×
12.01.2017
217.015.5915

Результат интеллектуальной деятельности: ТИТАНОПОЛИМЕРНЫЙ СЛОИСТЫЙ МАТЕРИАЛ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО

Вид РИД

Изобретение

Аннотация: Изобретение относится к материалам авиастроительной промышленности и может быть использовано для изготовления деталей и элементов конструкционного назначения. Титанополимерный слоистый материал включает, по меньшей мере, два слоя листов титанового сплава и слой углепластика между ними, состоящий из, по меньшей мере, двух слоев препрега. Слой углепластика выполнен из препрегов на основе однонаправленной углеродной ленты и клеевого эпоксидного связующего, модифицированного полисульфоном, или однонаправленной и/или равнопрочной углеродной ткани и полициануратного связующего. Титановый сплав имеет предел прочности не менее 1000 МПа. Поверхность листов титанового сплава подвергнута предварительной химической или электрохимической обработке. Изобретение позволяет повысить адгезионную прочность соединения титан-углепластик, а также модуль упругости, предел прочности и удельную прочность титанополимерного слоистого материала. 2 н. и 5 з.п. ф-лы, 1 табл., 5 пр.

Изобретение относится к материалам авиастроительной промышленности, в частности к слоистым титанополимерным материалам и изделиям, выполненным из них. Изобретение может быть использовано для изготовления деталей и элементов конструкционного назначения, таких, как переходные зоны между агрегатами из углепластика и металлическими элементами конструкции, детали отъемной части крыла, обшивка фюзеляжа, передней части горизонтального оперения, флаперон, створки, люки, рули управления и стабилизаторы транспортных и пассажирских самолетов. Применение слоистых металлополимерных композиционных материалов возможно в машиностроительной и других отраслях промышленности.

Повышение аэродинамических характеристик планера летательных аппаратов и обеспечение весовой эффективности в современном авиастроении решается во многом за счет применения перспективных композиционных материалов, в первую очередь материалов нового поколения, обладающих высокой прочностью, в том числе удельной. Возможности традиционных методов совершенствования свойств авиационных материалов имеют определенные пределы. Так, у металлических сплавов при увеличении прочности за счет оптимизации состава и структуры не происходит существенного повышения выносливости и стойкости к усталостному разрушению. Рост прочности обычно сопровождается повышением чувствительности к концентраторам напряжений, что может служить причиной преждевременного разрушения конструкции.

В сравнении с металлами слоистые металлополимерные материалы характеризуются устойчивостью к усталостным нагрузкам. Одной из наиболее важных проблем, сдерживающих широкое применение металлополимерных композиционных материалов (в частности, «алюминий-углепластик», а также «титан-углепластик» в конструкциях изделий гражданской авиационной техники, являются вопросы соединения композиционных материалов с металлическими конструкциями, и, в первую очередь, это связано с вопросами возникновения гальванической коррозии в системе «углепластик-металл». Известно, что в сборочных единицах, включающих углепластик и металлические материалы, углепластик является катодом. Прямые коррозионные испытания и исследование электрохимических свойств металлических материалов в контакте с углепластиком показали, что наиболее уязвимы в таких сборочных единицах магниевые, алюминиевые сплавы, стали, оцинкованные и кадмированные. В то же время титановые сплавы считаются наиболее устойчивыми к гальванической коррозии в контакте с углепластиком.

Титановые сплавы обладают высокой коррозионной стойкостью во влажной атмосфере, что объясняется быстрым образованием на их поверхности естественной оксидной пленки, обеспечивающей пассивность в указанных условиях, но одновременно снижающей их адгезионную способность ко многим контактирующим с ними материалам, в частности к клеям. В связи с низкой адгезионной прочностью может происходить расслоение клеевого соединения. Это относится и к соединению «титан-углепластик» при эксплуатации во всеклиматических условиях. Для повышения адгезионной способности титановых сплавов необходимо проводить предварительную подготовку их поверхности. Опыт показывает, что механические способы обработки (пескоструйная обработка, зашкуривание) поверхности титановых сплавов не обеспечивают сохранения прочности клеевых соединений в условиях повышенной влажности.

