×
12.01.2017
217.015.5f1a

Результат интеллектуальной деятельности: СОЛНЕЧНЫЙ ЭЛЕМЕНТ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др. Солнечный элемент согласно изобретению включает кристаллическую подложку из кремния n-типа (n)с-Si ориентации (100) с фронтальной и тыльной поверхностями, над фронтальной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; р-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H; слой оксида индия-олова (ITO); серебренная контактная сетка. При этом над тыльной поверхностью последовательно расположены: промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора; нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H; n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H; слой оксида индия-олова ITO; слой серебра Ag. Изобретение позволяет улучшить пассивацию поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного гидрогенизированного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения. 13 з.п. ф-лы, 3 ил.

Область техники

Изобретение относится к области электроники и может быть использовано при конструировании солнечных элементов, которые используются в энергетике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности и др.

Уровень техники

Солнечный элемент - устройство, которое преобразует энергию солнечного света в электрический ток. Солнечный элемент служит для прямого преобразования солнечного излучения в электрическую энергию, используемую для питания электронных приборов и электроприводов устройств и механизмов, применяющихся в электронике, космических и военных технологиях, горнодобывающей, нефтеперерабатывающей, химической отраслях промышленности, экологии и др.

Среди возобновляемых источников энергии фотоэлектрическое преобразование солнечной энергии в настоящее время признано самым перспективным. Дальнейшее развитие солнечной энергетики требует постоянного совершенствования характеристик фотопреобразовательных устройств (солнечных элементов). Наиболее успешным направлением развития технологий повышения КПД солнечных элементов представляется использование гетеропереходов между аморфным гидрогенизированным и кристаллическим кремнием (a-Si:H/c-Si), которые обладают всеми преимуществами солнечных элементов на основе кристаллического кремния, но могут быть изготовлены при низких температурах, что позволяет существенно снизить стоимость изготовления солнечных элементов на основе гетеропереходов.

Эффективность работы первых солнечных элементов на основе a-Si:H/c-Si гетероперехода была ограничена низким качеством границы раздела a-Si:H/c-Si, что приводило к значительно меньшим значениям напряжения холостого хода и коэффициента заполнения, чем у традиционных солнечных элементов. Негативное влияние границы может быть снижено путем введения промежуточного слоя нелегированного гидрогенизированного аморфного кремния (i)-a-Si:H, который содержит меньше дефектов и позволяет уменьшить рекомбинацию на границе а-Si:H/c-Si. Еще большее увеличение эффективности было получено при использовании структуры (p)a-Si/(i)a-Si:H/(n)c-Si с нелегированным буферным слоем толщиной 5 нм, расположенным между кристаллической подложкой и аморфным эмиттером, что дало начало бурному развитию так называемых HIT структур (Heterojunction with Intrinsic Thin Layer - гетеропереходы с собственным тонким слоем). Например, технология получения солнечного элемента, описанная в патенте США (см. [1] US 5066340, МПК H01L 31/036, опубликованный 19.11.1991), включает структуру одностороннего фотопреобразователя (ФЭП), состоящего из кристаллического слоя одного типа проводимости, аморфного слоя другого типа проводимости, собственного микрокристаллического слоя между легированными слоями, лицевого и тыльного электродов.

Существенный прогресс в повышении КПД солнечных элементов за последние два десятилетия был достигнут компанией Sanyo, в первую очередь, за счет оптимизации фронтальной и тыльной поверхностей солнечного элемента.

Известен способ получения солнечного элемента, описанный в патенте США (см. [2] US 5401336, МПК H01L 31/0236, опубликованный 28.03.1995), где односторонняя структура представляет гетеропереход между кристаллическим и аморфным полупроводниками с аморфным или микрокристаллическим собственным слоем между ними, выполненный с применением текстурированных подложек и прозрачных электродов.

В другом патенте США (см. [3] US 5935344, МПК H01L 31/04, опубликованный 10.08.1999) описана структура СЭ (солнечного элемента) с гетеропереходами, состоящая из слоев собственного и легированного аморфного кремния, нанесенных на обе стороны подложки из кристаллического кремния.

