×
13.01.2017
217.015.66db

Результат интеллектуальной деятельности: МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА

Вид РИД

Изобретение

№ охранного документа
0002592048
Дата охранного документа
20.07.2016
Аннотация: Изобретение относится к области сканирующей зондовой микроскопии и может использоваться в условиях ограниченного доступа к зондам, например, в вакууме или агрессивной среде. Многозондовый датчик контурного типа содержит основание, на котором по внешнему контуру первыми концами закреплены гибкие консоли с зондами, имеющими заострения на вторых концах, где гибкие консоли с зондами представляют собой зондовые модули (8). Основание включает установочный модуль, имеющий координатную привязку с зондовыми модулями (8) и включающий первый выступ (55), второй выступ (56) и отверстие (57). Технический результат - обеспечение возможности быстрой смены зондов. 11 ил.

Изобретение относится к области сканирующей зондовой микроскопии, а более конкретно к устройствам, обеспечивающим быструю смену зондов, и может использоваться в условиях ограниченного доступа к зондам, например, в вакууме или агрессивной среде.

Известен многозондовый датчик контурного типа для сканирующего зондового микроскопа, включающий основание, на котором по внешнему контуру первыми концами закреплены гибкие консоли с зондами, имеющими заострения на вторых концах, при этом гибкие консоли с зондами представляют собой зондовые модули [1]. Это устройство выбрано в качестве прототипа предложенного решения.

Недостаток этого устройства заключается в его низких функциональных возможностях, связанных с невозможностью его использования в различных режимах работы.

Технический результат изобретения заключается в расширении функциональных возможностей.

Указанный технический результат достигается тем, что в многозондовом датчике контурного типа для сканирующего зондового микроскопа, содержащем основание (1), на котором по внешнему контуру (2) первыми концами (3) закреплены гибкие консоли (4) с зондами (5), имеющими заострения (6) на вторых концах (7), согласно изобретению гибкие консоли (4) с зондами (5) представляют собой зондовые модули (8), основание (1) включает установочный модуль (9), имеющий координатную привязку с зондовыми модулями (8).

Существует вариант, в котором зондовые модули (8) имеют индивидуальную маркировку.

Существуют также варианты, в которых гибкие консоли (4) имеют различную длину, и(или) различную ширину, и(или) различную толщину.

Существуют также варианты, в которых по меньшей мере одна гибкая консоль (4) имеет переменную ширину и(или) переменную толщину.

Существует также вариант, в котором по меньшей мере одна гибкая консоль (4) имеет V-образную форму (11).

Существует также вариант, в котором гибкие консоли (4) отличаются друг от друга механическими характеристиками.

Существуют также варианты, в которых зондовые модули (8) включают покрытия (15), которые могут быть проводящими, и(или) ферромагнитными, и(или) магнитными, и(или) пьезоэлектрическими.

Существуют также варианты, в которых основание (1) имеет переменную толщину и(или) выполнено композитным.

Существуют также варианты, в которых основание (1) содержит по меньшей мере один функциональный модуль (25), сопряженный с по меньшей мере одним с зондовым модулем (8), при этом по меньшей мере один функциональный модуль (25) выполнен в виде электронного модуля (30) и(или) в виде магнитопровода (35).

Существует также вариант, в котором установочный модуль (9) включает первое отверстие (40), второе отверстие (41) и третье отверстие (42).

Существует также вариант, в котором установочный модуль (9) включает первый выступ (55), второй выступ (56) и четвертое отверстие (57).

Существует также вариант, в котором установочный модуль (9) включает магнитный материал (65).

На фиг.1 изображен многозондовый датчик контурного типа для

сканирующего зондового микроскопа.

На фиг.2 изображен V-образный вариант зондового модуля.

На фиг.3 изображен вариант зондового модуля с покрытием.

На фиг.4 изображен вариант основания переменной толщины.

На фиг.5 изображен вариант композитного основания.

На фиг.6, фиг.7, фиг 8 изображен многозондовый датчик с функциональным модулем.

На фиг.9, фиг.10, фиг.11 изображены варианты выполнения установочного модуля.

