×
13.01.2017
217.015.6bea

СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002592711
Дата охранного документа
27.07.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Группа изобретений относится к области измерений, а именно к калибровке комплекса измерения скорости транспортных средств. Система и способ калибровки комплекса измерения скорости транспортных средств (ТС) содержат электронно-вычислительное устройство (ЭВУ), соединенное с видеокамерой, с поворотной платформой и с лазерным дальномером. Видеокамера выполнена с возможностью формирования изображения дорожного полотна и находящихся на нем ТС, а также с возможностью передачи изображения в ЭВУ. Лазерный дальномер выполнен с возможностью проецирования в точку измерения расстояния световой метки из трех разных угловых позиций. ЭВУ выполнено с возможностью анализа изображения, а также с возможностью вычисления калибровочных параметров и функций, необходимых для позиционирования объектов, с использованием данных о расстоянии до световых меток и их пиксельных координат, а также с использованием данных внутренней калибровки объектива и чувствительной матрицы видеокамеры. Технический результат заключается в упрощении калибровки комплекса измерения скорости ТС, содержащего видеокамеру, осуществлении калибровки в автоматическом режиме с возможностью внесения поправок в значения калибровочных параметров во время эксплуатации комплекса измерения скорости ТС. 2 н.п. ф-лы, 4 ил.
Реферат Свернуть Развернуть

Изобретение относится к области измерений и анализа изображения, а именно к способам и системам калибровки комплекса измерения скорости транспортных средств, и может быть использовано для упрощения ввода в эксплуатацию комплексов измерения скорости транспортных средств, использующих видеокамеру, на этапе оценки параметров калибровки объектива видеокамеры и ее положения по отношению к плоскости дорожного полотна.

Известен способ калибровки комплекса измерения скорости транспортных средств с помощью видеокамеры, описанный в патенте RU 2470376, в котором оценку расстояния от камеры до транспортного средства производят путем предварительной идентификации и детектирования расположения отдельных элементов государственного регистрационного знака номерной пластины транспортного средства. В этом способе геометрические свойства выделенной на изображении номерной пластины используют для вычисления как высоты подвеса пластины над плоскостью дорожного полотна, так и расстояния от камеры до номерной пластины.

В этом способе подразумевают, что известен ряд калибровочных параметров контрольно-измерительного комплекса, таких как фокусное расстояние видеокамеры, высота подвеса видеокамеры над дорожным полотном, угол поворота видеокамеры в горизонтальной плоскости от линии направления дороги, отклонение от вертикали, угол продольного уклона дороги, угол поперечного уклона дороги и другие. Используя эти внешние и внутренние параметры калибровки объектива видеокамеры, а также такие характеристики, как ширина рамки номерной пластины, угол наклона сторон четырехугольника на изображении рамки к горизонтальным и вертикальным осям изображения, производят расчет расстояния и высоты, которые впоследствии можно использовать для определения скорости транспортного средства. Этот способ выбран в качестве прототипа заявленного изобретения.

К недостаткам способа-прототипа следует отнести его недостаточную универсальность, а именно невозможность работы с механически поврежденными номерными пластинами или частично перекрытыми для обзора видеокамерой. Способ-прототип основывается на предположении о том, что номерная пластина транспортного средства является плоской. При этом существуют примеры, когда номерной знак не является плоским вследствие нарушения правил соответствия ГОСТ в результате ДТП или других механических повреждений номерной пластины. Даже в случае соответствия крепления номерного знака установленным правилам и ГОСТам существуют примеры, когда точное определение координат рамки номерной пластины затруднено, вследствие изгиба номерной пластины или частичного перекрытия ее обзора другими элементами транспортного средства.