Известны различные способы получения металлополимерных слоистых материалов.

В частности, фирмой Boeing (патент US 5972524, опубл. 26.10.1999 г. ) предложен способ соединения металлического слоя со слоем углепластика с помощью сварки z-образных шпилек в композите с металлическими выступами. Недостатком данного вида соединения по сравнению с клеевым является меньшая прочность материала при сдвиге.

Специалисты фирмы FokkerAerostructures BV (Нидерланды) (публикация международной заявки WO 2002078950, опубл. 10.10.2002 г. ) описывают многослойный композиционный материал, используемый, например, в панелях самолетов следующим образом: соединительная конструкция в слоистом материале состоит из расположенных попеременно двух металлических слоев и одного пластикового слоя, заключенного между ними. Два участка внешнего металлического слоя соединены внахлест друг с другом с помощью клея. Однако такое соединение внахлест создает резкое внешнее прерывание в непрерывной облицовке самолета, состоящей из панелей этого типа. Такие прерывания нежелательны по причинам как аэродинамики, так и прочности и жесткости.

В патенте US 7115323 (опубл. 03.10.2006 г. ) предлагается производить избирательное упрочнение полимерных композитов в местах повышенных нагрузок, т.е. в местах крепежа. Титановую фольгу рекомендуется изготовить из сплавов Ti-6Al-4V, Ti-15V-3Cr-3Sn-3Al и Ti-15Mo-3Al-3Nb. Недостатком такого метода избирательного упрочнения внешнего слоя детали является сложность формования цельной конструкции, низкая прочность материала при сдвиге, а также резкое внешнее прерывание в непрерывной облицовке самолета.

Как видно из приведенных примеров, вышеперечисленные способы получения металлополимерных слоистых материалов с помощью механической обработки или конструктивных приемов имеют ряд недостатков.

В то же время, авторами установлено, что проведение предварительной химической или электрохимической обработки может существенно повысить адгезионную способность металлической поверхности и быть использовано, в частности, при создании титанополимерных слоистых материалов.

Наиболее часто за рубежом используются слоистые металлополимерные композиционные материалы «алюминий-стеклопластик» под маркой GLARE, в Российской Федерации их аналогом являются материалы, выпускаемые под маркой СИАЛ. Слоистый материал СИАЛ содержит слои алюминиевого сплава с анодно-оксидированной поверхностью и слои стеклопластика, армированного стеклянными наполнителями (патент РФ №2185964, опубл. 27.07.2002 г. ). Главным преимуществом СИАЛ и GLARE является низкая скорость развития и распространения трещин. Недостатком является низкое значение модуля упругости (60-70 ГПа), которое не превышает значения модуля упругости алюминиевого сплава.

Наиболее близким аналогом к заявляемому изобретению является техническое решение, раскрывающее слоистый титанополимерный композиционный материал, который включает, по меньшей мере, два слоя листов титанового сплава и слой углепластика между ними, титановые листы имеют следующие легирующие системы: Ti-6A1-4V, Ti-15V-3Cr-3Sn-3Al, Ti-15Mo-3Al-3Nb (заявка US2005048246, опубл. 03.03.2005).

Недостатком материала, известного из прототипа, является средняя прочность (σв=850-1000 МПа) титановых сплавов, применяемых в композиционном материале, и высокая стоимость высоколегированных сплавов Ti-15V-3Cr-3Sn-3Al и Ti-15Mo-3Al-3Nb.

Технической задачей настоящего изобретения является создание металлополимерного слоистого материала - «титан-углепластик», обладающего повышенными модулем упругости и пределом прочности, а также пониженной плотностью для эффективного и обоснованного применения взамен монолитных листов и других полуфабрикатов из титановых сплавов в силовых элементах планера самолета и изделий транспортного машиностроения.

Техническим результатом настоящего изобретения является повышение адгезионной прочности соединения титан-углепластик, модуля упругости, предела прочности и удельной прочности титанополимерного слоистого материала.