Известен также способ получения солнечного элемента с многослойными гетеропереходами на основе слоев аморфного кремния и его сплавов, нанесенных на обе стороны подложки из кристаллического кремния (см. [4] ЕР 1187223, МПК H01L 31/04, опубликованный 13.03.2002).

Известен метод производства солнечного элемента с односторонним гетеропереходом (см. [5] US 20090293948, МПК H01L 21/027, опубликованный 03.12.2009), содержащий подложку, на которую в качестве буферного слоя нанесен слой аморфного кремния, затем слой легированного кремния, с обратной стороны подложки нанесено антиотражающие покрытие.

К недостаткам перечисленных солнечные элементов и методов их производства относится отсутствие второго гетероперехода, что снижает эффективность. Кроме этого, в перечисленных методах пассивация производится аморфным кремнием, что в свою очередь может вызвать эпитаксиальный рост на поверхности подложки.

Известен солнечный элемент с гетеропереходом на основе кристаллического кремния (см. [6] KR 100847741, МПК H01L 31/04, опубликованный 23.07.2008), содержащий слой карбида кремния для уменьшения дефектов, а также контактной площади между слоем аморфного и кристаллического кремния. Пассивирующий слой может быть изготовлен из SiO2, SiC, SiNx и собственного аморфного кремния. К недостаткам солнечного элемента можно отнести отсутствие рельефной поверхности кристаллического кремния с обеих сторон и обусловленное этим слабое рассеяние поступающего излучения.

В заявке США (см. [7] US 20090250108, МПК H01L 31/0224, опубликованной 08.10.2009) описана двухсторонняя структура на основе подложки из кристаллического кремния n-типа и нанесенных последовательно на обе стороны слоев карбида кремния, аморфного кремния p(n)-типа, проводящего слоя (ITO), Ag электродов в виде сетки на фронтальной и тыльной сторонах подложки. К недостаткам данного солнечного элемента можно отнести отсутствие с обеих сторон нелегированного слоя аморфного гидрогенизированного кремния: его функцию выполняет карбид кремния, который является более дефектным материалом.

В качестве наиболее близкого аналога (прототипа) выбрана заявка РСТ (см. [8] WO 2014148443 (А1), МПК H01L 31/0236, опубликованная 25.09.2014). Известный солнечный элемент содержит монокристаллическую подложку кремния, текстурированную с двух сторон, на которые нанесен слой аморфного кремния толщиной 2-3 нм, на одном из слоев аморфного кремния нанесен слой легированного аморфного кремния p-типа толщиной 10-30 нм, а на другом слое аморфного кремния нанесен слой легированного аморфного кремния n-типа толщиной 10-30 нм.

Сущность изобретения

Задачей заявляемого изобретения является создание солнечного элемента, характеризующегося улучшенной пассивацией поверхности кристаллической пластины кремния, повышенным напряжением холостого хода солнечного элемента и, как следствие, увеличенной эффективностью.

Техническим результатом является улучшенная пассивация поверхности за счет предотвращения частичного эпитаксиального роста во время нанесения слоя аморфного кремния толщиной 2-5 нм на кристаллическую подложку, что в свою очередь ведет к увеличению напряжения холостого хода и, как следствие, эффективности преобразования солнечного излучения.

Для решения поставленной задачи и достижения заявленного результата предлагается солнечный элемент, включающий кристаллическую подложку из кремния n-типа (n)c-Si ориентации (100) с фронтальной и тыльной поверхностями.

Над фронтальной поверхностью последовательно расположены:

a. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,

b. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,

c. p-легированный слой аморфного гидрогенизированного кремния (р)а-Si:H,

d. слой оксида индия-олова ITO,

e. серебренная контактная сетка,

над тыльной поверхностью последовательно расположены:

f. промежуточный слой аморфного гидрогенизированного карбида кремния в виде твердого раствора,

g. нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H,

h. n-легированный слой аморфного гидрогенизированного кремния (n)а-Si:H,

i. слой оксида индия-олова ITO,

j. слой серебра Ag.