Другим недостатком способа-прототипа является повышенная сложность, вследствие необходимости измерения большого количества внешних калибровочных параметров видеокамеры, таких как высота подвеса камеры, расстояний до ближнего и дальнего края наблюдаемой зоны и т.д. Кроме того, измерение высоты может быть затруднено уклоном дороги, т.е. измерение высоты подвеса видеокамеры над поверхностью земли может не дать нужного результата. Измерение расстояний до ближнего и дальнего края наблюдаемой зоны затруднено необходимостью определения точки проекции видеокамеры на плоскость полотна дороги. Параметры, связанные с поворотами оптической оси видеокамеры относительно наблюдаемой видеокамерой сцены, и параметры поворота видеокамеры относительно оптической оси подвержены колебаниям, связанным с климатическими изменениями, поэтому их значения необходимо постоянно уточнять в процессе эксплуатации измерительного комплекса, что является достаточно трудоемким процессом, если пользоваться лишь стандартными геодезическими инструментами для измерения.

Сложность осуществления способа-прототипа обусловлена также тем, что в нем, для фиксации калибровочного шаблона в различных точках дорожного полотна, необходимо в течение нескольких часов перекрывать движение на участке дороги, на котором вводится в эксплуатацию контрольно-измерительный комплекс.

Задачей заявленного изобретения является создание более простых и универсальных способа и системы калибровки комплекса измерения скорости транспортных средств, содержащего видеокамеру, которые не полагаются на особые свойства пластины государственного номерного знака, не требуют перекрытия движения транспортных средств на контролируемом участке дороги во время осуществления калибровки, а также осуществляют процесс калибровки в автоматическом режиме с возможностью внесения поправок в значения калибровочных параметров во время эксплуатации комплекса измерения скорости транспортных средств.

Для лучшего понимания заявленного изобретения далее приводится его подробное описание с соответствующими графическими материалами.

Фиг. 1. Блок-схема системы калибровки комплекса измерения скорости транспортных средств, выполненная согласно изобретению.

Фиг. 2. Схема проекции координат (x,y) дорожного полотна на пиксельные координаты (u,v) изображения, формируемого видеокамерой, выполненная согласно изобретению.

Фиг. 3. Иллюстрация перерасчета центральной проекции в ортогональную , выполненная согласно изобретению.

Фиг. 4. Иллюстрация трех световых меток, формируемых лазерным дальномером и расположенных на дорожном полотне, выполненная согласно изобретению.

Элементы:

1 - видеокамера;

2 - поворотная платформа;

3 - лазерный дальномер;

4 - электронно-вычислительное устройство.

В заявленных системе и способе калибровки комплекса измерения скорости транспортных средств калибровочные данные или параметры калибровки - это набор информации, на основании которой по изображению транспортного средства можно восстановить положение ортогональной проекции хотя бы одной фиксированной точки транспортного средства на плоскость дорожного полотна. Далее данную проекцию можно использовать для вычисления скорости транспортного средства с помощью комплекса измерения скорости транспортных средств, поскольку, анализируя поток видеокадров, получают динамику перемещения проекции некоторой фиксированной точки транспортного средства по плоскости дорожного полотна.

Калибровочными данными является следующий набор параметров и функций (Фиг. 2):

- h - высота подвеса видеокамеры 1 (Фиг. 2) над плоскостью дорожного полотна с учетом уклона;

- (x0,y0) -координаты проекции оптического центра видеокамеры на плоскость дорожного полотна с учетом уклона в некоторой ортонормированной системе координат в указанной плоскости;

- х=f(u,v), у=g(u,v) - функции проектирования пиксельных координат (u,v) изображения в соответствующие им координаты (x,y) системы координат, связанной с дорожным полотном.

Функции x=f(u,v), y=g(u,v) зависят от модели видеокамеры и ее объектива, а также от положения видеокамеры в пространстве относительно дорожного полотна.

Модели объектива видеокамеры и самой видеокамеры определяют так называемые внутренние параметры видеокамеры, т.е. параметры, которые не зависят от положения видеокамеры в пространстве. К таким параметрам относятся параметры искажения изображения за счет дисторсии, угол зрения видеокамеры или ее фокусное расстояние, также модель может характеризовать параметры, которые определяют неточность позиционирования чувствительной матрицы и объектива видеокамеры друг относительно друга, допущенные в производстве видеокамеры. Поворот видеокамеры относительно оптической оси и другие характеристики положения видеокамеры в пространстве относительно наблюдаемой схемы называют внешними параметрами.