Для достижения заявленного технического результата предложен титанополимерный слоистый материал, включающий, по меньшей мере, два слоя листов титанового сплава и слой углепластика между ними, состоящий из, по меньшей мере, двух слоев препрега, при этом слой углепластика выполнен из препрегов на основе однонаправленной углеродной ленты и клеевого эпоксидного связующего, модифицированного полисульфоном, или однонаправленной и/или равнопрочной углеродной ткани и полициануратного связующего, при этом титановый сплав имеет предел прочности не менее 1000 МПа, причем поверхность листов титанового сплава подвергнута предварительной химической или электрохимической обработке.

Предпочтительно, каждый слой титанового сплава выполнен из листа толщиной 0,3-0,8 мм.

Предпочтительно, слои титанового сплава выполнены из листов псевдо-α титанового сплава.

Предпочтительно, слои титанового сплава выполнены из листов α+β-титанового сплава с пределом прочности не менее 1050 МПа.

Предпочтительно, слои титанового сплава выполнены из листов псевдо-β-титанового сплава.

Предпочтительно, что в слое препрега углепластика содержание связующего составляет 23-55 мас. %.

Изобретение также относится к изделию из титанополимерного слоистого материала, выполненному из материала, согласно настоящему изобретению.

Предел прочности титановых сплавов, применяемых в титанополимерном слоистом материале, должен быть не менее 1000 МПа, для получения высоких значений механических характеристик композиционного материала.

Использование химической или электрохимической подготовки поверхности титанового сплава обеспечивает высокие адгезионные характеристики при создании титанополимерного слоистого материала.

Применение в металлополимерном слоистом материале титановых листов, обладающих пределом прочности не менее 1000 МПа, позволяет повысить передел прочности композиционного материала в целом.

Необходимо также отметить, что ранее листы из высокопрочных титановых сплавов с прочностью не менее 1000 МПа, из-за сложностей получения тонких листов толщиной 0,3-0,8 мм, в титанополимерных слоистых материалах не применялись, что является дополнительным преимуществом настоящего изобретения.

Для изготовления заявляемого титанополимерного слоистого материала используется метод совместного формования пакета, состоящего из слоев титанового сплава и слоев углеродного наполнителя, пропитанного связующим (препрега). Титанополимерный слоистый материал может содержать углеродные волокна, которые являются высокопрочными или высокомодульными. Изготовление материала за одну технологическую операцию позволяет получать более монолитный и стабильный материал с менее дефектной структурой. Способ получения титанополимерного композиционного слоистого материала заключается в том, что связующим пропитывают углеродные волокна для получения препрега, формируют заготовку титанополимерного слоистого материала путем послойной выкладки слоев из титановых листов со специально подготовленной поверхностью и препрегов углепластика, а затем осуществляют прессовое или автоклавное формование. Допускается также нанесение слоя толщиной 0,05-0,1 мм связующего, аналогичного используемому в препреге, (для повышения адгезионной прочности), путем его дискретного нанесения на специально подготовленную поверхность титанового сплава, контактирующую с препрегами углепластика, и его подформовки для равномерного распределения связующего по плоскости листа.

Примеры осуществления

Пример 1

Титанополимерный слоистый материал состоит: из трех листов титанового сплава ВТ20 (предел прочности 1030 МПа, модуль упругости 120 ГПа, плотность 4,45 г/см3) толщиной 0,5 мм с химически подготовленной поверхностью, двух слоев углепластика толщиной 0,5 мм из препрега на основе углеродной ленты арт. 14535 (поверхностная плотность 135±5 г/м2, количество нитей основы - 15±1 нитей на 10 см, количество нитей утка - 10,0 нитей на 10 см), пропитанной клеевым эпоксидным связующим расплавного типа, модифицированным полисульфоном, с теплостойкостью до 175°С. Пакет композиционного слоистого материала формируется следующим образом. На слой титанового сплава ВТ20 выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика и затем выкладывается второй слой титанового сплава ВТ20. На второй слой титанового сплава ВТ20 также выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика, который накрывается слоем титанового сплава. Материал получают методом прессового или автоклавного формования. Изученный пример осуществления изобретения показал высокие характеристики: прочность при растяжении не менее 1080 МПа, модуль упругости не менее 110 ГПа. Все вышеуказанные значения механических характеристик титанополимерного слоистого материала реализуются при удельной плотности не более 3,45 г/см3 и удельной прочности не менее 35 км.

