×
10.08.2016
216.015.55ae

Результат интеллектуальной деятельности: КАТАЛИЗАТОР ДЛЯ ДЕГИДРИРОВАНИЯ ЦИКЛОГЕКСАНОЛА В ЦИКЛОГЕКСАНОН И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама. Заявленный катализатор дегидрирования циклогексанола в циклогексанон включает карбонат кальция, оксид цинка, дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-2,5; смесь терморасширенного графита и шунгита - 0,5-1,5. Изобретение также относится к способу получения катализатора дегидрирования циклогексанола в циклогексанон, содержащего оксид цинка и карбонат кальция, который заключается в приготовлении реакционной смеси, содержащей источники оксидов цинка и карбоната кальция, формовании, сушке, измельчении, прокаливании, причем вначале готовят первичную смесь, содержащую, мас.%: карбонат кальция - 12,4-29,8, карбоксиметилцеллюлоза или метилцеллюлоза - 0,1-1,0, основной карбонат цинка остальное, в смесь добавляют смесь терморасширенного графита и шунгита в количествах, обеспечивающих получение катализатора следующего состава, мас.%: карбонат кальция - 16,0-38,0; оксид цинка - 61,5-82,5; смесь терморасширенного графита и шунгита - 0,5-1,5, при этом первичную смесь для приготовления катализатора получают методом механохимической активации на установке, состоящей из шнекового смесителя, дозирующего устройства, ротационно-импульсного аппарата в присутствии карбоксиметилцеллюлозы или метилцеллюлозы для получения гомогенной смеси, которую сушат до полного удаления влаги, измельчают на мельнице ударного типа одновременно с введением в нее терморасширенного графита и шунгита для получения катализаторной массы, которую затем прокаливают, охлаждают и формуют в виде таблеток или цилиндров заданных размеров. Технический результат изобретения заключается в повышении качества и увеличении срока эксплуатации катализатора за счет повышения удельной поверхности, механической прочности, формуемости, активности и селективности. 2 н.п. ф-лы, 3 табл., 3 пр.

Изобретение относится к области каталитического процесса дегидрирования циклогексанола в технологии получения ε-капролактама.

Известен катализатор дегидрирования вторичных циклических спиртов на основе оксида цинка (30-60 мас.%) и карбоната кальция (40-70 мас.%) в модификации кальцита [пат. №2181624 РФ, МПК B01J 23/02, B01J 23/06. Способ и катализатор дегидрирования вторичных циклических спиртов и способ получения данного катализатора / Бреккер Франц Иозеф (DE), Хессе Михаэль (DE), Мэркль Роберт (DE); заявитель и патентообладатель Басф Акциенгезелльшафт (DE). - №98118915/04; заявл. 06.03.1997; опубл. 27.04.2002].

Недостатками данного технического решения являются недостаточные удельная поверхность катализатора и сопротивление разрушению при лобовом и боковом давлениях.

Известен способ приготовления данного катализатора, который осуществляют путем осаждения труднорастворимых соединений цинка и кальция основанием из растворов водорастворимых соединений цинка и кальция и последующей переработки, включающей сушку и термическую обработку. Сушку осуществляют при температуре в области от 90 до 150°С. Высушенный порошок кальцинируют согласно изобретению при температурах в области от 400 до 475°С (предпочтительно). При осуществлении способа кальцинированный порошок запрессовывают вместе с (предпочтительно) 2 мас.% графита, считая на общую массу. Процесс дегидрирования вторичных циклических спиртов в присутствии данного катализатора с целью получения циклогексанона осуществляют при повышенных температуре и давлении в присутствии водорода. В качестве вторичных циклических спиртов предпочтительным является использование циклогексанола. Предпочтительной нагрузкой является от 0,6 до 2,0 литров спирта на литр катализатора в час. Температуру газовой фазы в зоне реакции рекомендуют поддерживать 300+450°С (предпочтительно). При этом превращение спирта достигалось в пределах от 65 до 75%. [пат. №2181624 РФ, МПК B01J 23/02, B01J 23/06. Способ и катализатор дегидрирования вторичных циклических спиртов и способ получения данного катализатора / Бреккер Франц Иозеф (DE), Хессе Михаэль (DE), Мэркль Роберт (DE); заявитель и патентообладатель Басф Акциенгезелльшафт (DE). - №98118915/04; заявл. 06.03.1997; опубл. 27.04.2002].

