×
13.01.2017
217.015.684e

Результат интеллектуальной деятельности: СПОСОБ ПРОИЗВОДСТВА ГОРЯЧЕКАТАНОГО ЛИСТОВОГО ПРОКАТА ИЗ НИЗКОЛЕГИРОВАННОЙ СТАЛИ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к низколегированным сталям повышенной теплоустойчивости, применяемым при производстве плавниковых труб, предназначенных для паровых котлов, труб пароперегревателей, трубопроводов и коллекторных установок высокого давления, деталей цилиндров газовых турбин, различных деталей, работающих при температуре до +480-500°C, воротниковых фланцев, штуцеров, колец, патрубков, тройников для энергооборудования и трубопроводов тепловых электростанций. Получают сляб из стали, имеющей химический состав, в мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06%, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси - остальное. Осуществляют нагрев слябов под прокатку до температуры 1200-1250°C. Выполняют многопроходную реверсивную черновую и чистовую прокатку. Черновую прокатку завершают при температуре не более 1100°C, а чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%. После прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе. Обеспечивается высокий уровень теплоустойчивости и ударной вязкости. 3 табл.

Изобретение относится к области металлургии, конкретнее к производству толстолистового проката на реверсивных станах, который используется для изготовления сварных металлоконструкций, эксплуатируемых при повышенных температурах и давлении.

Известен способ производства толстолистовой конструкционной стали с однородной ферритной структурой (Патент США №4662950, МПК C21D 8/02, 1987 г.). В соответствии с этим способом отливают слябы следующего химического состава, мас. %:

Углерод - не более 0,23

Марганец - не более 1,35

Сера - не более 0,05

Фосфор - не более 0,04

Кремний - не более 0,50

Ванадий - не более 0,10

Ниобий - 0,02-0,06

Алюминий - 0,02-0,06

Хром - не более 0,70

Никель - не более 0,50

Медь - не более 0,40

Железо - остальное.

Слябы нагревают до температуры 1120-1180°C, подвергают черновой прокатке с суммарным обжатием 40-60% и чистовой прокатке с суммарным обжатием 40-60%. Чистовую прокатку начинают при температуре не выше 980°C и завершают при температуре конца прокатки ниже 870°C.

Недостаток известного способа состоит в том, что прокатанные листы, в зависимости от толщины и конкретного содержания легирующих элементов стали, приобретают различные механические свойства. Это снижает их качество, прочностные характеристики, хладостойкость и теплоустойчивость.

Наиболее близким к описываемому изобретению по технической сущности и достигаемому результату является взятый за прототип способ производства горячекатаного листа из низколегированной стали (Патент РФ 2341564 C2, C21D 8/02 B21B 1/26, 2008 г.), включающий получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, согласно изобретению чистовую прокатку начинают при температуре 970-1050°C и завершают при температуре конца прокатки от 940 до 990°C с относительным обжатием в последнем проходе от 7 до 15%, причем сляб получают из стали, содержащей следующий химический состав, мас. %.

Углерод 0,18-0,23
Кремний 0,15-0,40
Марганец 1,0-1,35
Ванадий 0,02-0,04
Алюминий 0,02-0,05
Хром не более 0,3
Никель не более 0,3
Медь не более 0,3
Сера не более 0,020
Фосфор не более 0,020
Азот не более 0,012
Железо остальное

Кроме того, при получении листа толщиной 6,0-16,0 мм температура прокатки равна 940°C, при получении листа толщиной 16,1-25,0 мм температура конца прокатки равна 950°C, при получении листа толщиной 25,1-40,0 мм температура конца прокатки равна 980°C, а при получении листа толщиной более 40,0 мм температура конца прокатки равна 990°C.

Недостатком известного способа является недостаточная теплоустойчивость и пониженная ударная вязкость при отрицательных температурах.

Техническая задача, решаемая изобретением, состоит в повышении теплоустойчивости стали и ударной вязкости при отрицательных температурах одновременно.