Пример 2

Титанополимерный слоистый материал состоит: из трех листов титанового сплава ВТ20 (предел прочности 1030 МПа, модуль упругости 120 ГПа, плотность 4,45 г/см3) толщиной 0,8 мм с электрохимически подготовленной поверхностью, двух слоев углепластика толщиной 0,5 мм из препрега на основе углеродной ткани УТО300-3-IMS65 (поверхностная плотность 230±5 г/м2, количество нитей основы - 24 нити на 10 см, количество нитей утка - 15 нити на 10 см), пропитанной полициануратным связующим, переработанным по расплавной технологии, с теплостойкостью до 200°С. Пакет композиционного слоистого материала формируется следующим образом. На слой титанового сплава ВТ20 выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика и затем выкладывается второй слой титанового сплава ВТ20. На второй слой титанового сплава ВТ20 также выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика, которые накрываются слоем титанового сплава. Материал получают методом прессового или автоклавного формования. Изученный пример осуществления изобретения показал высокие характеристики: прочность при растяжении не менее 1060 МПа, модуль упругости при растяжении не менее 115 ГПа. Все вышеуказанные значения титанополимерного слоистого материала механических характеристик реализуются при удельной плотности не более 3,7 г/см3 и удельной прочности не менее 34 км.

Пример 3

Титанополимерный слоистый материал состоит: из трех листов титанового сплава ВТ23М (предел прочности 1080 МПа, модуль упругости 110 ГПа, плотность 4,57 г/см3) толщиной 0,3 мм с электрохимически подготовленной поверхностью, двух слоев углепластика толщиной 0,5 мм из препрега на основе углеродной ленты арт. 14535 (поверхностная плотность 135±5 г/м, количество нитей основы - 15±1 нитей на 10 см, количество нитей утка - 10,0 нитей на 10 см), пропитанной клеевым эпоксидным связующим расплавного типа, модифицированным полисульфоном, с теплостойкостью до 175°С. Пакет композиционного слоистого материала формируется следующим образом. На слой титанового сплава ВТ23М наносится слой толщиной 0,05 мм клеевого связующего, аналогичного используемому в препреге, затем выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика и затем выкладывается второй слой титанового сплава ВТ23М. На второй слой титанового сплава ВТ23М с обеих сторон наносится слой толщиной 0,05 мм связующего, аналогичного используемому в препреге, затем выкладывается слой препрега углепластика, который накрывается еще одним слоем препрега углепластика, которые накрываются слоем титанового сплава с нанесенным слоем толщиной 0,05 мм связующего, аналогичного используемому в препреге, на контактирующую с препрегом углепластика поверхность. Материал получают методом прессового или автоклавного формования. Изученный пример осуществления изобретения показал высокие характеристики: прочность при растяжении не менее 1150 МПа, модуль упругости при растяжении не менее 110 ГПа. Все вышеуказанные значения механических характеристик титанополимерного слоистого материала реализуются при удельной плотности не более 3,2 г/см3 и удельной прочности не менее 35 км.