Недостатком аналога является недостаточное качество катализатора за счет физико-механических свойств.

Наиболее близким по технической сущности к заявляемому изобретению, то есть прототипом, является катализатор для дегидрирования циклокегсанола в циклогексанон и способ его приготовления, содержащий мас.%: карбонат кальция 16,4-37,0; графит 1,0-3,0; оксид цинкостальное [пат. №2447937 РФ, МПК B01J 23/02, B01J 23/06, B01J 21/18, B01J 21/18, B01J 37/04, С07С 45/00, С07С 49/403. Катализатор для дегидрирования циклогексанола в циклогексанон и способ его приготовления / Резниченко И.Д., Садивский С.Я., Целютина М.В., Посохова О.М., Андреева Т.Н., Ардамаков СВ., Хусаенов И.Ф.; заявители и патентообладатели ОАО «Ангарский завод катализаторов и органического синтеза, ОАО «КуйбышевАзот». - №2010136256/04; заявл. 27.08.2010; опубл. 20.04.2012, Бюл. №11. - 8 с.], а для способа - включающий приготовление реакционной смеси, содержащей источники оксидов цинка и карбоната кальция, формование, сушку, прокаливание, при этом вначале готовят смесь, содержащую, мас.%: карбонат кальция 12,4-29,8, карбоксиметилцеллюлозу или метилцеллюлозу 0,1-1,0 и основной карбонат цинка остальное, а графит добавляют после прокаливания в количествах, обеспечивающих получение катализатора указанного выше состава. При изготовлении катализатора по прототипу графит добавляют после прокалки катализаторной массы перед таблетированием. Это приводит к снижению механической прочности катализатора, снижает его активность и селективность и уменьшает срок эксплуатации. Это обусловлено тем, что процесс выгорания графита осуществляется непосредственно в начале процесса дегидрирования.

Недостатками прототипа является недостаточное качество и малый срок эксплуатации за счет:

- недостаточной удельной поверхности;

- недостаточной механической прочности;

- недостаточной формуемости;

- недостаточной активности и селективности.

Техническим результатом изобретения является повышение качества и увеличение срока эксплуатации катализатора за счет повышения удельной поверхности, механической прочности, формуемости, активности и селективности.

Указанный результат достигается тем, что катализатор дегидрирования циклогексанола в циклогексанон, включающий карбонат кальция, оксид цинка, согласно изобретению дополнительно содержит смесь терморасширенного графита и шунгита в их соотношении 1,0-1,2:0,1-0,12 при следующем содержании компонентов, мас.%:

карбонат кальция 16,0-38,0
оксид цинка 61,5-82,5
смесь терморасширенного графита и шунгита 0,5-1,5

Указанный результат достигается также тем, что в способе получения катализатора дегидрирования циклогексанола в циклогексанон, содержащего оксид цинка и карбонат кальция, заключающемся в приготовлении реакционной смеси, содержащей источники оксидов цинка и карбоната кальция, формовании, сушке, измельчении, прокаливании, причем вначале готовят первичную смесь, содержащую, мас.%:

карбонат кальция 12,4-29,8
карбоксиметилцеллюлоза или метилцеллюлоза 0,1-1,0
основной карбонат цинка остальное

согласно изобретению в смесь добавляют смесь терморасширенного графита и шунгита в количествах, обеспечивающих получение катализатора следующего состава, мас.%:

карбонат кальция 16,0-38,0
оксид цинка 61,5-82,5
смесь терморасширенного графита и шунгита 0,5-1,5

при этом первичную смесь для приготовления катализатора получают методом механохимической активации на установке, состоящей из шнекового смесителя, дозирующего устройства, ротационно-импульсного аппарата, в присутствии карбоксиметилцеллюлозы или метилцеллюлозы для получения гомогенной смеси, которую сушат до полного удаления влаги, измельчают на мельнице ударного типа одновременно с введением в нее терморасширенного графита и шунгита для получения катализаторной массы, которую затем прокаливают, охлаждают и формуют в виде таблеток или цилиндров заданных размеров.