В том случае, когда объектив видеокамеры представим в виде модели тонкой линзы, преобразование х=f(u,v), y=g(u,v) является проективным, и имеет вид

где А, В, С, D, Е, F, G, H - коэффициенты, определяемые фокусным расстоянием и внешними параметрами видеокамеры. Для объективов, которые дают изображения с существенными искажениями дисторсии, необходимо сначала выполнить преобразование устранения данных дисторсий, а затем использовать формулы проективного преобразования. В итоге формулы x=f(u,v), y=g(u,v) получаются существенно более сложного вида, чем отношение линейных функций.

Приведенный пример параметров калибровки видеокамеры не является единственным. Существуют эквивалентные наборы калибровочных данных, однако они являются производными по отношению к приведенному примеру, равно как и высота точки установки видеокамеры, ее ортогональная проекция и формулы центрального проектирования являются производными по отношению к ним.

Данные в виде h, (х0,y0), x=f(u,v), y=g(u,v) используют для поиска ортогональной проекции точки изображения на плоскость дорожного полотна следующим образом:

1. Для точки (u,v) с помощью проективных формул определяют центральную проекцию

на плоскость дороги относительно точки крепления видеокамеры.

2. Если известна высота точки, соответствующей изображению точки (u,v), над плоскостью дороги, то искомую ортогональную проекцию на плоскость дороги определяют по формулам

которые следуют из подобия треугольников (Фиг. 3).

3. Для пар точек (u1,v1), (u,v), между которыми известно расстояние d в мировом пространстве и для которых известно, что они расположены на одной высоте над плоскостью дороги, соответствующие ортогональные проекции на плоскость дороги (х1,y1) и (x2,y2) определяют на основании системы уравнений из соотношений предыдущего пункта:

Предполагая, что точка крепления видеокамеры расположена выше транспортного средства, т.е. , в результате решения данной системы получают следующий результат для высоты точки:

далее определяют (x1,y1), (x2,y2) путем подстановки найденной высоты в исходную систему уравнений. Примером пары точек, для которых обычно известно, что они находятся на одной высоте, и для которых задано промежуточное расстояние, являются нижние угловые точки рамки номерной пластины транспортного средства: для каждого типа номера размер номерной пластины регулируется ГОСТ. Другим примером могут быть, например, симметричные точки автомобильных фар транспортного средства известной модели.

Таким образом, вышеизложенным показано, что приведенный набор исходных калибровочных данных достаточен для того, чтобы решать задачу измерения скорости с помощью комплекса измерения скорости транспортных средств, содержащего одну видеокамеру. Однако основная трудность заключается в том, чтобы получить эти калибровочные данные при вводе измерительного комплекса в эксплуатацию.

Рассмотрим более подробно функционирование заявленных системы и способа калибровки комплекса измерения скорости транспортных средств (Фиг. 1-4). Заявленная система содержит видеокамеру 1 и установленный на поворотной платформе 2 лазерный дальномер 3, проецирующий в точку измерения расстояния лазерную световую метку видимого диапазона с такой яркостью и с таким размером, что центр метки легко идентифицируем на изображении с видеокамеры 1. Видеокамера 1, поворотная платформа 2 и лазерный дальномер 3 соединены с электронно-вычислительным устройством 4. Поворотная платформа 2 размещена в непосредственной близости от объектива видеокамеры 1 таким образом, что расстояние между поворотной платформой 2 с лазерным дальномером 3 и оптическим центром видеокамеры 1 значительно меньше, чем расстояние от ближнего края наблюдаемой зоны (дорожного полотна) до оптического центра видеокамеры 1. Электронно-вычислительное устройство 4 принимает цифровое изображение от видеокамеры 1; анализирует изображение от видеокамеры 1, при этом с помощью методов компьютерного зрения определяет участки дорожного полотна, свободные от транспортных средств, а также определяет положение световой метки лазерного дальномера 3 и ее пиксельные координаты на принятых изображениях. Кроме того, электронно-вычислительное устройство 4 принимает данные о расстоянии до световой метки, формируемой лазерным дальномером 3 на дорожном полотне, и формирует сигналы управления поворотной платформой 2, которые направляют поворотную платформу 2 и лазерный дальномер 3 на участок дорожного полотна, а также сигналы управления лазерным дальномером 3, которые включают лазерный дальномер 3 в каждой позиции поворотной платформы 2.