Пример 4

Титанополимерный слоистый материал состоит: из трех листов титанового сплава ВТ23М (предел прочности 1080 МПа, модуль упругости 110 ГПа, плотность 4,57 г/см3) толщиной 0,5 мм с химически подготовленной поверхностью, двух слоев углепластика толщиной 0,6 мм из углеродной ткани УТО300-3-IMS65 (поверхностная плотность 230±5 г/м2, количество нитей основы - 24 нити на 10 см, количество нитей утка - 15 нитей на 10 см), пропитанной полициануратным связующим, переработанным по расплавной технологии, с теплостойкостью до 200°С. Пакет композиционного слоистого материала формируется следующим образом. На слой титанового сплава ВТ23М выкладывается слой препрега углепластика, пропитанный полициануратным связующим, который накрывается еще двумя слоями препрега углепластика, пропитанного связующим, и затем выкладывается второй слой титанового сплава ВТ23М. На второй слой титанового сплава ВТ23М также выкладывается слой препрега углепластика, пропитанный полициануратным связующим, который накрывается еще двумя слоями препрега углепластика, пропитанного связующим, который накрывается слоем титанового сплава. Материал получают методом прессового или автоклавного формования. Изученный пример осуществления изобретения показал высокие характеристики: прочность при растяжении не менее 1100 МПа, модуль упругости при растяжении не менее 110 ГПа. Все вышеуказанные значения механических характеристик титанополимерного слоистого материала реализуются при удельной плотности не более 3,5 г/см3 и удельной прочности не менее 35 км.

Пример 5

Титанополимерный слоистый материал состоит: из двух листов титанового сплава ВТ23М (предел прочности 1080 МПа, модуль упругости ПО ГПа, плотность 4,57 г/см3) толщиной 0,5 мм с химически подготовленной поверхностью, одного слоя углепластика толщиной 0,5 мм из углеродной ткани УТО300-3-IM865 (поверхностная плотность 230±5 г/м2, количество нитей основы - 24 нити на 10 см, количество нитей утка - 15 нитей на 10 см), пропитанной полициануратным связующим, переработанным по расплавной технологии, с теплостойкостью до 200°С. Пакет композиционного слоистого материала формируется следующим образом. На слой титанового сплава ВТ23М выкладывается слой препрега углепластика, пропитанный полициануратным связующим, который накрывается еще одним слоем препрега углепластика, пропитанного связующим, который накрывается слоем титанового сплава. Материал получают методом прессового или автоклавного формования. Изученный пример осуществления изобретения показал высокие характеристики: прочность при растяжении не менее 1100 МПа, модуль упругости при растяжении не менее 110 ГПа. Все вышеуказанные значения механических характеристик титанополимерного слоистого материала реализуются при удельной плотности не более 3,7 г/см3 и удельной прочности не менее 32 км.

У всех примеров изобретения отсутствовали какие-либо признаки поражения слоев титана электрохимической коррозией. В качестве титанового слоя могут быть использованы другие титановые сплавы (например, ВТ6, ВТ43, ВТ35 и др.).

В таблице 1 приведены составы и свойства заявляемого титанополимерного слоистого материала по примерам 1-5.

Указанное изделие может производиться доступными методами и на имеющемся оборудовании.

Источник поступления информации: Роспатент

Показаны записи 281-290 из 370.
29.03.2019
№219.016.f64b

Препрег антифрикционного органопластика и изделие, выполненное из него

Изобретение относится к области производства металлополимерных антифрикционных материалов и изделий и может быть использовано при изготовлении высоконагруженных подшипников скольжения в машино- и судостроении, авиационной промышленности и других областях техники. Препрег антифрикционного...
Тип: Изобретение
Номер охранного документа: 0002404202
Дата охранного документа: 20.11.2010
29.03.2019
№219.016.f659

Способ получения жаропрочных никелевых сплавов

Изобретение относится к области металлургии, а именно к получению жаропрочных никелевых сплавов, и может быть использовано для изготовления сварных корпусов, кожухов высоконагруженных деталей авиационных газотурбинных двигателей. Способ включает расплавление в вакууме шихтовых материалов,...
Тип: Изобретение
Номер охранного документа: 0002404273
Дата охранного документа: 20.11.2010
05.04.2019
№219.016.fd3f

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах до 700-1000°С. Жаропрочный литейный сплав на основе никеля содержит, мас.%:...
Тип: Изобретение
Номер охранного документа: 0002684000
Дата охранного документа: 03.04.2019
06.04.2019
№219.016.fe23