Технический результат заявляемой группы изобретений достигается за счет сенергетического эффекта - использования механохимической технологии приготовления первичной смеси катализатора, последующего введения в сухую массу перед ее помолом терморасширенного графита (ТРГ) и шунгита, что снижает силы трения между частицами катализаторной массы и, как следствие, ослабляет внутренние механические напряжения в объеме и способствует увеличению механической прочности получаемого катализатора, увеличивает срок его эксплуатации. Использование механохимической технологии приготовления исходной смеси катализатора позволяет получить гомогенизированную катализаторную смесь с максимальной однородностью структуры катализаторной массы.

Введение в сухую катализаторную массу терморасширенного графита (ТРГ) и шунгита перед стадией помола массы предопределяет их распределение в объеме массы по случайно-вероятностному механизму. Результатом такого распределения является изменение микроструктуры и, соответственно, свойств получаемой катализаторной массы. Это явление в значительной степени обусловлено поверхностно-активными и трибологическими свойствами диспергированных микрочастиц терморасширенного графита и шунгита, имеющих удельную поверхность в сотни раз выше, чем графита, используемого в прототипе. Результатом изменения микроструктуры катализаторной массы являются повышенные удельная поверхность, механическая прочность и термостойкость, а также лучшая, чем по прототипу, формуемость, т.е. таблетирумость. Сорбированные на поверхности частиц катализаторной массы микрочастицы ТРГ и шунгита уменьшают силы трения как между частицами катализаторной массы, так и частицами формуемой массы с поверхностями оснастки формовочного пресса, что повышает производительность оборудования, уменьшает износ технологической оснастки.

Кроме того, введение в реакционную смесь ТРГ и шунгита до операции прокаливания катализаторной массы, при ее измельчении с использованием мельницы ударного типа, т.е. изменение последовательности операций изготовления катализатора по сравнению с прототипом, позволяет дополнительно увеличить механическую прочность и термостойкость катализатора. Одновременно заявляемый катализатор обладает лучшими по сравнению с прототипом показателями по степени превращения циклогекгексанола в циклогексанон (селективности), выходу циклогексанона, степенью превращения циклогексанола в продукты реакции дегидрирования (активностью).

Примеры 1-3 составов катализатора дегидрирования циклокегсанола в циклогексанон и прототипа приведены в табл. 1

Процесс дегидрирования циклогексанола проводили в отсутствие водорода при атмосферном давлении и температуре 350°С.

В качестве исходного сырья использовали смесь циклических, алифатических спиртов, сложных эфиров, жидких углеводородов, кетонов. Содержание в смеси циклогексанола, мас.%: 90,182-91,348.

Пример 1

Процесс дегидрирования циклогексанола проводили при температуре 350°С при атмосферном давлении и объемной скорости 1,0 ч-1 без использования водорода. Исходную сырьевую смесь, содержащую 90,182% циклогексанола, подвергали дегидрированию на катализаторе по примеру 1 табл. 1. Состав сырья и продуктов процесса дегидрирования определяли хроматографическим методом.

Указанные преимущества по примерам 1-3 и прототипу характеризуются данными табл. 2, где приведены технологические параметры каталитического процесса дегидрирования циклогексанола.

Как видно из табл. 2, показатели по степени превращения циклогекгексанола в циклогексанон (селективности), выходу циклогексанона, т.е. степени превращения циклогексанола в продукты реакции дегидрирования (активности), по примерам 1-3 выше, чем по прототипу.

По остатку циклогексанола, не вступившего в реакцию дегидрирования, по примерам 1-3 и прототипу видно, что заявляемый катализатор по указанным выше каталитическим свойствам превосходит прототип.

Возможность приготовления заявляемого катализатора подтверждается нижеследующими примерами способа.

