×
13.01.2017
217.015.6d91

Результат интеллектуальной деятельности: СПОСОБ ОПЕРАТИВНОГО ОПРЕДЕЛЕНИЯ УГЛОВЫХ ЭЛЕМЕНТОВ ВНЕШНЕГО ОРИЕНТИРОВАНИЯ КОСМИЧЕСКОГО СКАНЕРНОГО СНИМКА

Вид РИД

Изобретение

№ охранного документа
0002597024
Дата охранного документа
10.09.2016
Аннотация: Изобретение относится к области фотограмметрии и может быть использовано в задачах фотограмметрической обработки космических сканерных снимков для оперативного определения их угловых элементов внешнего ориентирования. Технический результат - повышение точности приближенно известных параметров ориентации космического аппарата - угловых элементов внешнего ориентирования космического сканерного снимка за счет калибровки их значений по опорной информации и оперативное уточнение угловых элементов внешнего ориентирования в автоматическом режиме.

Изобретение относится к области фотограмметрии и может быть использовано в задачах фотограмметрической обработки космических сканерных снимков для оперативного определения их угловых элементов внешнего ориентирования (ЭВО).

Известен ряд способов определения угловых ЭВО космических снимков. Широко используется способ [1, с. 389-393], основанный на использовании ряда опорных точек местности изобразившихся на космическом снимке земной поверхности, и функциональной связи их плоских координат xi,yi на снимке и пространственных координат Xi,Yi,Zi на земной поверхности:

где - элементы ортогональной матрицы направляющих косинусов, определяющей переход от системы координат космического снимка к заданной пространственной системе координат земной поверхности.

Поскольку элементы amn в уравнениях (1) описываются известными функциями от угловых ЭВО снимка α,β,γ

(2)

сущность способа при известных с заданной точностью пространственных координатах центра фотографирования XS,YS, ZS (линейных ЭВО) и элементах внутреннего ориентирования снимка x0,y0,f заключается в линеаризации уравнений (1), составлении и итерационном решении по методу наименьших квадратов переопределенной системы уравнений

где - матрица частных производных от плоских координат опорных точек на снимке по приближенным значениям угловых ЭВО; - приближенные значения плоских координат опорных точек на снимке, вычисленные по формулам (1) при приближенных значениях Δα,Δβ,Δγ - поправки к приближенным значениям угловых ЭВО; - поправки к измеренным значениям плоских координат опорных точек на снимке.

Основными недостатками способа определения угловых ЭВО по опорным точкам местности является необходимость их наличия в полосе захвата съемочной аппаратуры, а также трудоемкость дешифрирования их изображений на снимке земной поверхности, что приводит к снижению оперативности фотограмметрических работ.

Известен способ, не требующий наличия опорных точек местности в полосе захвата съемочной аппаратуры, который основан на размещении на борту космического аппарата (КА) дополнительной звездной камеры [2, с. 89-109], с помощью которой синхронно со снимком земной поверхности получают снимок звездного неба, на котором производится опознавание и измерение плоских координат звезд, инерциальные (абсолютные) координаты которых известны. Исходными данными являются опознанные и измеренные на снимке звездного неба плоские координаты ряда звезд, их инерциальные координаты, содержащиеся в звездных каталогах, фокусное расстояние съемочной аппаратуры, инерциальные координаты центра фотографирования (линейные ЭВО), значения элементов оператора перехода от системы координат снимка земной поверхности к системе координат снимка звездного неба, определяемые путем наземной калибровки съемочной аппаратуры при установке камер на борту КА. В результате фотограмметрической обработки этих по методу наименьших квадратов данных определяются угловые ЭВО космического снимка земной поверхности.

Для этого способа характерны следующие недостатки: необходимость использования звездной камеры, дешифрирования и измерения плоских координат звезд на снимке звездного неба, что повышает трудоемкость и снижает оперативность фотограмметрических работ, а также рассогласование параметров взаимной ориентации камер земной поверхности и звездного неба в процессе запуска и полета КА вследствие перегрузок и больших перепадов температур, что приводит к снижению точности определения угловых ЭВО.