Для реализации настоящего решения может использоваться кристаллическая подложка из кремния n-типа (n)c-Si толщиной от 80 до 250 мкм.

Для реализации настоящего решения может использоваться промежуточный слой аморфного гидрогенизированного карбида кремния с формулой (i)a-SixCx-1:H, где 0,8<x<0,90, толщиной 0,5-2 нм.

Для реализации настоящего решения может использоваться нелегированный слой аморфного гидрогенизированного кремния (i)a-Si:H толщиной от 2 до 5 нм.

Для реализации настоящего решения может использоваться p-легированный слой аморфного гидрогенизированного кремния (p)a-Si:H толщиной от 5 до 20 нм, при этом в качестве легирующего элемента может быть использован бор В.

Для реализации настоящего решения может использоваться слой оксида индия-олова ITO толщиной 90-110 нм на фронтальной поверхности и толщиной от 40 до 80 нм на тыльной поверхности.

Для реализации настоящего решения может использоваться n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H, легированный фосфором Р.

Для реализации настоящего решения может использоваться n-легированный слой аморфного гидрогенизированного кремния (n)a-Si:H толщиной от 10 до 20 нм на тыльной поверхности.

Для реализации настоящего решения может использоваться слой серебра Ag толщиной от 100 до 300 нм.

Для реализации настоящего решения может использоваться текстура в виде пирамид на фронтальной и тыльной поверхностях кристаллической подложки.

Краткое описание чертежей

На фиг. 1 изображена структура солнечного элемента.

На фиг. 2 - время жизни гладкой подложки кремния с наличием карбидного слоя и без него.

На фиг. 3 - время жизни текстурированной подложки кремния с наличием карбидного слоя и без него.

Осуществление изобретения

Солнечный элемент включает в себя кристаллическую подложку (1) кремния n-типа (n)c-Si ориентации (100), на обеих сторонах которой последовательно нанесен слой аморфного гидрогенизированного карбида кремния (2) в виде твердого раствора SixCx-1:H, где 0,8<x<0,90 толщиной 0,5-2 нм, нелегированный слой аморфного гидрогенизированного кремния (3) толщиной 2-5 нм, затем на фронтальной стороне (со стороны излучения) нанесен p-легированный слой (4) аморфного гидрогенизированного кремния толщиной 5-20 нм (для легирования используется газ В(СН3)32), слой оксида-олова ITO (6) толщиной 90-110 нм, серебренная контактная сетка 7. На тыльной стороне кристаллической подложки последовательно нанесен n-легированный слой аморфного гидрогенизированного кремния (5) толщиной 10-20 нм (для легирования используется газ РН32), слой оксида-олова ITO (8) толщиной 40-80 нм, слой серебра (9) толщиной 100-300 нм. Фотопреобразующая структура 1-5 под воздействием света разделяет электрический заряд и генерирует электричество. Кристаллическая подложка (1) толщиной 80-250 мкм является материалом, в котором происходит основное поглощение света, она занимает значительную часть солнечного элемента.

Ориентация (100) кремниевой подложки обладает наилучшей эффективностью, т.к. при щелочном травлении подложки с ориентацией (111), например, образуются слишком острые пирамиды.

Когда свет падает на солнечный элемент, он поглощается в основном в кристаллической подложке и в результате в ней генерируются электронно-дырочные пары. В основном за счет диффузии дырки направляются к p-области, а электроны - к n-области.

Использование в настоящем решении буферного (промежуточного) слоя аморфного гидрогенизированного карбида кремния толщиной менее 2 нм позволяет избежать процесса эпитаксии, характерного при использовании промежуточного слоя аморфного гидрогенизированного кремния. В свою очередь предотвращение процесса эпитаксиального роста кристаллического кремния позволяет обеспечить высокий уровень пассивации кремниевой подложки, а следовательно, и эффективности работы солнечного элемента.