Пример 1

В смеситель загружают 174,4 кг основного карбоната цинка и 24,0 кг карбоната кальция, 1,6 кг карбоксиметилцеллюлозы в виде водного коллоидного раствора. Смесь перемешивается в двухшнековом смесителе в течение 12 мин, гомогенизируется на ротационно-импульсном аппарате в течение 8 мин, сушится при 100°С до полного удаления влаги. Полученный продукт измельчают в мельнице ударного типа, куда подается смесь терморасширенного графита (ТРГ) и шунгита в количестве 3,0 кг при соотношении ТРГ:шунгит 1:0,1. Далее прокаливают продукт при температуре 430°С, охлаждают до комнатной температуры и формуют в виде таблеток или цилиндров заданных размеров. Полученный в количестве 160 кг продукт содержит, кг:

Карбонат кальция 25,6
Оксид цинка 132,0
Смесь терморасширенного графита и шунгита 2,4

Пример 2

В смеситель загружают 159,0 кг основного карбоната цинка, 40,0 кг карбоната кальция, 1,0 кг карбоксиметилцеллюлозы в виде водного коллоидного раствора. Смесь перемешивается в двухшнековом смесителе в течение 10 мин, гомогенизируется на ротационно-импульсном аппарате в течение 10 мин, сушится при 105°С до полного удаления влаги. Полученный продукт измельчают в мельнице ударного типа, куда подается смесь терморасширенного графита (ТРГ) и шунгита в количестве 1,8 кг при соотношении ТРГ:шунгит 1,1:0,11. Далее прокаливают продукт при температуре 410°С, охлаждают до комнатной температуры и формуют в виде таблеток или цилиндров заданных размеров. Полученный в количестве 150 кг продукт содержит, кг:

Карбонат кальция 30,0
Оксид цинка 118,5
Смесь терморасширенного графита и шунгита 1,5

Пример 3

В смеситель загружают 139,84 кг основного карбоната цинка, 60,0 кг карбоната кальция, 0,16 кг метилцеллюлозы в виде водного коллоидного раствора. Смесь перемешивается в двухшнековом смесителе в течение 8 мин, гомогенизируется на ротационно-импульсном аппарате в течение 12 мин, сушится при 115°С до полного удаления влаги. Полученный продукт измельчают в мельнице ударного типа, куда подается смесь терморасширенного графита (ТРГ) и шунгита в количестве 1,8 кг при соотношении ТРГ:шунгит 1,2:0,12. Далее прокаливают продукт при температуре 390°С, охлаждают до комнатной температуры и формуют в виде таблеток или цилиндров заданных размеров. Полученный в количестве 142 кг продукт содержит, кг:

Карбонат кальция 53,96
Оксид цинка 87,33
Смесь терморасширенного графита и шунгита 0,71

Для получения катализатора использовали промышленно выпускаемые отечественной промышленностью материалы:

- карбонат кальция ГОСТ 8253-79;

- основной карбонат цинка ГОСТ ТУ 6-09-3676-77;

- карбоксиметилцеллюлоза (КМЦ) ТУ 2231-034-07507908-2001;

- метилцеллюлоза (МЦ-100) ТУ 6-05-1857-78;

- шунгит ТУ 2169-001-73698942-2005;

- терморасширенный графит (производство Кирово-Чепецкого химического комбината), ТУ 2573-001-91200348-2011.

Механическую прочность полученного по примерам 1-3 катализатора и прототипа определяли на универсальном приборе фирмы VINCI Technologies по методу ASTM D-4179, D-6175, удельную поверхность - по ГОСТ 23401-90.

Физико-механические характеристики катализаторов по примерам 1-3 и прототипу показаны в табл. 3.

Как видно из табл. 3, предложенный состав катализатора дегидрирования циклогексанола по примерам 1-3 решает задачу повышения его удельной поверхности на 22,97-32,43%, увеличения механической прочности по методу раздавливания по торцу (сопротивления по касательной) на 8,16-12,24%, что влияет на повышение качества и увеличение срока эксплуатации катализатора и улучшает его каталитические свойства. Причем повышенные прочность и удельная поверхность заявляемого катализатора коррелируют с его каталитическими свойствами.