Другой способ определения угловых ЭВО космических снимков по снимку звездного неба [3] лишен последнего недостатка, поскольку он основан на калибровке (уточнении) приближенно известных измерений параметров ориентации КА (угловых ЭВО снимка земной поверхности) по измеренным с высокой точностью направлениям на несколько звезд по снимку звездного неба. Исходными данными являются опознанные и измеренные на снимке звездного неба плоские координаты звезд, их инерциальные координаты, содержащиеся в звездных каталогах, фокусное расстояние съемочной аппаратуры, инерциальные координаты центра фотографирования (линейные ЭВО), приближенно известные значения углов тангажа, крена и рыскания КА, являющиеся параметрами ориентации КА и угловыми ЭВО снимка земной поверхности, измеренные на интервале съемки бесплатформенной системой ориентации КА, значения этих параметров ориентации в калибровочных разворотах КА перед началом и после съемки вокруг осей крена, тангажа и рыскания КА с синхронным визированием известных астроориентиров. При этом суть калибровки состоит в том, что по измерительной информации, полученной в ходе калибровочных разворотов КА путем астровизирования и с помощью бесплатформенной системы ориентации, оценивают и компенсируют величины погрешностей приближенно известных угловых ЭВО. Недостатками способа является необходимость использования дополнительной аппаратуры для съемки звездного неба, опознавания и измерения координат звезд на снимке звездного неба, что приводит к снижению оперативности фотограмметрических работ, а также проведение достаточно продолжительных по времени калибровочных вращений КА, которые могут создавать значительные неудобства целевого использования КА.

Наиболее близким техническим решением является способ определения угловых ЭВО космического снимка, заключающийся в измерении на интервале съемки сигналов углов ориентации и сигналов угловой скорости КА [4, с. 149-156].

Недостаток прототипа заключается в невысокой точности определения параметров ориентации КА - угловых ЭВО, поскольку в процессе сканерной съемки неизбежно накапливаются ошибки от погрешностей гироинерциальных датчиков угловых скоростей.

Задачей изобретения является повышение точности приближенно известных параметров ориентации КА - угловых ЭВО космического снимка за счет калибровки их значений по опорной информации, не требующей визуализации космического сканерного снимка и отождествления изображения со всевозможными эталонами (характерными точками местности, абрисами местности, электронными и бумажными картами и т.д.), что обеспечивает возможность оперативного уточнения угловых ЭВО в автоматическом режиме.

Поставленная задача достигается тем, что после измерений и регистрации на интервале съемки в соответствие с описанным в прототипе способом приближенных дискретных значений углов ориентации и составляющих абсолютной угловой скорости КА производится вычисление приближенных значений элементов матрицы направляющих косинусов, описывающих в эти моменты времени ориентацию системы координат космического сканерного снимка в геоцентрической гринвичской системе, аппроксимация этих элементов и составляющих угловой скорости движения КА степенными рядами от времени на всем интервале съемки, вычисление поправок к приближенным значениям этих коэффициентов полиномов за счет минимизации по методу наименьших квадратов невязок между априорно известными нормированными значениями продольной и поперечной составляющих скорости движения изображения (СДИ) в центре фотоприемной структуры, которые с заданной точностью поддерживаются съемочной аппаратурой неизменными на интервале съемки, и их значениями, вычисляемыми при приближенно известных коэффициентах полиномов.

Сущность изобретения заключается в том, что дополнительно к операциям, выполняемым в соответствие со способом-прототипом, в результате которых в точках бортовых измерений на интервале съемки (t0, tj) получают приближенные бортовые измерения дискретных значений углов тангажа, крена и рыскания КА и его составляющих абсолютной угловой скорости производится выполнение следующих операций:

1. Расчет по формулам, приведенным в [5, с. 110-114], приближенных дискретных значений элементов матрицы направляющих косинусов, описывающих в моменты времени tj ориентацию системы координат космического сканерного снимка в геоцентрической гринвичской системе координат.

2.Аппроксимация по методу наименьших квадратов дискретных значений элементов и составляющих угловой скорости с вычислением значений коэффициентов полиномов

описывающих степенными рядами второй степени зависимости от времени

которые позволяют вычислить приближенные значения элементов матрицы направляющих косинусов и составляющих угловой скорости движения КА для любого момента времени на интервале съемки.

3. Выполнение операций по итерационному вычислению поправок к приближенным значениям коэффициентов полиномов

где:

- вектор-столбец поправок к приближенным значениям коэффициентов полиномов в итерации; - вектор-столбец свободных членов уравнений поправок в ν-й итерации, представляющих собой разницы между априорно известными с заданной точностью на интервале съемки нормированными номинальными значениями продольной и поперечной составляющих СДИ в центре фотоприемной структуры (при x=y=0) и их значениями полученными для каждой точки tj бортовых измерений в ν-й итерации при приближенно известных коэффициентах полиномов по формулам [5, с. 124-125]:

где:

- известные по условиям задачи с заданной точностью значения координат и составляющих скорости движения КА в гринвичской системе координат в моменты времени tj бортовых измерений; - длина главной оптической оси (линии визирования от центра проекции S до поверхности общего земного эллипсоида),

где:

- угловая скорость вращения Земли;

- большая и малая полуоси общего земного эллипсоида;

- матрица частных производных в ν-й итерации

- порядковый номер точек бортовых измерений.