Поставленная техническая задача решается тем, что в способе производства горячекатаного листа из низколегированной стали, включающем получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку и последующую термообработку с охлаждением на воздухе с регламентированной температурой конца прокатки, согласно изобретению сляб получают из стали, имеющей следующий химический состав, мас. %: углерод - 0,15-0,22%, кремний - 0,15-0,50%, марганец - 0,60-1,00%, алюминий - 0,01-0,06%, хром - не более 0,3%, никель - не более 0,3%, медь - не более 0,3%, молибден - 0,20-0,50%, сера - не более 0,007%, фосфор - не более 0,020%, азот - не более 0,012%, железо и неизбежные примеси - остальное, при этом нагрев под прокатку осуществляют до температуры 1200-1250°C, черновую прокатку заканчивают при температуре не более 1100°C, чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°C с относительным обжатием в последнем проходе от 10% до 15%, после прокатки и охлаждения листы подвергают термообработке при температуре 900-930°C с последующим охлаждением на воздухе.

Сущность предлагаемого изобретения состоит в следующем. Обеспечение заданных механических свойств горячекатаных толстых листов достигается одновременно как оптимизацией химического состава стали, так и режимов их последующей деформационно-температурной и термической обработки. После прокатки в стали предложенного состава формируется феррито-перлитная микроструктура, а последующая термическая обработка позволяет получить заданные и равномерные свойства в диапазоне толщин 8,0-50,0 мм.

Углерод упрочняет сталь. При содержании углерода менее 0,15% не достигается требуемая прочность стали, а при его содержании более 0,22% ухудшается ударная вязкость стали.

Кремний раскисляет сталь, повышает ее прочностные характеристики. При концентрации кремния менее 0,15% прочность стали ниже допустимой, а при концентрации более 0,50% снижается пластичность.

Марганец раскисляет и упрочняет сталь, связывает серу. При содержании марганца менее 0,60% прочность стали недостаточна. Содержание свыше 1,00% приводит к перерасходу легирующих.

Хром, никель, медь обеспечивают увеличение прочности при повышенных температурах без потери пластичности. Увеличение содержания данных свыше 0,3% приводит к перерасходу легирующих и, как следствие, увеличению себестоимости стали.

Молибден повышает прочность при повышенных температурах и вязкость стали, измельчая зерно микроструктуры. При содержании молибдена менее 0,20% прочность стали при повышенных температурах ниже требуемого уровня, а увеличение его содержания более 0,50% ухудшает пластичность и приводит к перерасходу легирующих элементов.

Сера является вредной примесью, снижающей пластические и вязкостные свойства. При концентрации серы не более 0,007% ее вредное действие проявляется слабо и не приводит к заметному снижению механических свойств стали данного состава. В тоже время более глубокая десульфурация удорожает сталь, делает ее производство нерентабельным.

Фосфор в количестве не более 0,020% целиком растворяется в α-железе, что ведет к упрочнению металлической матрицы. Однако увеличение содержания фосфора более 0,020% вызывает охрупчивание стали и снижение работы удара при отрицательных температурах.

Азот является нитридообразующим элементом, упрочняющим сталь. Однако повышение концентрации азота сверх 0,012% приводит к снижению вязкостных свойств при отрицательных температурах.

Экспериментально установлено, что при температуре нагрева ниже 1200°C сляб в методической печи недостаточно прогревается, что приводит к повышенной неоднородности конечной микроструктуры и, как следствие, к неравномерности механических свойств в листе. Нагрев сляба до температур превышающих 1250°C приводит получению более крупного аустенитного зерна, которое наследуется конечной структурой проката, что в свою очередь приводит к неудовлетворительным значениям временного сопротивления и ударной вязкости.

При температуре конца черновой прокатки превышающей 1100°C в металле успевают пройти все процессы рекристаллизации, что приводит к росту аустенитного зерна перед чистовой прокаткой, которая не способствует получению структуры готового проката, гарантирующей весь комплекс свойств, включая теплоустойчивость и хладостойкость.

Чистовую прокатку ведут за 7-11 проходов, при таком количестве проходов обжатия при прокатке распределяются равномерно между проходами, что способствует получению равномерной микроструктуры и свойств в готовых листах. Увеличение количества проходов более 11 негативно сказывается на механических свойствах, за счет недостаточной проработки структуры. Уменьшение - менее 7 проходов приводит к росту прочности и снижению пластических характеристик.

