали к генератору. Устанавливали необходимые параметры процесса: частоту следования импульсов, напряжение на электродах, емкость конденсаторов.

На втором этапе - этапе электроэрозионного диспергирования включали установку. Процесс ЭЭД представлен на фигуре 2. Импульсное напряжение генератора 1 прикладывается к электродам 2 и 3 и далее к медным отходам 6 (в качестве электродов также служат медные отходы). При достижении напряжения определенной величины происходит электрический пробой рабочей среды 5, находящийся в межэлектродном пространстве, с образованием канала разряда 7. Благодаря высокой концентрации тепловой энергии, материал в точке разряда 8 плавится и испаряется, рабочая среда испаряется и окружает канал разряда газообразными продуктами распада 9 (газовым пузырем). В результате развивающихся в канале разряда и газовом пузыре значительных динамических сил капли расплавленного материала 4 выбрасываются за пределы зоны разряда в рабочую среду, окружающую электроды, и застывают в ней, образуя каплеобразные частицы медного нанопорошка.

На третьем этапе проводится выгрузка рабочей жидкости с порошком из реактора, отделение наночастиц от крупноразмерных с помощью центрифуги. При этом крупные частицы оседают под действием центробежных сил, а наночастицы остаются в растворе.

На четвертом этапе происходит выпаривание раствора, его сушка, взвешивание и последующий анализ нанопорошка.

При этом достигается следующий технический результат: получение нанопорошков меди с частицами правильной сферической формы с невысокими энергетическими затратами и экологической чистотой процесса способом электроэрозионного диспергирования (ЭЭД).

Способ позволяет получить медные порошки без использования химических реагентов, что существенно влияет на себестоимость порошка и позволяет избежать загрязнения рабочей жидкости и окружающей среды химическими веществами.

Средние удельные затраты электроэнергии при производстве медного электроэрозионного порошка составляет 2,1 кг./кВт·час, что ниже других способов получения медных нанопорошков. Электроэрозионное диспергирование позволяет эффективно утилизировать медные отходы, содержащие не менее 99,5% меди, с невысокими энергетическими затратами и экологической частотой процесса и получать нанопорошок меди.

Нанопорошковые материалы, получаемые ЭЭД медных отходов, содержащих не менее 99,5% меди, могут эффективно использоваться при изготовлении и восстановлении деталей машин различными способами, в виде добавок к смазкам в различного рода узлах трения высокотвердой дисперсной фазы, в производстве противоизносных препаратов, в автомобильной промышленности при изготовлении автомобильных покрышек и многих других областях промышленности и народного хозяйства. При создании антифрикционных присадок используют наноразмерные порошки, так как более крупные частицы приводят к более быстрому износу узлов трения деталей машин, кроме того, крупные частицы способны оседать в маслах и СОЖ и забивать фильтры в двигателях. При создании катализаторов также используют нанопорошки, так как с уменьшением размера частиц возрастает их удельная поверхность, а следовательно, химическая и каталитическая активность. На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в дистиллированной воде при массе загрузки 750 г диспергировали медные отходы. Для определения оптимальных параметров процесса диспергирования провели серию опытов, в которых варьировали электрические параметры процесса.

1) Электрические параметры установки:

- частота следования импульсов 28-44 Гц;

- напряжение на электродах от 150…220 В;

- емкость конденсаторов 35,5-45,5 мкФ.

Полученный медный порошок имеет размеры частиц до 10 мкм и может быть отнесен к тонко- и среднедисперсным. Производительность процесса низкая, однако позволяет получить порошок с размерами частиц, пригодными к промышленному применению.

2) Электрические параметры установки:

- частота следования импульсов 44-100 Гц;

- напряжение на электродах от 150…220 В;

- емкость конденсаторов 25,5-45,5 мкФ.

Полученный медный порошок имеет размеры частиц до 200 мкм и может быть отнесен к среднедисперсным. Производительность процесса от средней до высокой и позволяет получить порошок с размерами частиц, пригодными к промышленному применению.

3) Электрические параметры установки:

- частота следования импульсов 100-120 Гц;

- напряжение на электродах от 150…220 В;

- емкость конденсаторов 45,5-55,5 мкФ.

Полученный медный порошок имеет частицы с размерами более 200 мкм и может быть отнесен к грубодисперсным. Производительность процесса высокая, однако порошок с такими размерами частиц в настоящее время не пригоден к промышленному применению.