Номинальные значения продольной Vx(tj) и поперечной Vy(tj) составляющих СДИ в центре фотоприемной структуры ОЭСС поддерживаются съемочной аппаратурой неизменными и равными своим начальным значениям на всем интервале съемки и поэтому априорно известны во всех точках бортовых измерений, что исключает необходимость их дешифрирования. При этом начальное значение Vx(t0) продольной составляющей СДИ вычисляется на этапе планирования съемки по формуле

где - модуль скорости движения КА в момент t0 включения съемочной аппаратуры, начальное значение Vy(t0) поперечной составляющей СДИ равно нулю, а неизменность этих значений на интервале съемки обеспечивается за счет программного углового движения КА.

Для формирования требований к уровню точности поддержания номинального значения продольной составляющей СДИ на интервале съемки достаточно применить к выражению (9) известную формулу для расчета средней квадратической ошибки функции от ряда аргументов, в результате чего получим:

Использовав для примера параметры съемки КА с ОЭСС, находящегося на солнечно-синхронной орбите с высотой 475 км, положим, что D=500 км, f=4 м, VH=0,06 м/с, м/с. Тогда при ошибках определения наклонной дальности линии визирования, составляющих м, точность поддержания номинального значения продольной составляющей м/с на всем интервале съемки должна быть не менее 6·10-7 м/с, а, например, при м - не менее 1,2·10-6 м/с.

Из уравнений (7) - (8) следует, что одна точка бортовых измерений позволяет составить два уравнения поправок при общем числе уточняемых параметров (коэффициентов полиномов), равном 33. Отсюда вытекает, что для решения задачи необходимо включить в обработку не менее 17-и точек, равномерно расположенных на интервале съемки.

Источники информации

1. Лобанов А.Н. Фотограмметрия: Учебник для вузов. 2 е изд., перераб. и доп. - М., Недра, 1984, 552 с. (аналог).

2. Урмаев М.С. Космическая фотограмметрия: Учебник для вузов / М.С. Урмаев. - М.: Недра, 1989. - 279 с. (аналог).

3. Патент РФ №2092402 от 10.10.1997 г. (аналог).

4. Васильев В.Н. Системы ориентации космических аппаратов / В.Н. Васильев. - М.: ФГУП «НГШ ВНИИЭМ», 2009 (прототип).

5. Андронов В.Г. Теоретические основы геоорбитального моделирования космических сканерных изображений высокого разрешения: монография / В.Г. Андронов; Юго-Зап. гос. ун-т, Курск, 2012, 260 с.

Способ оперативного определения угловых элементов внешнего ориентирования космического сканерного снимка, получаемого оптико-электронными сканирующими системами на матрицах приборов с зарядовой связью, заключающийся в измерении на интервале съемки значений углов тангажа, крена и рыскания и составляющих угловой скорости космического аппарата гироинерциальными датчиками, отличающийся тем, что дополнительно к этим операциям производится калибровка полученных текущих измерений, приведенных к единому для всех точек маршрута съемки виду, по опорной информации, содержащейся в параметрах формирования строк сканерного снимка, а именно: вычисление приближенных значений элементов матрицы направляющих косинусов, описывающих в моменты измерений ориентацию системы координат космического сканерного снимка в геоцентрической гринвичской системе, аппроксимация этих элементов и составляющих угловой скорости движения космического аппарата степенными рядами от времени и расчет приближенных значений коэффициентов полиномов, вычисление поправок к приближенным значениям этих коэффициентов полиномов за счет минимизации по методу наименьших квадратов невязок между априорно известными нормированными значениями продольной и поперечной составляющих скорости движения изображения в центре фотоприемной структуры, которые с заданной точностью поддерживаются съемочной аппаратурой неизменными на всем интервале съемки и равными своим начальным значениям, и их значениями, вычисляемыми при приближенно известных коэффициентах полиномов, что обеспечивает повышение точности определения измеренных значений угловых элементов внешнего ориентирования без снижения оперативности за счет выполнения дополнительных операций в автоматическом режиме.
Источник поступления информации: Роспатент