Источник поступления информации: Роспатент

Показаны записи 41-49 из 49.
25.08.2017
№217.015.a88a

Способ получения катализатора окисления метанола до формальдегида

Изобретение относится к способу получения катализатора окисления метанола до формальдегида и может быть использовано в производстве формальдегида и карбамидо-формальдегидных смол. Способ заключается во взаимодействии железосодержащего компонента с триоксидом молибдена с последующим формованием...
Тип: Изобретение
Номер охранного документа: 0002611419
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a8cb

Способ получения металлоорганических каркасных соединений с октакарбоксифталоцианинатами металлов в качестве основной структурной единицы

Изобретение относится к способу получения металлоорганических каркасных соединений с октакарбоксифталоцианинатом металла в качестве основной структурной единицы. Способ заключается в сополимеризации металлов или солей металлов с органическим лигандом, последующей фильтрации продукта, промывке...
Тип: Изобретение
Номер охранного документа: 0002611438
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.a901

Система определения местоположения транспортного средства в пути

Изобретение относится к области систем регулирования движения дорожного транспорта и может быть использовано владельцами автомобилей для получения информации о местоположении транспортного средства, а также дополнительной информации, необходимой для управления транспортным средством и...
Тип: Изобретение
Номер охранного документа: 0002611455
Дата охранного документа: 22.02.2017
25.08.2017
№217.015.aa11

Асфальтобетонная смесь

Изобретение относится к технологии получения дорожно-строительных материалов, а именно асфальтобетонных смесей при строительстве и ремонте автомобильных дорог, строительстве гидротехнических сооружений, в гражданском строительстве. Асфальтобетонная смесь, включающая битум, минеральный материал...
Тип: Изобретение
Номер охранного документа: 0002611801
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aac5

Способ получения наночастиц серебра

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра. Для получения фруктозо-глюкозного сиропа отжимают сок из клубней топинамбура и смешивают его с горячей водой в соотношении...
Тип: Изобретение
Номер охранного документа: 0002611520
Дата охранного документа: 27.02.2017
25.08.2017
№217.015.ab11

Способ получения n,n-бис(5-амино-3-алкил-1,3,4-тиадиазол-2-илиден)-2н-изоиндол-1,3-диаминов

Изобретение относится к химической промышленности, а именно к способу получения N,N-бис(5-амино-3-алкил-1,3,4-тиадиазол-2-илиден)-2Н-изоиндол-1,3-диаминов, где в качестве алкильных заместителей выступают пентильный, децильный и додецильный радикалы. Соединения могут быть использованы в качестве...
Тип: Изобретение
Номер охранного документа: 0002612259
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ce4c

Способ получения теплоизоляционного материала

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического...
Тип: Изобретение
Номер охранного документа: 0002620676
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ced3

Сырьевая смесь для изготовления керамического кирпича

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. Сырьевая смесь для изготовления керамического кирпича, включающая глину, кварцевый песок модулем крупности 2,0-2,2, выгорающую добавку, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002620677
Дата охранного документа: 29.05.2017
31.07.2020
№220.018.3a72

Способ лечения гипертонуса латеральной крыловидной мышцы

Изобретение относится к медицине, в частности к стоматологии и неврологии, и может быть использовано для лечения гипертонуса латеральной крыловидной мышцы. Для этого предварительно производят магнитно-резонансную томографию (МРТ) височно-нижнечелюстного сустава (ВНЧС). Определяют расстояние от...
Тип: Изобретение
Номер охранного документа: 0002728102
Дата охранного документа: 28.07.2020
Показаны записи 41-50 из 55.
25.08.2017
№217.015.aa11

Асфальтобетонная смесь

Изобретение относится к технологии получения дорожно-строительных материалов, а именно асфальтобетонных смесей при строительстве и ремонте автомобильных дорог, строительстве гидротехнических сооружений, в гражданском строительстве. Асфальтобетонная смесь, включающая битум, минеральный материал...
Тип: Изобретение
Номер охранного документа: 0002611801
Дата охранного документа: 01.03.2017
25.08.2017
№217.015.aac5