Непосредственно перед процессом осаждения кремниевых слоев проводится снятие окисла с поверхностей кремниевой подложки. При этом в процессе роста аморфного кремния на данную подложку возможен процесс эпитаксии. Т.е. вместо роста аморфного кремния на подложке частично происходит рост кристаллического кремния, что не обеспечивает должного уровня пассивации кремниевой подложки. Для предотвращения процесса эпитаксии перед осаждением аморфного кремния используется буферный слой толщиной меньше 2 нм. В качестве методики оценки качества пассивации поверхности кремниевой пластины может служить измерение времени жизни запассивированной кремниевой подложки неосновных носителей заряда. На фиг. 2 представлен график зависимости времени жизни от концентрации неосновных носителей заряда. Время жизни неосновных носителей заряда гладкой пластины без наличия буферного слоя карбида кремния равно 117 мсек, а с данным слоем - 3410 мсек. В случае текстурированной пластины эффект выражен слабее, но также имеет место быть: 899 мсек и 1342 мсек без и с наличием слоя карбидного кремния соответственно (фиг. 3).


СОЛНЕЧНЫЙ ЭЛЕМЕНТ
СОЛНЕЧНЫЙ ЭЛЕМЕНТ
Источник поступления информации: Роспатент

Показаны записи 11-17 из 17.
10.06.2016
№216.015.4723

Способ активной защиты акватории ударно-волновым воздействием на подводный объект и устройство для его осуществления

Изобретение относится к устройствам активной защиты акватории ударно-волновым воздействием на подводный объект и к способам такой активной защиты. Устройство активной защиты акватории ударно-волновым воздействием на подводный объект включает блок питания, импульсный конденсатор, коммутатор,...
Тип: Изобретение
Номер охранного документа: 0002585690
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.b4ce

Пассивация поверхности кремниевых пластин методом магнетронного распыления

Изобретение относится к пассивации поверхности пластин кремния. Пассивация поверхности кремниевых пластин включает очистку пластин кристаллического кремния, распыление кремния магнетроном с кремниевой мишенью. Процесс распыления кремниевой мишени выполняют в атмосфере аргона (Ar) с добавлением...
Тип: Изобретение
Номер охранного документа: 0002614080
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.cc25

Способ и устройство переворота подложек в процессе производства фотопреобразователей

Изобретение относится к технологическому оборудованию, используемому в процессах обработки пластин полупроводников. Способ переворота подложек включает установку первого подложкодержателя с посадочными местами, в которых расположены подложки, на поворотный стол при помощи механизма загрузки,...
Тип: Изобретение
Номер охранного документа: 0002620452
Дата охранного документа: 25.05.2017
29.12.2017
№217.015.fc20

Защитный экран для электрода реактора плазмохимического осаждения

Изобретение относится к средствам защиты, в частности к устройствам защиты нижнего электрода реактора плазмохимического осаждения из газовой фазы. Защитный экран для электрода реактора плазмохимического осаждения, который выполнен металлическим, толщиной от 10 до 1000 микрометров с габаритными...
Тип: Изобретение
Номер охранного документа: 0002638609
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.0a7c

Структура фотопреобразователя на основе кристаллического кремния и линия по его производству

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей. Структура фотопреобразователя на основе кристаллического кремния включает:...
Тип: Изобретение
Номер охранного документа: 0002632267
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0a8b

Гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния. Солнечный модуль на основе кристаллического кремния включает пластину поликристаллического или...
Тип: Изобретение
Номер охранного документа: 0002632266
Дата охранного документа: 03.10.2017
Показаны записи 11-20 из 25.
10.06.2016
№216.015.4723

Способ активной защиты акватории ударно-волновым воздействием на подводный объект и устройство для его осуществления

Изобретение относится к устройствам активной защиты акватории ударно-волновым воздействием на подводный объект и к способам такой активной защиты. Устройство активной защиты акватории ударно-волновым воздействием на подводный объект включает блок питания, импульсный конденсатор, коммутатор,...
Тип: Изобретение
Номер охранного документа: 0002585690
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.7ab0

Способ получения светопоглощающей кремниевой структуры

Изобретение относится к области солнечных фотоэлектрических преобразователей на основе монокристаллического кремния. Способ получения светопоглощающей кремниевой структуры включает нанесение на поверхность образца из монокристаллического кремния слоя ванадия толщиной от 50 нм до 80 нм,...
Тип: Изобретение
Номер охранного документа: 0002600076
Дата охранного документа: 20.10.2016
25.08.2017
№217.015.b4ce