Показаны записи 71-80 из 113.
12.01.2017
№217.015.57ad

Способ изготовления положительного электрода свинцового аккумулятора

Изобретение относится к химическим источникам тока и может быть использовано при производстве свинцовых аккумуляторов. В предлагаемом способе изготовления положительного электрода свинцового аккумулятора электрохимическое формирование активной массы из поверхностного слоя проводят путем...
Тип: Изобретение
Номер охранного документа: 0002588495
Дата охранного документа: 27.06.2016
12.01.2017
№217.015.6056

Платформенный сборно-монолитный стык

Изобретение относится к области строительства и предназначено для устройства сборно-монолитных стыков панелей стен с проемами и перекрытий в панельных и панельно-рамных зданиях и сооружениях. Техническая задача состоит в обеспечении жесткого соединения. Платформенный сборно-монолитный стык...
Тип: Изобретение
Номер охранного документа: 0002590251
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6d5d

Способ получения магнитной жидкости

Изобретение может быть использовано при получении магнитно-жидкостных уплотнений вращающихся валов, магнитных смазок, в процессах магнитного обогащения немагнитных материалов, в биологии и медицине. При получении магнитной жидкости из оксидгидроксида железа (III) или гетита и олеиновой кислоты...
Тип: Изобретение
Номер охранного документа: 0002597376
Дата охранного документа: 10.09.2016
13.01.2017
№217.015.7c39

Панель для дополнительной теплоизоляции стен здания

Изобретение относится к области разработки конструкций дополнительной теплоизоляции стен при строительстве и ремонте зданий, предназначенных для уменьшения поступления теплоты из помещения в толщу стены при установке теплоизоляционных панелей внутри помещения или для защиты стен от воздействия...
Тип: Изобретение
Номер охранного документа: 0002600582
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7c80

Термоэлектрический венец для дымовой трубы

Изобретение относится к теплоэнергетике и может быть использовано в конструкциях головки дымовых труб для утилизации тепла дымовых газов котельных агрегатов, промышленных печей при их выбросе в атмосферу с получением электричества. Термоэлектрический венец для дымовой трубы содержит...
Тип: Изобретение
Номер охранного документа: 0002600192
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.7dd7

Армированная кирпичная кладка

Изобретение относится к строительству и может быть использовано при строительстве многоэтажных зданий в сейсмических районах. Технический результат: поддержание надежной эксплуатации в течение длительного времени армированной кирпичной кладки за счет устранения коррозийного разрушения...
Тип: Изобретение
Номер охранного документа: 0002600951
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.7e96

Газораспределительная станция

Изобретение относится к газовой технике, в частности к газораспределительным станциям (ГРС) для снижения давления газа в газопроводе. Технический результат - снижение энергоемкости эксплуатации ГРС за счет использования теплового потенциала вихревой трубы при получении электрического потенциала...
Тип: Изобретение
Номер охранного документа: 0002601083
Дата охранного документа: 27.10.2016
13.01.2017
№217.015.85dd

Способ получения лактобионовой кислоты

Изобретение относится к способу получения лактобионовой кислоты и может быть использовано в химической промышленности. Предложен способ получения лактобионовой кислоты из лактобионата натрия ионным обменом на катонитах, отличающийся тем, что используют катиониты КУ-2.8-ЧС, Amberlite TM FPC23 H,...
Тип: Изобретение
Номер охранного документа: 0002603195
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.9c65

Система гелиотеплохладоснабжения

Изобретение относится к теплоэнергетике и предназначено для поддержания комфортных параметров воздуха в малоэтажных зданиях, преимущественно на животноводческих фермах. Система гелиотеплохладоснабжения, содержащая южный, выполненный из поглощающего солнечную радиацию материала, и северный...
Тип: Изобретение
Номер охранного документа: 0002610406
Дата охранного документа: 09.02.2017
25.08.2017
№217.015.aa65

Автономная тепловая пушка

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления. Технический результат достигается предлагаемой автономной тепловой пушкой, включающей цилиндрический корпус, внутри которого по ходу движения воздуха коаксиально установлены вентилятор с...
Тип: Изобретение
Номер охранного документа: 0002611700
Дата охранного документа: 28.02.2017
Показаны записи 71-80 из 112.
04.04.2018
№218.016.2ffe