Внутренние параметры видеокамеры 1, такие как координаты расположения чувствительной матрицы относительно объектива и его фокусное расстояние и параметры дисторсии, как правило, измеряют в лабораторных условиях, поскольку с одной стороны внутренние параметры не подвержены изменениям после установки измерительного комплекса в точку эксплуатации, а с другой стороны, наиболее эффективные методы оценки внутренних параметров предполагают размещение перед видеокамерой специальных шаблонов. Существуют автоматические и полуавтоматические методы расчета внутренних параметров видеокамер с помощью данных шаблонов. С помощью этих методов, во-первых, формируют нелинейное преобразование исходных координат изображения (u,v) в координаты , такое, что искажения дисторсии устраняются, а во-вторых, вычисляют коэффициенты матрицы преобразования

где (X,Y,Z) - координаты точки пространства в ортонормированной системе координат, связанной с видеокамерой 1, а - обобщенные координаты изображения данной точке в пространстве пиксельных координат, т.е. . Для определенности полагают, что ось Z совпадает с оптической осью видеокамеры 1 и совпадает с наблюдаемой сценой (дорожным полотном), а оси X и Y параллельны и сонаправлены с осями координат изображения в пространстве .

Таким образом, процедура внутренней калибровки видеокамеры 1 позволяет сопоставить любой точке пространства (X,Y,Z) координату исходного изображения (u,v) с помощью функций , и коэффициентов проективного отображения А′, В′, С′, D′, Е′, F′, G′, Н′. Для связи координат изображения (u,v) с координатами (x,y) дорожного полотна требуется провести процедуру внешней калибровки, которая установит высоту установки h видеокамеры 1 над плоскостью дорожного полотна δ, а также положение плоскости δ в системе координат, связанной с видеокамерой 1 (Фиг. 4). Таким образом, для решения поставленной задачи требуется получить уравнение плоскости δ в параметрической форме в виде разложения по двум единичным взаимно перпендикулярным векторам, параметры-коэффициенты разложения будут играть роль координат плоскости дорожного полотна (x,y). Подставив параметрическое представление плоскости δ в формулу проективного преобразования, можно получить требуемую связь (u,v) (x,y). Уравнение плоскости δ в канонической форме дополнительно позволит установить высоту установки видеокамеры 1 и проекцию (х0,y0) точки крепления видеокамеры 1 на плоскость δ.

Для осуществления внешней калибровки лазерный дальномер 3 направляют с помощью поворотной платформы так, чтобы световая метка дальномера 3 появилась в поле зрения видеокамеры 1. Для того чтобы избежать ослепления водителей транспортных средств, а также для того, чтобы измерить расстояние именно до дорожного полотна, а не до элементов проезжающего транспортного средства, световую метку формируют только в те моменты, когда электронно-вычислительное устройство 4, обрабатывая сигнал с видеокамеры 1 с помощью алгоритмов выделения и классификации движущихся объектов, оценивает вероятность нахождения транспортного средства в области формирования световой метки как пренебрежимо малую. Во время измерения электронно-вычислительное устройство 4 регистрирует расстояние L* до световой метки, измеряемое лазерным дальномером 3, а также с помощью методов компьютерной обработки изображений определяет координаты световой метки (u*,v*) на изображении. Обладая этими данными, а также параметрами и функциями внутренней калибровки, с помощью электронно-вычислительного устройства 4 определяют координаты (X*,Y*,Z*) световой метки на дорожном полотне. Способ определения координат световой метки основан на том, что формулы

задают систему линейных уравнений, решением которой является направляющий вектор с координатами (lx,ly,lz) для прямой, которая соединяет точку крепления видеокамеры 1 с точкой (Х*,Y*,Z*). Поскольку L* - это расстояние от точки крепления видеокамеры 1 до точки (X*,Y*,Z*), то

т.е. нормированный направляющий вектор прямой умножен на измеренное дальномером 3 расстояние и на знак sign lz, поскольку направление оси Z определено как «от видеокамеры 1».