Многозондовый датчик контурного типа для сканирующего зондового микроскопа содержит основание 1 (фиг.1), на котором по внешнему контуру 2 первыми концами 3 закреплены гибкие консоли 4 с зондами 5, имеющими заострения 6 на вторых концах 7, при этом гибкие консоли 4 с зондами 5 представляют собой зондовые модули 8. Основание 1 включает установочный модуль 9, имеющий координатную привязку с зондовыми модулями 8. Количество зондовых модулей 8 может быть от 4-х и до нескольких сотен. Однако надо иметь в виду, что при увеличении количества зондов необходимо будет увеличивать диаметр основания 1, чтобы обеспечить расстояние между ними, при котором соседние зонды не будут мешать функционированию рабочего зонда.

Существует вариант, в котором зондовые модули 8 имеют индивидуальную маркировку. Эта маркировка может быть выполнена, например, в виде цифр, букв и (или) их сочетаний (не показана).

Существуют также варианты, в которых гибкие консоли 4 имеют различную длину, и(или) различную ширину, и(или) различную толщину (не показано).

Существуют также варианты, в которых по меньшей мере одна гибкая консоль 4 имеет переменную ширину и(или) переменную толщину (не показано).

Существует также вариант, в котором по меньшей мере одна гибкая консоль 4 имеет V-образную форму 11.

Существует также вариант, в котором гибкие консоли 4 отличаются друг от друга механическими характеристиками. Это может быть обеспечено за счет выполнения их из различных материалов

Существуют также варианты, в которых зондовые модули 8 включают покрытия 15 (фиг.3), которые могут быть проводящими 16, и(или) ферромагнитными 17, и(или) магнитными 18, и(или) пьезоэлектрическими 19.

Существуют также варианты, в которых основание 1 имеет переменную толщину и(или) выполнено композитным. Переменная толщина, например, кремниевого основания 1 (фиг.4) может быть ступенчатой и иметь большую величину в центре за счет более высокого первого элемента 20 по сравнению со вторым элементом 21 в зоне установочного модуля 9. Выполнение основания 1 (фиг.5) композитным возможно в виде первого круглого фрагмента 22, изготовленного, например, из керамики или титана и склеенного эпоксидной смолой со вторым фрагментом 23 из кремния, имеющим форму кольца с зондовыми модулями.

Существуют также варианты, в которых основание 1 содержит по меньшей мере один функциональный модуль 25 (фиг.6), сопряженный с по меньшей мере одним зондовым модулем 8. При этом по меньшей мере один функциональный модуль 25 выполнен в виде электронного модуля 30 (фиг.7) и(или) в виде магнитопровода 35 (фиг.8). Электронный модуль 30 может включать, например, предусилитель, обеспечивающий усиление рабочего сигнала от пьезоэлектрического покрытия 15. Магнитопровод 35 может быть соединен с магнитным покрытием 18. При этом через него может осуществляться модуляция магнитного поля на зонде 7.

Существует также вариант, в котором установочный модуль 9 (фиг.9) включает первое отверстие 40, второе отверстие 41 и третье отверстие 42. Посредством отверстий 40 и 41 можно базировать основание 1 на захвате 43 сканирующего зондового микроскопа 44 (показаны условно) с использованием штырей 45 и 46. При этом возможно обеспечение упора этих штырей в стенки отверстий 40 и 41. При таком базировании можно обеспечить погрешность установки основания 1 на захвате 43 в пределах 2-3 мкм. Отверстия 40 и 41 могут быть преимущественно выполнены в композитном основании 1, в титановом фрагменте 22. Закрепление основания 1 на захвате 43 может быть осуществлено через отверстие 42 винтом (не показано). Существует также вариант, в котором установочный модуль 9 включает первый выступ 55 (фиг.10), второй выступ 56 и четвертое отверстие 57. Выступы 55 и 56 могут быть преимущественно выполнены в композитном основании 1, в титановом фрагменте 22. Посредством выступов 55 и 56 можно базировать основание 1 на захвате 43 сканирующего зондового микроскопа 44 (показаны условно) с использованием квадратных отверстий 58 и 59 захвата 43. При этом возможно обеспечение упора этих штырей в стенки отверстий 60, 61 и 62. При таком базировании можно обеспечить погрешность установки основания 1 на захвате 43 в пределах 1 мкм. Закрепление основания 1 на захвате 43 может быть осуществлено через отверстие 57 винтом (не показано).