На основании представленных примеров определены оптимальные параметры процесса электроэрозионного диспергирования, совмещающие производительность процесса и качество получаемого порошка и позволяющие получить порошок, пригодный к промышленному применению. Оптимальными являются следующие электрические параметры установки:

- частота следования импульсов 28 Гц;

- напряжение на электродах от 200…220 В;

- емкость конденсаторов 35,5 мкФ.

Пример

На экспериментальной установке для получения нанодисперсных порошков из токопроводящих материалов в дистиллированной воде при массе загрузки 1 кг диспергировали медные отходы, содержащие не менее 99,5% меди. При этом использовали следующие электрические параметры установки:

- частота следования импульсов 100 Гц;

- напряжение на электродах 220 В;

- емкость конденсаторов 25,5 мкФ.

Полученный медный порошок исследовали различными методами. Медный порошок до отделения нанофракций проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам (таблица 1). Нанофракции медного порошка выделены заливкой. Количество нанофракций в исследуемом образце составляет 12%. Коэффициент элонгации (удлинения) медных частиц составляет 1,93, что говорит о сферической форме частиц медного порошка.

Нанопорошок с помощью центрифуги отделили от крупноразмерных. Для изучения формы и морфологии полученного медного нанопорошка были выполнены снимки на растровом электронном микроскопе «QUANTA 600 FEG». На основании фигуры 3 нанопорошок, полученный методом ЭЭД из медных отходов, в основном, состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.

Полученный медный порошок исследовали различными методами. Изучение фазового состава электроэрозионного медного порошка проводили на аналитическом рентгеновском дифрактометре ARL9900 Intellipower Workstation. В результате изучения концентраций элементного и минералогического состава образца были получены результаты, представленные на фигуре 3. Основным материалом в образцах является медь - 94%, оксид меди (I) - 3,9% и оксид кремния (IV) - 2,1%.

Затем полученный медный порошок проанализировали с помощью лазерного анализатора размеров частиц «Analysette 22 NanoTec» для определения распределения полученных частиц порошка по размерам. Установлено, что средний размер частиц составляет 23,65 мкм, арифметическое значение - 23,655 мкм, удельная площадь поверхности - 16199,54 см2/см3. Коэффициент элонгации (удлинения) медных частиц размером 24,034 мкм составляет 1,93, что говорит о сферической форме частиц медного порошка.

Для изучения формы и морфологии полученных медных порошков были выполнены снимки на растровом электронном микроскопе «QUANTA 600 FEG». Порошок, полученный методом ЭЭД из медных отходов, в основном состоит из частиц правильной сферической формы (или эллиптической), с включениями частиц неправильной формы (конгломератов) и осколочной формы.

Результаты рентгеноспектрального микроанализа частиц медного порошка, проведенного с помощью энергодисперсионного анализатора рентгеновского излучения фирмы EDAX, встроенного в растровый электронный микроскоп QUANTA 600 FEG, представлены в таблице 1. Установлено, что основным элементом в порошке, полученном методом электроэрозионного диспергирования отходов электротехнической медной проволоки, является медь (98,69%) и незначительное количество примесей (1,31%).

Способ получения нанопорошка меди из отходов электротехнической медной проволоки, отличающийся тем, что отходы электротехнической медной проволоки, содержащие не менее 99,5% меди, подвергают электроэрозионному диспергированию в дистиллированной воде при частоте следования импульсов 100-120 Гц, напряжении на электродах 200-220 В и емкости разрядных конденсаторов 25,5-35,5 мкФ, с последующим центрифугированием раствора для отделения наноразмерных частиц от крупноразмерных.
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ
СПОСОБ ПОЛУЧЕНИЯ НАНОПОРОШКА МЕДИ ИЗ ОТХОДОВ
Источник поступления информации: Роспатент

Показаны записи 131-140 из 326.
04.04.2018
№218.016.35f7

Экологичное дорожное ограждение

Изобретение относится к ограждениям автомобильных дорог и городских улиц и может использоваться в качестве барьерных ограждений, служащих для повышения безопасности при движении автомобильного транспорта, очистки уличного воздуха от вредных компонентов выхлопных газов. Экологичное дорожное...
Тип: Изобретение
Номер охранного документа: 0002646293
Дата охранного документа: 02.03.2018
10.05.2018
№218.016.3b42

Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Группа изобретений относится к военной технике, а именно к средствам защиты от фиксации теплового излучения сторонними наблюдателями. Способ защиты от средств фиксации теплового излучения включает выполнение закрывающего источник тепла экрана с осуществлением поэтапного поглощения выделяемого...
Тип: Изобретение
Номер охранного документа: 0002647346
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3d76

Способ прогнозирования степени тяжести ишемического процесса сердца, головного мозга и нижних конечностей

Изобретение относится к области медицины и может быть использовано для диагностики и терапии в неврологии, кардиологии, сосудистой хирургии, экспертизе инвалидности, профессиональной пригодности. Способ заключается в определении таких информативных признаков S как критерий оценки центральной...
Тип: Изобретение
Номер охранного документа: 0002648178
Дата охранного документа: 22.03.2018
10.05.2018
№218.016.3df5

Способ изготовления отрицательного электрода поверхностного типа для свинцово-кислотного аккумулятора

Изобретение относится к химическим источникам тока и может быть использовано при производстве свинцово-кислотных аккумуляторов различного назначения. При изготовлении отрицательных электродов используются отформированные положительные поверхностные электроды, изготовленные электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002648246
Дата охранного документа: 23.03.2018
10.05.2018
№218.016.45db

Энергосберегающая система подготовки приточного воздуха

Изобретение относится к строительству и может быть использовано для предварительного подогрева и охлаждения приточного воздуха в системах вентиляции и кондиционирования в зимний и летний периоды. Энергосберегающая система подготовки приточного воздуха, содержащая вентиляционную камеру, в...
Тип: Изобретение
Номер охранного документа: 0002650284
Дата охранного документа: 11.04.2018
10.05.2018
№218.016.47dd

Компактный термоэлектрический генератор

Предлагаемое изобретение относится к теплоэнергетике и может быть использовано для преобразования тепловой энергии в электрическую. Компактный термоэлектрический генератор, содержащий корпус, закрытый съемной крышкой, выполненной из материала-диэлектрика с высокой теплопроводностью, при этом...
Тип: Изобретение
Номер охранного документа: 0002650758
Дата охранного документа: 17.04.2018
10.05.2018
№218.016.494d

Способ получения порошка из вторичного сырья от производства ячменного солода

Изобретение относится к пищевой промышленности, в частности к способам производства порошков из растительного сырья для использования в их качестве пищевой добавки при производстве продуктов функционального назначения. Способ предусматривает комплексное использование сырья в виде солодовых...
Тип: Изобретение
Номер охранного документа: 0002651287
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4a9d

Декоративная навесная панель с утеплителем

Изобретение относится к строительству и может быть использовано при изготовлении утеплительных панелей с декоративной наружной поверхностью, позволяющих осуществлять утепление и декорацию наружных ограждений здания. Декоративная навесная панель с утеплителем содержит плоские обшивки,...
Тип: Изобретение
Номер охранного документа: 0002651855
Дата охранного документа: 24.04.2018
10.05.2018
№218.016.4e45

Экологичный энергосберегающий комплекс системы кондиционирования

Предлагаемое изобретение относится к строительству и может быть использовано для предварительного подогрева и охлаждения приточного воздуха в системах вентиляции и кондиционирования в зимний и летний периоды соответственно. Экологичный энергосберегающий комплекс системы кондиционирования...
Тип: Изобретение
Номер охранного документа: 0002652586
Дата охранного документа: 26.04.2018
10.05.2018
№218.016.4e5d

Способ получения основного бензоата олова (ii)

Изобретение относится к способу получения основного бензоата олова(II) путем прямого взаимодействия оксида металла с кислотой в бисерной мельнице в присутствии трибохимического катализатора и перетирающего агента. Процесс проводят в присутствии жидкой фазы на базе уайт-спирита, оксид олова(II)...
Тип: Изобретение
Номер охранного документа: 0002650893
Дата охранного документа: 18.04.2018
Показаны записи 131-140 из 146.
17.08.2018
№218.016.7c59

Способ получения мелкокристаллического корунда

Изобретение относится к производству абразивных тугоплавких материалов, в частности к получению порошка - оксида алюминия (корунда), и может быть использовано в металлообрабатывающей, машиностроительной, химико-металлургической промышленности. Отходы электротехнической алюминиевой проволоки,...
Тип: Изобретение
Номер охранного документа: 0002664149
Дата охранного документа: 15.08.2018
23.02.2019
№219.016.c6c6