Жаропрочный деформируемый сплав на основе никеля и изделие, выполненное из этого сплава

Изобретение относится к области металлургии жаропрочных деформируемых сплавов на основе никеля и изделий, выполненных из этих сплавов, и может быть использовано для изготовления дисков турбин газотурбинных двигателей и других узлов и деталей, работающих при температурах до 800°С во...
Тип: Изобретение
Номер охранного документа: 0002365657
Дата охранного документа: 27.08.2009
19.04.2019
№219.017.2ba8

Грунтовочная композиция для кремнийорганических герметиков

Настоящее изобретение относится к области химии полимеров, а именно к средствам для обеспечения адгезии кремнийорганических герметиков к разнообразным подложкам, и может применяться в авиационной и космической технике, приборостроении и других отраслях промышленности. Техническая задача -...
Тип: Изобретение
Номер охранного документа: 0002272059
Дата охранного документа: 20.03.2006
19.04.2019
№219.017.2bbc

Препрег и изделие, выполненное из него

Изобретение относится к препрегу и изделию, выполненному из него, используемому в качестве материала несущих элементов конструкций авиационной и космической техники. Препрег содержит 24-50 мас.% полимерного связующего и 50-76 мас.% волокнистого наполнителя. В качестве волокнистого наполнителя...
Тип: Изобретение
Номер охранного документа: 0002278028
Дата охранного документа: 20.06.2006
19.04.2019
№219.017.2c3f

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению полуфабрикатов из жаропрочных высоколегированных деформируемых сплавов на основе никеля, предназначенных преимущественно для изготовления дисков газотурбинных двигателей или других изделий, работающих в условиях предельных...
Тип: Изобретение
Номер охранного документа: 0002285736
Дата охранного документа: 20.10.2006
19.04.2019
№219.017.2c52

Коррозионно-стойкая сталь и изделие, выполненное из нее

Изобретение относится к области металлургии, а именно к созданию коррозионно-стойкой стали, используемой в качестве листов или фольги в паяных сотовых панелях, деталях обшивки, в деталях внутреннего набора, работающих до 450°С. Предлагаемая коррозионно-стойкая сталь имеет следующий химический...
Тип: Изобретение
Номер охранного документа: 0002288966
Дата охранного документа: 10.12.2006
19.04.2019
№219.017.2d1e

Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов

Изобретение относится к области металлургии сплавов на основе алюминия, в том числе сплавов системы Al-Mg-Li, используемых в виде тонкостенных прессованных полуфабрикатов для стрингерного и силового набора фюзеляжа в клепаных и сварных конструкциях авиакосмической техники и судостроения....
Тип: Изобретение
Номер охранного документа: 0002256720
Дата охранного документа: 20.07.2005
19.04.2019
№219.017.2d22

Способ получения изделия из жаропрочного никелевого сплава

Изобретение относится к области металлургии, а именно к получению изделий из жаропрочных никелевых сплавов, работающих при температурах выше 600°С, в частности дисков ГТД. Предложен способ получения изделия из жаропрочного никелевого сплава, включающий вакуумно-индукционную выплавку, получение...
Тип: Изобретение
Номер охранного документа: 0002256722
Дата охранного документа: 20.07.2005
Показаны записи 281-290 из 336.
19.04.2019
№219.017.2ebc

Способ изготовления штамповок дисков из слитков высокоградиентной кристаллизации из никелевых сплавов

Изобретение относится к металлургии, а именно к получению изделий из жаропрочных деформируемых никелевых сплавов, полученных методом высокоградиентной кристаллизации, работающих при температурах выше 600°С, в частности дисков ГТД. Предлагаемый способ включает вакуумно-индукционную выплавку,...
Тип: Изобретение
Номер охранного документа: 0002389822
Дата охранного документа: 20.05.2010
19.04.2019
№219.017.2ed9

Способ получения пористого истираемого материала из металлических волокон

Изобретение относится к области машиностроения, а именно к способам получения истираемых материалов из металлических волокон, и может быть использовано при изготовлении уплотнений проточной части компрессора и турбины газотурбинного двигателя, в газонефтеперекачивающих установках для...
Тип: Изобретение
Номер охранного документа: 0002382828
Дата охранного документа: 27.02.2010
19.04.2019
№219.017.3218