Существует также вариант, в котором установочный модуль 9 включает магнитный материал 65 (фиг.11), нанесенный на поверхность основания 1, посредством которого может быть осуществлено закрепление основания 1 на захвате 43. При этом захват 43 может включать соленоид 68. Базирование основания 1 в этом случае может быть осуществлено, как показано на фиг.9. Следует заметить, что через соленоид 68 может одновременно осуществляться модуляция магнитного поля на зонде. В этом случае магнитный материал 65 может быть соединен с магнитопроводом 35.

Материалы, размеры и технология изготовления зондовых модулей являются традиционными для изготовления кантилеверов сканирующих зондовых микроскопов и подробно описаны в [2, 3, 4, 5, 6, 7].

Устройство работает следующим образом. Основание 1 закрепляют на захвате 43 СЗМ 44. После завершения работы с одним зондовым модулем 8 осуществляют поворот основания 1 на требуемый угол и продолжают работу с другим зондовым модулем. Подробнее функционирование предложенного устройства описано в [1].

То, что основание (1) включает установочный модуль (9), имеющий координатную привязку с зондовыми модулями (8), позволяет автоматически сопрягать светоотражающие консоли с оптической системой слежения за гибкой консолью (4) после поворота основания (1), что упрощает использование многозондового датчика, особенно в условиях агрессивной среды и вакуума. При использовании других систем слежения обеспечивается более точный выход зонда (5) в зону измерения, что создает возможность исследования более широкого круга объектов. В обоих случаях расширяются функциональные возможности устройства.

То, что зондовые модули (8) имеют индивидуальную маркировку, позволяет в процессе работы оперативно выбирать необходимый режим работы, что расширяются функциональные возможности устройства.

То, что гибкие консоли (4) имеют различную длину, и(или) различную ширину, и(или) различную толщину, по меньшей мере одна гибкая консоль (4) имеет переменную ширину и(или) переменную толщину, по меньшей мере одна гибкая консоль (4) имеет V-образную форму (11), позволяет исследовать более широкий круг материалов, что расширяются функциональные возможности устройства.

То, что гибкие консоли (4) отличаются друг от друга механическими характеристиками, одновременно позволяет оперативно выбирать необходимый режим работы и исследовать более широкий круг материалов, что расширяются функциональные возможности устройства.

То, что зондовые модули (8) включают покрытия (15), которые могут быть проводящими, и(или) ферромагнитными, и(или) магнитными, и(или) пьезоэлектрическими, позволяет оперативно выбирать необходимый режим работы и исследовать более широкий круг материалов, что расширяются функциональные возможности устройства.

То, что основание (1) имеет переменную толщину и(или) выполнено композитным, упрощает его замену, а также повышает точность его установки, что упрощает его эксплуатацию в условиях ограниченного доступа.

То, что основание (1) содержит по меньшей мере один функциональный модуль (25), сопряженный с по меньшей мере одним зондовым модулем (8), при этом по меньшей мере один функциональный модуль (25) выполнен в виде электронного модуля (30) и(или) в виде магнитопровода, (35) позволяет исследовать более широкий круг материалов, что расширяет функциональные возможности устройства.

То, что установочный модуль (9) включает первое отверстие (40), второе отверстие (41) и третье отверстие (42) или включает первый выступ (55), второй выступ (56) и четвертое отверстие (57), повышает точность его установки, что упрощает его эксплуатацию в условиях ограниченного доступа.

То, что установочный модуль (9) включает магнитный материал (60), упрощает его замену, что упрощает его эксплуатацию в условиях ограниченного доступа.

Литература

1. Патент RU 2244256.

2. Патент RU 2121657.

3. Патент RU 2340963.

4. Патент US 4943719.

5. Патент US 5264696.

6. Патент US 5345815.

7. Патент US 6156216.