Котел отопительный газовый

Изобретение относится к бытовой топливоиспользующей аппаратуре. Котел отопительный газовый состоит из прямоугольного шкафа с тепловой защитой и кожухом, внутри которого расположены топка с горелкой, теплообменник и патрубок выхода продуктов сгорания через внешнюю стенку помещения, установленный...
Тип: Изобретение
Номер охранного документа: 0002645108
Дата охранного документа: 15.02.2018
10.05.2018
№218.016.3b42

Способ защиты от средств фиксации теплового излучения и устройство защиты от средств фиксации теплового излучения

Группа изобретений относится к военной технике, а именно к средствам защиты от фиксации теплового излучения сторонними наблюдателями. Способ защиты от средств фиксации теплового излучения включает выполнение закрывающего источник тепла экрана с осуществлением поэтапного поглощения выделяемого...
Тип: Изобретение
Номер охранного документа: 0002647346
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.3df5

Способ изготовления отрицательного электрода поверхностного типа для свинцово-кислотного аккумулятора

Изобретение относится к химическим источникам тока и может быть использовано при производстве свинцово-кислотных аккумуляторов различного назначения. При изготовлении отрицательных электродов используются отформированные положительные поверхностные электроды, изготовленные электрохимическим...
Тип: Изобретение
Номер охранного документа: 0002648246
Дата охранного документа: 23.03.2018
29.05.2018
№218.016.539c

Теплоизолирующий надувной купол

Изобретение относится к военной технике. Теплоизолирующий надувной купол состоит из ограждения, выполненного в виде полусферического купола с входным отверстием в вершине полусферы, составленного из соединенных между собой по длине кольцеобразных труб, кольца каждой из которых разорваны с...
Тип: Изобретение
Номер охранного документа: 0002653902
Дата охранного документа: 15.05.2018
29.05.2018
№218.016.53f7

Шпиндельный узел

Шпиндельный узел содержит корпус с установленным в нем с возможностью вращения на подшипниковых опорах шпинделем, имеющим равномерно расположенные по окружности наклонные и параллельные оси шпинделя каналы, в которых выполнены совмещенные продольные винтообразные канавки. При этом каналы...
Тип: Изобретение
Номер охранного документа: 0002653963
Дата охранного документа: 15.05.2018
09.06.2018
№218.016.5f42

Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов

Изобретение относится к теплоэнергетике и может быть использовано в процессах очистки дымовых газов от вредных примесей. Коррозионноустойчивая шахтная мультиблочная установка для очистки и утилизации дымовых газов содержит транзитный газоход, вертикальную шахту – камеру очистки, внизу...
Тип: Изобретение
Номер охранного документа: 0002656498
Дата охранного документа: 05.06.2018
09.06.2018
№218.016.5f9b

Автономный воздухонагреватель

Изобретение относится к энергетике и может быть использовано в системах децентрализованного отопления для нагревания воздуха в бытовых и производственных помещениях. Автономный воздухонагреватель включает цилиндрический корпус, внутри которого установлены вентилятор с электродвигателем,...
Тип: Изобретение
Номер охранного документа: 0002656773
Дата охранного документа: 06.06.2018
03.10.2018
№218.016.8d2f

Система лучистого отопления здания

Изобретение относится к отопительным системам здания. Система лучистого отопления здания с несущими стенами и внутренними перегородками включает камеру подогрева воздуха, сборные каналы, горизонтальные подающие каналы, горизонтальные распределительные каналы, вертикальные воздуховоды,...
Тип: Изобретение
Номер охранного документа: 0002668239
Дата охранного документа: 27.09.2018
11.10.2018
№218.016.9000

Ингибитор коррозии нефтяных труб и способ его получения

Изобретение относится к защите нефтяных труб от кислотной коррозии и может применяться при добыче нефти или природного газа. Ингибитор коррозии получен экстракцией никотина и сопутствующих веществ из отходов табака водным раствором бензойной кислоты и состоит из соли никотина и бензойной...
Тип: Изобретение
Номер охранного документа: 0002669137
Дата охранного документа: 08.10.2018
03.11.2018
№218.016.99f9

Продувочная свеча

Изобретение относится к газовой промышленности и предназначено для продувки газопроводов. Технической задачей предлагаемого изобретения является снижение шумового воздействия на окружающую среду при продувке газопроводов посредством продувочной свечи за счет выполнения кривизны криволинейных...
Тип: Изобретение
Номер охранного документа: 0002671541
Дата охранного документа: 01.11.2018
+ добавить свой РИД