Способ термомеханической обработки изделий из титановых сплавов

Изобретение относится к области цветной металлургии, в частности к термомеханической обработке изделий (полуфабрикатов, деталей, узлов и др.) из титановых сплавов Способ термомеханической обработки изделий из титановых сплавов включает термомеханическую обработку, которую проводят в двенадцать...
Тип: Изобретение
Номер охранного документа: 0002457273
Дата охранного документа: 27.07.2012
19.04.2019
№219.017.3246

Флюс для плавки и рафинирования магниевых сплавов, содержащих иттрий

Изобретение относится к металлургии цветных сплавов, в частности к флюсам для плавки и рафинирования деформируемых магниевых сплавов, содержащих иттрий. Флюс характеризуется повышенной рафинирующей способностью от металлических примесей, препятствует потере иттрия и имеет следующий состав,...
Тип: Изобретение
Номер охранного документа: 0002451762
Дата охранного документа: 27.05.2012
19.04.2019
№219.017.339e

Сплав на основе алюминия

Предлагаемое изобретение относится к области цветной металлургии и может быть использовано в авиакосмической промышленности и транспортном машиностроении. Сплав содержит следующие компоненты, мас.%: медь 3,50-4,50, магний 1,20-1,60, марганец 0,30-0,60, цирконий 0,01-0,15, серебро 0,01-0,50,...
Тип: Изобретение
Номер охранного документа: 0002447173
Дата охранного документа: 10.04.2012
19.04.2019
№219.017.339f

Теплостойкая подшипниковая сталь

Изобретение относится к области металлургии, а именно к созданию теплостойких сталей для подшипников, работающих при температуре до 500°С и используемых, например, для авиационных газотурбинных двигателей (ГТД) и редукторов вертолетов. Сталь содержит углерод, марганец, кремний, хром, вольфрам,...
Тип: Изобретение
Номер охранного документа: 0002447183
Дата охранного документа: 10.04.2012
27.04.2019
№219.017.3bb6

Жаропрочный литейный сплав на основе кобальта и изделие, выполненное из него

Изобретение относится к металлургии, в частности к жаропрочным сплавам для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 750-1000°С. Жаропрочный литейный сплав на основе кобальта содержит, мас.%: углерод 0,15-0,35,...
Тип: Изобретение
Номер охранного документа: 0002685895
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bd4

Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к металлургии, в частности к коррозионно-стойким жаропрочным сплавам на основе никеля для деталей горячего тракта газотурбинных двигателей и установок, длительно работающих в агрессивных средах при температурах 800-1000°С. Жаропрочный литейный сплав на основе никеля...
Тип: Изобретение
Номер охранного документа: 0002685908
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bea

Интерметаллидный сплав на основе никеля и изделие, выполненное из него

Изобретение относится к области металлургии, а именно к жаропрочным интерметаллидным сплавам на основе никеля, предназначенным для изготовления методами точного литья деталей газотурбинных двигателей. Сплав на основе интерметаллида никеля содержит, мас.%: 8,1 - 8,6 Аl, 5,6 - 6,3 Сr 4,5 - 5,5...
Тип: Изобретение
Номер охранного документа: 0002685926
Дата охранного документа: 23.04.2019
27.04.2019
№219.017.3bf1

Антибликовый экран на основе силикатного стекла, антибликовое и антибликовое электрообогревное покрытия для него

Изобретение относится к области антибликового остекления приборов радиоэлектронной техники. Антибликовое покрытие содержит первый внутренний слой из TiO толщиной 10-17 нм, второй слой из SiO толщиной 27-36 нм, третий слой из TiO толщиной 102-120 нм и четвертый слой из SiO толщиной 87-95 нм....
Тип: Изобретение
Номер охранного документа: 0002685887
Дата охранного документа: 23.04.2019
+ добавить свой РИД