Многозондовый датчик контурного типа для сканирующего зондового микроскопа, содержащий основание (1), на котором по внешнему контуру (2) первыми концами (3) закреплены гибкие консоли (4) с зондами (5), имеющими заострения (6) на вторых концах (7), при этом гибкие консоли (4) с зондами (5) представляют собой зондовые модули (8), отличающийся тем, что основание (1) включает установочный модуль (9), имеющий координатную привязку с зондовыми модулями (8) и включающий первый выступ (55), второй выступ (56) и отверстие (57).
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
МНОГОЗОНДОВЫЙ ДАТЧИК КОНТУРНОГО ТИПА ДЛЯ СКАНИРУЮЩЕГО ЗОНДОВОГО МИКРОСКОПА
Источник поступления информации: Роспатент

Показаны записи 21-30 из 46.
20.09.2014
№216.012.f5c1

Нанотехнологический комплекс на основе ионных и зондовых технологий

Использование: для замкнутого цикла производства новых изделий наноэлектроники. Сущность изобретения заключается в том, что в нанотехнологический комплекс на основе ионных и зондовых технологий, включающий распределительную камеру со средствами откачки, в которой расположен центральный робот...
Тип: Изобретение
Номер охранного документа: 0002528746
Дата охранного документа: 20.09.2014
20.11.2014
№216.013.068a

Устройство ориентации образца для нанотехнологического комплекса

Изобретение относится к области нанотехнологии и может быть использовано в автоматизированных транспортных системах передачи и позиционирования образца в вакууме и контролируемой газовой среде. Устройство содержит средство захвата образца и механизм его перемещения, носитель образца в виде...
Тип: Изобретение
Номер охранного документа: 0002533075
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0784

Многофункциональная сенсорная микроэлектромеханическая система

Многофункциональная сенсорная микроэлектромеханическая система (МЭМС) предназначена для использования в газоанализаторах, в медицине в качестве биосенсоров, в микроэлектронике и других высокотехнологичных областях для контроля технологических процессов. Многофункциональная сенсорная...
Тип: Изобретение
Номер охранного документа: 0002533325
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.17ac

Устройство травления поверхности для металлографического анализа

Изобретение относится к устройству травления поверхности для металлографического анализа образцов. Устройство включает ячейку для протравливания и средства, изолирующие протравливаемую зону от окружающих областей поверхности. При этом в ячейку включены средства для крепления к протравливаемому...
Тип: Изобретение
Номер охранного документа: 0002537488
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1b48

Сканирующий зондовый микроскоп с устройством для функционирования многозондового датчика

Изобретение относится к области сканирующей зондовой микроскопии. Микроскоп с устройством включает платформу (1), держатель образца (2) с образцом (3), установленные на сканирующем устройстве (4), сопряженном с платформой (1), блок сближения (5), систему регистрации (6), состоящую из источника...
Тип: Изобретение
Номер охранного документа: 0002538412
Дата охранного документа: 10.01.2015
20.08.2015
№216.013.7145

Способ введения целевых молекул в клетки

Изобретение относится к области биохимии. Предложен способ введения целевых молекул в клетки. Способ включает закрепление на культуральной подложке в питательной среде массива рабочих клеток, а также введение целевых молекул в массив рабочих клеток путем прокола клеточной мембраны. Целевые...
Тип: Изобретение
Номер охранного документа: 0002560567
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73df

Нестационарная перископическая антенная система

Изобретение относится к антенной технике и может быть использовано при создании антенных систем в радиосвязи и радиолокации. Антенная система состоит из опоры со свободным центром, излучателя, расположенного внутри опоры со свободным центром, и зеркала-переизлучателя, установленного на опоре....
Тип: Изобретение
Номер охранного документа: 0002561238
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.688f

Устройство манипулирования

Устройство манипулирования относится к области точной механики и может быть использовано для точного перемещения объектов, например, в зондовой микроскопии. Заявленное устройство манипулирования включает основание (1) с блоком направляющих, на котором установлена подвижная каретка (2),...
Тип: Изобретение
Номер охранного документа: 0002591871
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72e6

Вращающееся соединение

Изобретение относится к области радиолокационной техники, в частности к устройствам антенно-фидерной системы, используемым для передачи сверхвысокочастотной энергии между неподвижной частью радиолокационной станции (РЛС), например стационарными (неподвижными) передатчиками, приемниками, и...
Тип: Изобретение
Номер охранного документа: 0002598182
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7337

Механический свч переключатель

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для коммутации СВЧ-сигналов в фидерных трактах различного назначения, в частности при создании переключателя фидерных трактов. Согласно изобретению в механическом СВЧ переключателе, содержащем входной и выходные...
Тип: Изобретение
Номер охранного документа: 0002598180
Дата охранного документа: 20.09.2016
Показаны записи 21-30 из 51.
20.11.2014
№216.013.068a