Если поворотная платформа 2 снабжена прецизионными датчиками углов поворота и наклона, то калибровку внутренних параметров (объектива и чувствительной матрицы) видеокамеры 1 можно провести в том числе для видеокамеры 1, для которой не проводилась калибровка внутренних параметров объектива и чувствительной матрицы в лабораторных условиях, в этом случае компоненты вектора направления лазерного луча (lx,ly,lz), вдоль которого совершаются измерения, могут быть рассчитаны на основе углов поворота поворотной платформы 2. Функции преобразования координат, получаемые в процессе внутренней калибровки видеокамеры 1 с помощью шаблонов в лабораторных условиях, в данном случае можно составить табличным способом.

Изменяя положение лазерного дальномера 3 с помощью поворотной платформы 2 под управлением электронно-вычислительного устройства 4, выполняют серию из N>3 измерений, устанавливающих положение точек {Li(Xi,Yi,Zi)} плоскости дорожного полотна δ (Фиг. 4). В теории линейной алгебры показывается, что плоскость, проходящая относительно множества точек так, что сумма квадратов расстояний от плоскости до заданных точек минимальна, проходит через геометрический центр исходных точек, при этом нормаль плоскости является собственным вектором, соответствующим минимальному собственному для матрицы

а два собственных вектора данной матрицы ковариаций, соответствующих наибольшим собственным значениям, будут перпендикулярны третьему собственному вектору с наименьшим собственным значением, и, следовательно, могут быть использованы для параметрической формы записи уравнений плоскости δ, определяющих плоскость как множество линейных комбинаций двух векторов, отложенных от фиксированной точки .

Таким образом, если λ1, λ2, λ3 - упорядоченные по убыванию собственные значения матрицы С, являющиеся корнями кубического уравнения det(A-λE)=0, которым соответствуют собственные векторы v1, v2, v3, нормированные на единицу, то уравнение плоскости S может быть с известной степенью приближения представлено в следующем виде:

что соответствует канонической форме, либо в виде

что соответствует параметрической форме. Поскольку кубическое уравнение допускает аналитическое решение с помощью формулы Кардано, задача поиска собственных векторов v1, v2, v3 и собственных значений λ1, λ2, λ3 для матрицы С может быть решена аналитически. Допустимо также использовать метод вращений. Для повышения устойчивости вычислений можно применить статистические методы, например итерационный метод формирования случайных выборок из множества исходных данных RANSAC.

Итак, требуемые данные калибровки, с помощью которых можно рассчитать положение транспортных средств на дорожном полотне, могут быть получены на основании данных внутренней калибровки объектива и чувствительной матрицы видеокамеры 1 и данных, полученных с помощью измерений лазерного дальномера 3, установленного на управляемой поворотной платформе 3. Внутреннюю калибровку видеокамеры 1 можно не проводить, если поворотная платформа 2 снабжена точными датчиками углов поворота.

Высоту крепления видеокамеры 1 определяют с помощью электронно-вычислительного устройства 4 с использованием формулы определения расстояния от точки (0,0,0) до плоскости на основе канонической формулы плоскости δ:

Проекцией точки крепления видеокамеры 1 на плоскость δ является пересечение данной плоскости с перпендикулярной к ней прямой, проходящей через точку (0,0,0), поэтому координаты проекции (x0,y0) в плоскости являются решением системы линейных уравнений

относительно переменных X,Y,Z, х0, y0, γ.

Наконец, преобразование х=f(u,v), y=g(u,v) является обратным к преобразованию, получаемому из следующей суперпозиции:

где функции , определяют преобразование, обратное к преобразованию компенсации дисторсии изображения.

Хотя описанный выше вариант выполнения изобретения был изложен с целью иллюстрации настоящего изобретения, специалистам ясно, что возможны разные модификации, добавления и замены, не выходящие из объема и смысла настоящего изобретения, раскрытого в прилагаемой формуле изобретения.


СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ
СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ
СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ
СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ
СПОСОБ И СИСТЕМА КАЛИБРОВКИ КОМПЛЕКСА ИЗМЕРЕНИЯ СКОРОСТИ ТРАНСПОРТНЫХ СРЕДСТВ
Источник поступления информации: Роспатент

Показаны записи 31-37 из 37.
10.05.2018
№218.016.4910

Устройство и способ каскадной обработки потока изображений с помощью свёрточных нейронных сетей

Группа изобретений относится к области автоматического анализа изображений. Техническим результатом является повышение достоверности автоматического определения движущихся объектов в поле зрения видеокамеры за счет сочетания быстрого метода определения движущихся объектов и метода нейросетевой...
Тип: Изобретение
Номер охранного документа: 0002651147
Дата охранного документа: 18.04.2018
13.11.2018
№218.016.9ca6

Видеокамера для получения и обработки видеоданных в формате 4k с обзором 360x360 градусов и способ ее функционирования

Изобретение относится к области видеосъемки. Технический результат – создание видеокамеры с увеличенной функциональностью за счет отсутствия необходимости использования внешних вычислительных систем и сетевой инфраструктуры для обработки и анализа видеоизображения. Видеокамера для получения и...
Тип: Изобретение
Номер охранного документа: 0002672136
Дата охранного документа: 12.11.2018
14.05.2023
№223.018.551f

Способ настройки видеокамеры для более качественного распознавания государственных регистрационных знаков в системах фиксации нарушений правил дорожного движения

Изобретение относится к области регулирования движения дорожного транспорта. Способ настройки видеокамеры для более качественного распознавания ГРЗ в системах фиксации нарушений ПДД состоит в том, что вместо встроенного в видеокамеру механизма автоматического выбора параметров работы в...
Тип: Изобретение
Номер охранного документа: 0002735519
Дата охранного документа: 03.11.2020
16.05.2023
№223.018.6112

Система фиксации нарушения правил парковки

Изобретение относится к области регулирования движения дорожного транспорта. Система фиксации нарушений правил парковки, содержащая поворотную видеокамеру, программно-аппаратные средства обработки видеозаписей и блок связи, обеспечивающий передачу информации. Система фиксации нарушений правил...
Тип: Изобретение
Номер охранного документа: 0002743455
Дата охранного документа: 18.02.2021
16.05.2023
№223.018.61a5

Способ определения траектории движения автомобиля по видео для выявления нарушений правил дорожного движения

Изобретение относится к способу определения траектории движения автомобиля по видео для выявления нарушений правил дорожного движения. При осуществлении способа происходит нахождение положения государственного регистрационного знака (ГРЗ) автомобиля на видеокадре, на котором поиск ГРЗ...
Тип: Изобретение
Номер охранного документа: 0002746057
Дата охранного документа: 06.04.2021
23.05.2023
№223.018.6c8f

Система определения скорости транспортного средства на участке

Изобретение относится к контрольно-измерительной технике и предназначено для автоматизированного контроля за соблюдением правил дорожного движения. Система определения скорости транспортного средства на участке состоит по меньшей мере из двух видеоблоков регистрации, каждый из которых...
Тип: Изобретение
Номер охранного документа: 0002733638
Дата охранного документа: 05.10.2020
05.06.2023
№223.018.76e9

Система контроля и мониторинга автотранспортных средств

Изобретение относится к системам автоматизированного контроля, диспетчерского управления и обеспечения безопасности нахождения на маршруте автотранспортных средств. Система контроля и мониторинга автотранспортных средств содержит центр реагирования, сторонние системы и программно-аппаратный...
Тип: Изобретение
Номер охранного документа: 0002738664
Дата охранного документа: 15.12.2020
Показаны записи 31-40 из 67.
10.05.2018
№218.016.4910

Устройство и способ каскадной обработки потока изображений с помощью свёрточных нейронных сетей

Группа изобретений относится к области автоматического анализа изображений. Техническим результатом является повышение достоверности автоматического определения движущихся объектов в поле зрения видеокамеры за счет сочетания быстрого метода определения движущихся объектов и метода нейросетевой...
Тип: Изобретение
Номер охранного документа: 0002651147
Дата охранного документа: 18.04.2018
12.12.2018
№218.016.a58d

Радиационно-стойкая библиотека элементов на комплементарных металл-окисел-полупроводник транзисторах