При температуре конца прокатки выше 910°C в стали предложенного состава в процессе охлаждения наблюдается неравномерный рост аустенитных зерен, что приводит к неравномерности микроструктуры в готовых листах, снижению прочности и стабильности механических свойств. Снижение температуры конца прокатки менее 880°C ухудшает пластические и вязкостные свойства листов и увеличивает нагрузки на оборудование при прокатке.

При относительном обжатии от 10 до 15% в последнем проходе имеет место механическая проработка валками только поверхностных слоев толстых листов. Так как поверхность листов после прокатки охлаждается наиболее интенсивно, то результатом механической проработки поверхности является выравнивание механических свойств листов различной толщины и различного химического состава стали в заявленных пределах. Увеличение относительного обжатия более 15% приводит к росту прочности и неравномерности механических свойств листов толщиной 8,0-50,0 мм. Снижение обжатия в последнем проходе менее 10% не обеспечивает выравнивания механических свойств листов в диапазонах толщин 8,0-50,0 мм, что снижает качество листов и выход годного.

При температуре последующей термической обработки свыше 930°C образуется крупнозернистая аустенитная структура, что в свою очередь негативно влияет на ударную вязкость в готовом прокате. Уменьшение температуры нагрева под термическую обработку ниже 900°C не позволяет получить равномерный комплекс всех механических свойств в связи с неравномерностью прогрева листов по толщине.

Пример реализации

Сталь выплавляли в электродуговой печи, разливали в слябы. Слябы нагревали до температуры 1200-1250°C и прокатывали на толстолистовом реверсивном стане 2800 в листы до конечной толщины (8,0-50,0 мм) при температуре конца черновой прокатки не более 1100°C, температуре конца чистовой прокатки 880-910°C. Причем чистовую прокатку осуществляли за 7-11 проходов с относительным обжатием в последнем проходе 10-15%. После окончания процесса деформации листы охлаждали на воздухе до температуры окружающей среды. Затем листы подвергали нормализации с отдельного нагрева с последующим охлаждением на воздухе.

Из таблиц 1-3 следует, что предложенный способ (составы 2-3; варианты 2-4) имеет более высокие прочностные характеристики при повышенных температурах и ударную вязкость при температуре KCV -30°C. Кроме того, сталь характеризуется высоким уровнем пластических свойств.

При запредельных концентрациях элементов и превышении заявленных технологических параметров горячей прокатки (составы 1, 6-7; варианты 1, 7-8) прочностные характеристики при повышенных температурах и ударная вязкость стали ухудшаются. Также более низкие свойства по прочности и ударной вязкости имеет сталь по прототипу (составы 4, 5; варианты 5, 6).

Способ производства горячекатаного листового проката из низколегированной стали, включающий получение сляба, нагрев, последующую многопроходную реверсивную черновую и чистовую прокатку с регламентированной температурой конца прокатки, отличающийся тем, что сляб получают из стали, имеющей следующий химический состав, мас.%: углерод 0,15-0,22, кремний 0,15-0,50, марганец 0,60-1,00, алюминий 0,01-0,06, хром не более 0,3, никель не более 0,3, медь не более 0,3, молибден 0,20-0,50, сера не более 0,007, фосфор не более 0,020, азот не более 0,012, железо и неизбежные примеси остальное, нагрев под прокатку осуществляют до температуры 1200-1250°С, черновую прокатку заканчивают при температуре не более 1100°С, чистовую прокатку ведут за 7-11 проходов и завершают в диапазоне температур от 880 до 910°С с относительным обжатием в последнем проходе от 10% до 15%, а после прокатки и охлаждения листы подвергают термообработке при температуре 900-930°С с последующим охлаждением на воздухе.
Источник поступления информации: Роспатент

Показаны записи 111-120 из 132.
14.03.2020
№220.018.0bd5

Способ переработки пиритных огарков

Изобретение относится к области гидрометаллургии и может быть использовано для получения чистых соединений железа, концентратов цветных и благородных металлов из пиритных огарков, являющихся отходами сернокислотного производства. Пиритные огарки перерабатывают путем солянокислотного...
Тип: Изобретение
Номер охранного документа: 0002716440
Дата охранного документа: 12.03.2020
29.04.2020
№220.018.1a5c

Способ разделения побочных продуктов и отходов металлургической промышленности и устройство для его осуществления