Устройство ориентации образца для нанотехнологического комплекса

Изобретение относится к области нанотехнологии и может быть использовано в автоматизированных транспортных системах передачи и позиционирования образца в вакууме и контролируемой газовой среде. Устройство содержит средство захвата образца и механизм его перемещения, носитель образца в виде...
Тип: Изобретение
Номер охранного документа: 0002533075
Дата охранного документа: 20.11.2014
20.11.2014
№216.013.0784

Многофункциональная сенсорная микроэлектромеханическая система

Многофункциональная сенсорная микроэлектромеханическая система (МЭМС) предназначена для использования в газоанализаторах, в медицине в качестве биосенсоров, в микроэлектронике и других высокотехнологичных областях для контроля технологических процессов. Многофункциональная сенсорная...
Тип: Изобретение
Номер охранного документа: 0002533325
Дата охранного документа: 20.11.2014
10.01.2015
№216.013.1b48

Сканирующий зондовый микроскоп с устройством для функционирования многозондового датчика

Изобретение относится к области сканирующей зондовой микроскопии. Микроскоп с устройством включает платформу (1), держатель образца (2) с образцом (3), установленные на сканирующем устройстве (4), сопряженном с платформой (1), блок сближения (5), систему регистрации (6), состоящую из источника...
Тип: Изобретение
Номер охранного документа: 0002538412
Дата охранного документа: 10.01.2015
20.08.2015
№216.013.7145

Способ введения целевых молекул в клетки

Изобретение относится к области биохимии. Предложен способ введения целевых молекул в клетки. Способ включает закрепление на культуральной подложке в питательной среде массива рабочих клеток, а также введение целевых молекул в массив рабочих клеток путем прокола клеточной мембраны. Целевые...
Тип: Изобретение
Номер охранного документа: 0002560567
Дата охранного документа: 20.08.2015
27.08.2015
№216.013.73df

Нестационарная перископическая антенная система

Изобретение относится к антенной технике и может быть использовано при создании антенных систем в радиосвязи и радиолокации. Антенная система состоит из опоры со свободным центром, излучателя, расположенного внутри опоры со свободным центром, и зеркала-переизлучателя, установленного на опоре....
Тип: Изобретение
Номер охранного документа: 0002561238
Дата охранного документа: 27.08.2015
13.01.2017
№217.015.688f

Устройство манипулирования

Устройство манипулирования относится к области точной механики и может быть использовано для точного перемещения объектов, например, в зондовой микроскопии. Заявленное устройство манипулирования включает основание (1) с блоком направляющих, на котором установлена подвижная каретка (2),...
Тип: Изобретение
Номер охранного документа: 0002591871
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.72e6

Вращающееся соединение

Изобретение относится к области радиолокационной техники, в частности к устройствам антенно-фидерной системы, используемым для передачи сверхвысокочастотной энергии между неподвижной частью радиолокационной станции (РЛС), например стационарными (неподвижными) передатчиками, приемниками, и...
Тип: Изобретение
Номер охранного документа: 0002598182
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7337

Механический свч переключатель

Изобретение относится к технике сверхвысоких частот (СВЧ) и может быть использовано для коммутации СВЧ-сигналов в фидерных трактах различного назначения, в частности при создании переключателя фидерных трактов. Согласно изобретению в механическом СВЧ переключателе, содержащем входной и выходные...
Тип: Изобретение
Номер охранного документа: 0002598180
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.be64

Сканирующий зондовый микроскоп для оптической спектрометрии

Изобретение предназначено для оптической микроскопии и спектрометрии комбинационного рассеяния, люминесценции или флуоресценции с использованием зондового датчика в качестве оптической антенны. Микроскоп содержит основание 1, измерительную головку 2, зондовый датчик 3, держатель зондового...
Тип: Изобретение
Номер охранного документа: 0002616854
Дата охранного документа: 18.04.2017
25.08.2017
№217.015.c115

Нестационарная перископическая антенная система

Изобретение относится к антенной технике и может быть использовано при создании антенных систем в радиосвязи и радиолокации. Антенная система состоит из опоры со свободным центром, излучателя, расположенного внутри опоры со свободным центром, переизлучателя, установленного на опоре и имеющего...
Тип: Изобретение
Номер охранного документа: 0002617517
Дата охранного документа: 25.04.2017
+ добавить свой РИД