Способ получения спеченного изделия из порошка кобальтохромового сплава

Изобретение относится к получению спеченного изделия из порошка кобальтохромового сплава. Получают порошок кобальтохромового сплава путем электроэрозионного диспергирования сплава КХМС в бутиловом спирте при емкости разрядных конденсаторов 48 мкФ, напряжении на электродах 140 В и частоте...
Тип: Изобретение
Номер охранного документа: 0002680536
Дата охранного документа: 22.02.2019
08.03.2019
№219.016.d380

Способ получения кобальто-хромовых порошков электроэрозионным диспергированием

Изобретение относится к получению порошка кобальтохромового сплава КХМС. Проводят электроэрозионное диспергирование сплава КХМС в бутаноле посредством воздействия на него кратковременных электрических разрядов между электродами при напряжении на электродах 90-110 В, емкости разрядных...
Тип: Изобретение
Номер охранного документа: 0002681237
Дата охранного документа: 05.03.2019
08.03.2019
№219.016.d39a

Способ получения спеченных изделий из электроэрозионных вольфрамосодержащих нанокомпозиционных порошков

Изобретение относится к получению спеченных изделий из электроэрозионных вольфрамсодержащих нанокомпозиционных порошков. Ведут электроэрозионное диспергирование отходов стали Р6М5 и твердого сплава ВК8 в керосине осветительном. Отходы быстрорежущей стали марки Р6М5 диспергируют при напряжении...
Тип: Изобретение
Номер охранного документа: 0002681238
Дата охранного документа: 05.03.2019
29.03.2019
№219.016.edec

Способ получения порошка псевдосплава w-ni-fe методом электроэрозионного диспергирования в дистиллированной воде

Изобретение относится к получению порошка псевдосплава W-Ni-Fe из отходов. Проводят электроэрозионное диспергирование отходов псевдосплава W-Ni-Fe в виде стружки в дистилированной воде при частоте следования импульсов 156 Гц, напряжении на электродах 100 В и емкости разрядных конденсаторов 65,5...
Тип: Изобретение
Номер охранного документа: 0002683162
Дата охранного документа: 26.03.2019
20.05.2019
№219.017.5d14

Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров

Изобретение относится к порошковым материалам для получения покрытий методом сверхзвукового холодного газодинамического напыления. Порошковый материал для газодинамического напыления дефектных головок блоков цилиндров получен электроэрозионным диспергированием отходов алюминия в...
Тип: Изобретение
Номер охранного документа: 0002688025
Дата охранного документа: 17.05.2019
27.07.2019
№219.017.b9da

Способ формирования упрочненного приповерхностного слоя в зоне лазерной резки деталей

Изобретение относится к области лазерной обработки и может быть использовано в различных отраслях машиностроения. Осуществляют лазерную резку деталей из листовых доэвтектоидных и эвтектоидных углеродистых сталей с формированием упрочненного приповерхностного слоя в зоне резки....
Тип: Изобретение
Номер охранного документа: 0002695715
Дата охранного документа: 25.07.2019
07.09.2019
№219.017.c87c

Способ получения нихромовых порошков электроэрозионным диспергированием в воде дистиллированной

Изобретение относится к получению нихромовых порошков электроэрозионным диспергированием. Диспергирование сплава Х15Р60 проводят в дистиллированной воде при напряжении на электродах 90-110 В, емкости разрядных конденсаторов 58 мкФ и частоте следования импульсов 110-120 Гц. Обеспечивается...
Тип: Изобретение
Номер охранного документа: 0002699479
Дата охранного документа: 05.09.2019
14.11.2019
№219.017.e1ce

Состав шихты для производства аддитивных изделий

Изобретение относится к порошковой металлургии. Может быть использовано для производства изделий аддитивными технологиями из кобальтохромовых порошковых материалов в условиях массового, серийного и единичного производства. Порошок кобальтохромового сплава для производства аддитивных изделий...
Тип: Изобретение
Номер охранного документа: 0002705837
Дата охранного документа: 12.11.2019
29.11.2019
№219.017.e7f2

Способ формирования упрочненного поверхностного слоя в зоне лазерной резки деталей из легированных конструкционных сталей

Изобретение относится к способу формирования упрочненного приповерхностного слоя в процессе лазерной резки деталей из листовых легированных сталей. Осуществляют газодинамическое воздействие на зону реза потоком лазерного излучения в инфракрасной области спектра. Перед началом резки формируют...
Тип: Изобретение
Номер охранного документа: 0002707374
Дата охранного документа: 26.11.2019
+ добавить свой РИД