Изобретение относится к металлургической промышленности и может быть использовано для очистки загрязненных механическими примесями масел, для разделения на воду, масло и окалину шламов или сгущенной пульпы металлургических и металлообрабатывающих заводов. Способ включает отстаивание без...
Тип: Изобретение
Номер охранного документа: 0002720193
Дата охранного документа: 27.04.2020
01.05.2020
№220.018.1a76

Способ подготовки извести к выплавке стали в сталеплавильном агрегате

Изобретение относится к способу подготовки извести к выплавке стали в сталеплавильном агрегате. Способ включает нагрев и обжиг известняка во вращающейся трубной печи, охлаждение получаемой извести и ее подачу в сталеплавильный агрегат, согласно изобретению для обжига используют известняк с...
Тип: Изобретение
Номер охранного документа: 0002720279
Дата охранного документа: 28.04.2020
01.05.2020
№220.018.1ab1

Горячекатаная полоса высокой коррозионной стойкости из низколегированной стали и способ ее производства

Изобретение относится к области металлургии, а именно к производству горячекатаных полос из низколегированной стали, используемых для изготовления электросварных труб магистральных трубопроводов. Сталь имеет следующий химический состав, мас.%: углерод 0,04-0,07, кремний 0,15-0,25, марганец...
Тип: Изобретение
Номер охранного документа: 0002720284
Дата охранного документа: 28.04.2020
16.05.2020
№220.018.1da1

Канат стальной в полимерной оболочке со светоотражающими наполнителями (варианты)

Изобретение относится к канатному производству, предназначено для использования в мостостроении, судостроении, горнорудной области, а также в обустройстве автодорог и путепроводов. Предлагается канат стальной одинарной свивки, состоящий из оцинкованных проволок либо проволок без покрытия...
Тип: Изобретение
Номер охранного документа: 0002720971
Дата охранного документа: 15.05.2020
12.06.2020
№220.018.269f

Способ непрерывной разливки стали в заготовки малого сечения

Изобретение относится к области металлургии и может быть использовано при непрерывной разливке стали. Во время разливки в промежуточный ковш присаживают магнезиальный флюс, содержащий не менее 30% MgO. Во время присадки магнезиального флюса в промежуточном ковше снижают уровень стали на 3-30%...
Тип: Изобретение
Номер охранного документа: 0002723340
Дата охранного документа: 09.06.2020
29.06.2020
№220.018.2c62

Способ изготовления нераскручивающихся канатов закрытой конструкции и устройство для его осуществления

Изобретение относится к метизному производству и может быть использовано при изготовлении канатов закрытой конструкции и включает в себя способ и устройство для данного производства. Способ изготовления нераскручивающихся канатов закрытой конструкции, заключающийся в том, что проволока...
Тип: Изобретение
Номер охранного документа: 0002724825
Дата охранного документа: 25.06.2020
10.07.2020
№220.018.30f4

Листовой прокат, изготовленный из высокопрочной стали

Изобретение относится к области металлургии, а именно к листовому прокату толщиной до 50 мм из высокопрочной стали для судостроения, краностроения, транспортного и тяжелого машиностроения. Сталь содержит элементы при следующем соотношении, мас.%: углерод 0,08-0,10, кремний 0,15-0,35, марганец...
Тип: Изобретение
Номер охранного документа: 0002726056
Дата охранного документа: 08.07.2020
24.07.2020
№220.018.36a2

Способ производства горячекатаного рулонного проката

Изобретение относится к черной металлургии, а именно к способам производства сталей для изготовления из рулонного проката деталей для машиностроения, в т.ч. элементов автомобилей, тракторов, сельскохозяйственных машин. Способ включает выплавку стали в сталеплавильном агрегате, выпуск стали в...
Тип: Изобретение
Номер охранного документа: 0002727398
Дата охранного документа: 21.07.2020
31.07.2020
№220.018.3a69

Высокопрочный бетон

Изобретение относится к строительным материалам и может быть использовано для изготовления изделий из бетона в гражданском и промышленном строительстве, а также при изготовлении сооружений специального назначения. Технический результат - повышение трещиностойкости и повышение коррозионной...
Тип: Изобретение
Номер охранного документа: 0002727990
Дата охранного документа: 28.07.2020
Показаны записи 81-90 из 90.
14.02.2019
№219.016.b9f0