Пассивация поверхности кремниевых пластин методом магнетронного распыления

Изобретение относится к пассивации поверхности пластин кремния. Пассивация поверхности кремниевых пластин включает очистку пластин кристаллического кремния, распыление кремния магнетроном с кремниевой мишенью. Процесс распыления кремниевой мишени выполняют в атмосфере аргона (Ar) с добавлением...
Тип: Изобретение
Номер охранного документа: 0002614080
Дата охранного документа: 22.03.2017
25.08.2017
№217.015.cc25

Способ и устройство переворота подложек в процессе производства фотопреобразователей

Изобретение относится к технологическому оборудованию, используемому в процессах обработки пластин полупроводников. Способ переворота подложек включает установку первого подложкодержателя с посадочными местами, в которых расположены подложки, на поворотный стол при помощи механизма загрузки,...
Тип: Изобретение
Номер охранного документа: 0002620452
Дата охранного документа: 25.05.2017
29.12.2017
№217.015.fc20

Защитный экран для электрода реактора плазмохимического осаждения

Изобретение относится к средствам защиты, в частности к устройствам защиты нижнего электрода реактора плазмохимического осаждения из газовой фазы. Защитный экран для электрода реактора плазмохимического осаждения, который выполнен металлическим, толщиной от 10 до 1000 микрометров с габаритными...
Тип: Изобретение
Номер охранного документа: 0002638609
Дата охранного документа: 14.12.2017
19.01.2018
№218.016.0a7c

Структура фотопреобразователя на основе кристаллического кремния и линия по его производству

Изобретение относится к области полупроводниковых приборов, а именно к структуре фотопреобразователей на основе монокристаллического или поликристаллического кремния и к линии по производству фотопреобразователей. Структура фотопреобразователя на основе кристаллического кремния включает:...
Тип: Изобретение
Номер охранного документа: 0002632267
Дата охранного документа: 03.10.2017
19.01.2018
№218.016.0a8b

Гетероструктурный фотоэлектрический преобразователь на основе кристаллического кремния

Изобретение относится к области полупроводниковых приборов, а именно к изготовлению активных слоев солнечных модулей на основе монокристаллического или поликристаллического кремния. Солнечный модуль на основе кристаллического кремния включает пластину поликристаллического или...
Тип: Изобретение
Номер охранного документа: 0002632266
Дата охранного документа: 03.10.2017
10.05.2018
№218.016.3de9

Конструкция тонкопленочного солнечного модуля и способ ее изготовления

Изобретение относится к структуре двухкаскадного тонкопленочного солнечного модуля (фотопреобразователя) на основе аморфного и микрокристаллического кремния. Тонкопленочный солнечный модуль состоит из последовательно расположенных: фронтальной стеклянной подложки, фронтального контактного слоя...
Тип: Изобретение
Номер охранного документа: 0002648341
Дата охранного документа: 23.03.2018
09.08.2018
№218.016.7a64

Способ сборки монолитного солнечного модуля из ячеек фотоэлектрических преобразователей на клеевой слой

Изобретение относится к фотоэлектрическим преобразователям, в частности к технологии сборки солнечных модулей и коммутации ячеек фотоэлектрических преобразователей. Данное изобретение может применяться для монолитных солнечных модулей на основе ФЭП, изготовленных из монокристаллического...
Тип: Изобретение
Номер охранного документа: 0002663543
Дата охранного документа: 07.08.2018
08.11.2018
№218.016.9a79

Способ активной защиты акватории ударно-волновым воздействием на подводный объект

Изобретение относится к средствам защиты акваторий, других объектов от подводных диверсантов и других подводных объектов. Состоящее из надводной и подводной частей устройство способно сфокусированным лучом ударно-волновых импульсов сжатия микросекундного диапазона с частотой запуска...
Тип: Изобретение
Номер охранного документа: 0002671801
Дата охранного документа: 06.11.2018
+ добавить свой РИД