Изобретение относится к области микроэлектроники. Техническим результатом заявленного изобретения является создание радиационно-стойкой библиотеки элементов на комплементарных металл-окисел-полупроводник (КМОП) транзисторах с меньшей площадью элементов на кристалле по вертикали пропорционально...
Тип: Изобретение
Номер охранного документа: 0002674415
Дата охранного документа: 07.12.2018
14.12.2018
№218.016.a6d5

Радиационно-стойкий элемент памяти для статических оперативных запоминающих устройств на комплементарных металл-окисел-полупроводник транзисторах

Изобретение относится к вычислительной технике. Технический результат заключается в создании радиационно-стойкого элемента памяти для статических оперативных запоминающих устройств на комплементарных металл-окисел-полупроводник транзисторах, выполненных по технологии объемного кремния, с...
Тип: Изобретение
Номер охранного документа: 0002674935
Дата охранного документа: 13.12.2018
08.02.2019
№219.016.b852

Система защиты смотрового окна кожуха видеокамеры

Изобретение относится к системам защиты смотрового окна кожуха видеокамеры с использованием воздушного или газового потока. Представленная система защиты смотрового окна кожуха видеокамеры состоит из флюгера (1), воздухозаборника (3), имеющего внешнее отверстие (2) и подвижно соединенного с...
Тип: Изобретение
Номер охранного документа: 0002679164
Дата охранного документа: 06.02.2019
09.02.2019
№219.016.b8c6

Система и способ контроля перемещения людей

Изобретение относится к области вычислительной техники. Технический результат заключается в улучшении качества контроля перемещения людей. Система содержит: датчик обнаружения и распознавания лиц, а также датчик сопровождения и сбора статистики, причем датчик обнаружения и распознавания лиц...
Тип: Изобретение
Номер охранного документа: 0002679218
Дата охранного документа: 06.02.2019
09.02.2019
№219.016.b8fb

Динамический d-триггер

Изобретение относится к области цифровой микроэлектроники. Технический результат заключается в создании динамического D-триггера с малой занимаемой площадью и с увеличенным быстродействием, за счет работы выходного каскада, состоящего из четвертого p-канального транзистора и пятого и шестого...
Тип: Изобретение
Номер охранного документа: 0002679220
Дата охранного документа: 06.02.2019
21.03.2019
№219.016.eb1a

Способ видеосъемки телекамерой, установленной на наклонно-поворотной платформе

Изобретение относится к области видеонаблюдения и распознавания объектов. Техническим результатом является создание способа видеосъемки телекамерой, установленной на наклонно-поворотной платформе, за счет использования встроенного в телекамеру вычислителя, который управляет движением...
Тип: Изобретение
Номер охранного документа: 0002682315
Дата охранного документа: 19.03.2019
19.04.2019
№219.017.2be8

Система и способ автоматизированного видеонаблюдения и распознавания объектов и ситуаций

Группа изобретений относится к области сигнализации. Система видеонаблюдения содержит видеокамеру, вычислительное устройство с памятью, устройство распознавания цели, подвижную видеокамеру, базу данных с заранее записанными в нее описаниями тревожных ситуаций, реализованную на вычислительном...
Тип: Изобретение
Номер охранного документа: 0002268497
Дата охранного документа: 20.01.2006
19.04.2019
№219.017.2c99

Устройство и способ автоматизированного контроля обстановки в зрительных залах

Изобретение относится к области технических систем обеспечения безопасности и автоматизированного мониторинга, и, в частности, к системам автоматизированного контроля обстановки в зрительных залах. Техническим результатом является повышение эффективности контроля и статистического учета доступа...
Тип: Изобретение
Номер охранного документа: 0002296434
Дата охранного документа: 27.03.2007
19.04.2019
№219.017.3466

Устройство коммуникационного интерфейса

Изобретение относится к цифровой вычислительной технике, а именно к высокоскоростным коммуникационным системам для высокопроизводительных многопроцессорных вычислительных систем. Техническим результатом является снижение энергопотребления и повышение быстродействия, что обеспечивает расширение...
Тип: Изобретение
Номер охранного документа: 0002460124
Дата охранного документа: 27.08.2012
+ добавить свой РИД