Способ производства конструкционного проката из низколегированной стали

Изобретение относится к области металлургии. Для получения проката с прочностными характеристиками: σт≥490 МПа, σв≥570 МПа, ударной вязкостью KCU-40 не менее 40 Дж/см, и исключения образования торцевых трещин при изготовлении деталей операцией вырубки способ производства коррозионно-стойкого...
Тип: Изобретение
Номер охранного документа: 0002679675
Дата охранного документа: 12.02.2019
01.03.2019
№219.016.c93a

Низколегированная сталь

Изобретение относится к области металлургии, в частности, к экономнолегированным сталям, предназначенным для изготовления изделий, эксплуатирующихся в агрессивных высокоминерализованных средах, содержащих сероводород и углекислый газ. Предложена низколегированная сталь, содержащая, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002283362
Дата охранного документа: 10.09.2006
01.03.2019
№219.016.cb2a

Способ производства штрипсов

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах полос для электросварных прямошовных обсадных труб, предназначенных для обустройства нефтяных и газовых скважин. Для повышения...
Тип: Изобретение
Номер охранного документа: 0002346060
Дата охранного документа: 10.02.2009
01.03.2019
№219.016.d00c

Способ производства горячекатаного проката

Изобретение предназначено для получения качественной поверхности полосы при производстве горячекатаных полос из стали с содержанием алюминия до 0,05%, в том числе травленых. Способ включает горячую прокатку на широкополосном стане, охлаждение водой до температуры смотки и смотку полос в рулоны....
Тип: Изобретение
Номер охранного документа: 0002445177
Дата охранного документа: 20.03.2012
03.03.2019
№219.016.d29f

Способ производства коррозионностойкого проката из низколегированной стали

Изобретение относится к области металлургии, в частности к производству термически обработанного листового проката из штрипсовых сталей, предназначенных для изготовления электросварных нефтегазопроводных и нефтепромысловых труб, используемых в условиях пониженных температур для...
Тип: Изобретение
Номер охранного документа: 0002681074
Дата охранного документа: 01.03.2019
29.03.2019
№219.016.f1ae

Способ производства полос из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано при изготовлении на непрерывных широкополосных станах полос для электросварных прямошовных обсадных труб, предназначенных для обустройства нефтяных и газовых скважин. Для повышения...
Тип: Изобретение
Номер охранного документа: 0002312905
Дата охранного документа: 20.12.2007
19.04.2019
№219.017.2dcf

Способ производства штрипсов

Изобретение относится к области прокатного производства, в частности к получению штрипсов, используемых при изготовлении сварных труб для магистральных нефтегазопроводов. Для снижения себестоимости и повышения эксплуатациионных свойств штрипсов способ включает выплавку стали, непрерывную...
Тип: Изобретение
Номер охранного документа: 0002348703
Дата охранного документа: 10.03.2009
10.07.2019
№219.017.ada5

Способ производства штрипсов из низколегированной стали

Изобретение относится к области металлургии, конкретнее к прокатному производству, и может быть использовано для получения штрипсов для сероводородостойких газонефтепроводных труб, сваренных с использованием нагрева токами высокой частоты. Для повышения хладостойкости штрипсов и стойкости...
Тип: Изобретение
Номер охранного документа: 0002375469
Дата охранного документа: 10.12.2009
10.09.2019
№219.017.c972

Способ производства хладостойкого листового проката повышенной прочности

Изобретение относится к области металлургии, конкретнее к производству конструкционных сталей для применения в судостроении, строительстве и др. отраслях. Для повышения прочности, хладостойкости и улучшения свариваемости стали способ производства высокопрочного горячекатаного проката в толщинах...
Тип: Изобретение
Номер охранного документа: 0002699696
Дата охранного документа: 09.09.2019
06.08.2020
№220.018.3d20

Рулонный прокат для обсадных и насосно-компрессорных труб и способ его производства

Изобретение относится к металлургии, а именно к производству рулонного проката толщиной 4-20 мм для изготовления высокопрочных насосно-компрессорных и обсадных труб, преимущественно малого диаметра, эксплуатируемых в агрессивных средах, содержащих сероводород и углекислый газ. Прокат выполнен...
Тип: Изобретение
Номер охранного документа: 0002728981
Дата охранного документа: 03.08.2020
+ добавить свой РИД