Способ получения наночастиц серебра

Изобретение относится к области нанотехнологий. Для получения наночастиц серебра смешивают фруктозо-глюкозный сироп из клубней топинамбура с раствором нитрата серебра. Для получения фруктозо-глюкозного сиропа отжимают сок из клубней топинамбура и смешивают его с горячей водой в соотношении...
Тип: Изобретение
Номер охранного документа: 0002611520
Дата охранного документа: 27.02.2017
25.08.2017
№217.015.ab11

Способ получения n,n-бис(5-амино-3-алкил-1,3,4-тиадиазол-2-илиден)-2н-изоиндол-1,3-диаминов

Изобретение относится к химической промышленности, а именно к способу получения N,N-бис(5-амино-3-алкил-1,3,4-тиадиазол-2-илиден)-2Н-изоиндол-1,3-диаминов, где в качестве алкильных заместителей выступают пентильный, децильный и додецильный радикалы. Соединения могут быть использованы в качестве...
Тип: Изобретение
Номер охранного документа: 0002612259
Дата охранного документа: 03.03.2017
25.08.2017
№217.015.ce4c

Способ получения теплоизоляционного материала

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического...
Тип: Изобретение
Номер охранного документа: 0002620676
Дата охранного документа: 29.05.2017
25.08.2017
№217.015.ced3

Сырьевая смесь для изготовления керамического кирпича

Изобретение относится к области производства строительных материалов и может быть использовано для производства керамического кирпича. Сырьевая смесь для изготовления керамического кирпича, включающая глину, кварцевый песок модулем крупности 2,0-2,2, выгорающую добавку, дополнительно содержит...
Тип: Изобретение
Номер охранного документа: 0002620677
Дата охранного документа: 29.05.2017
04.10.2018
№218.016.8e2c

Биопрепарат-нефтедеструктор и способ его получения

Группа изобретений относится к области промышленной биотехнологии. Предложены биопрепарат-нефтедеструктор и способ получения биопрепарата-нефтедеструктора. Биопрепарат-нефтедеструктор представляет собой ассоциацию нефтеокисляющих почвенных бактерий: Bacillus atrophaeus ВКМ B-3137D, Pseudomonas...
Тип: Изобретение
Номер охранного документа: 0002668789
Дата охранного документа: 02.10.2018
21.10.2018
№218.016.9488

Способ многомасштабного моделирования нелинейных процессов подземной гидродинамики

Изобретение относится к способам многомасштабного моделирования нелинейных процессов подземной гидродинамики. Сущность: разбивают исследуемую геологическую структуру на крупномасштабные блоки (КМБ). Разбивают КМБ на более мелкомасштабные блоки (ММБ). Вычисляют значения физических свойств...
Тип: Изобретение
Номер охранного документа: 0002670174
Дата охранного документа: 18.10.2018
22.01.2019
№219.016.b2b3

Способ приготовления катализатора среднетемпературной конверсии оксида углерода водяным паром

Изобретение относится к способу приготовления катализаторов для среднетемпературной конверсии оксида углерода водяным паром, которые могут быть использованы в химической промышленности при получении азотоводородной смеси для синтеза аммиака. Способ приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002677694
Дата охранного документа: 21.01.2019
02.08.2019
№219.017.bba1

Способ приготовления оксида цинка

Изобретение относится к способу получения химически чистого оксида цинка с высокой удельной поверхностью, который может быть использован в промышленности как компонент катализаторов, сорбентов, люминофоров. Способ включает измельчение порошка металлического цинка, обработку его реакционной...
Тип: Изобретение
Номер охранного документа: 0002696125
Дата охранного документа: 31.07.2019
06.12.2019
№219.017.e9e4

Способ приготовления катализатора для среднетемпературной конверсии оксида углерода водяным паром

Изобретение относится к химической промышленности, а именно к способу приготовления катализаторов для среднетемпературной конверсии оксида углерода водяным паром, которые могут быть использованы при получении азотоводородной смеси для синтеза аммиака. В способе приготовления катализатора для...
Тип: Изобретение
Номер охранного документа: 0002707889
Дата охранного документа: 02.12.2019
+ добавить свой РИД