×
10.08.2016
216.015.5384

Результат интеллектуальной деятельности: ПРОИЗВОДНОЕ 1', 2', 3'-ТРИМЕТОКСИБЕНЗО[5', 6:5, 4]-1H-6, 7-ДИГИДРОЦИКЛОГЕПТА[3, 2-f]БЕНЗОФУРАНА И ЕГО ПРИМЕНЕНИЕ

Вид РИД

Изобретение

Аннотация: Изобретение относится к новым производным 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана, представленным общей формулой, где R - заместитель, R=СНОН, СН(СН)ОН, СНСНОН, СНОАс; X - функциональная группа, X=О, ОН, а также к применению этих соединений в качестве активного компонента противоопухолевого лекарственного средства для лечения онкологических заболеваний. Технический результат заключается в повышении активности при ингибировании пролиферации опухолевых клеток. 2 н. и 7 з.п. ф-лы, 2 ил.

Настоящее изобретение относится к области органической химии, к гетероциклическим соединениям, содержащим пятичленные кольца, конденсированные с другими ядрами, с одним атомом кислорода в качестве гетероатома, а именно к фуранам, только с атомами водорода или радикалами, содержащими только атомы водорода и углерода, непосредственно связанные с атомами углерода гетероциклического кольца, с замещенными углеводородными радикалами, связанными с атомами углерода гетероциклического кольца, касается производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана и его применения в качестве активного компонента противоопухолевых лекарственных средств для лечения онкологических заболеваний.

Онкологические заболевания являются одной из основных причин смерти во всем мире. В 2012 году зарегистрировано 8,2 миллиона случаев смерти от этой болезни. По прогнозам число случаев смерти от онкологических заболеваний в мире будет продолжать расти и в 2030 году достигнет 12 миллионов. В связи с этим синтез новых соединений и создание на их основе противоопухолевых препаратов, обладающих улучшенными фармакокинетическими свойствами, является актуальной задачей здравоохранения.

Известны химические соединения, противоопухолевое действие которых заключается в ингибировании митоза активно пролиферирующих опухолевых клеток.

Цитотоксическая и противоопухолевая активность известных антимитотических соединений обусловлена нарушением обратимости процесса полимеризации и деполимеризации белковых молекул α- и β-гетеродимеров тубулина, что приводит к нарушению формирования митотического веретена деления клеток (Biochem. Pharmacol., 1976, 25, 138).

Цитотоксической активностью по отношению ко многим видам опухолевых клеток обладает относительно большое число химических соединений. К таким соединениям относятся алкалоиды ряда колхицина, а также индольные и фурановые производные аллоколхицина. Однако каждый из них имеет недостатки.

Недостатком колхицина и его производных (например: WO 2011022805 (А1), опубл. 2011.03.03, кл. A61K 31/165, А61Р 35/00, С07С 233/32; WO 2010105172 (А1), опубл. 2010.09.16, кл. A01N 37/18, A61K 31/16; ЕР 2056812 А1, опубл. 2009.05.13, кл. A61K 31/165, А61Р 35/04; US 2004204370 (А1), опубл. 2004.10.14, кл. С07С 323/41, С07С 323/42, С07С 323/60) является возникновение побочных эффектов при их применении, в частности значительная неспецифическая токсичность (Med. Res. Rev. 2008, 28, 155-183; Chem. Nat. Prod. 1998, 34, 343), что делает невозможным их использование в качестве противоопухолевых препаратов.

Индольное производное аллоколхицина, известное по N.S. Sitnikjov et al., Chem. Eur. J. 2012, 18, 12096, представлено формулой

Известное индольное производное аллоколхицина представляет собой карбоциклическое соединение, содержащее конденсированное триметоксизамещенное бензольное кольцо, цеплогептановое кольцо с ацетамидной группой и индольный фрагмент.

Известное индольное производное аллоколхицина обладает всеми вышеперечисленными недостатками.

Наиболее близкой по технической сущности и достигаемому результату к предлагаемой группе изобретений является группа изобретений «Производное N-((1S)-1′,2′,3′-триметокси-6,7-дигидро-1Н-бензо[5′,6′:5,4]циклогепта[3,2-f]бензофуран-1-ил)ацетамида и его применение», защищенная патентом RU 2538982 С1, опубл. 10.01.2015 г., кл. C07D 307/78, C07D 405/06, A61K 31/343, A61K 35/00 (Yu.V. Voitovich at al., J. Med. Chem. 2015, 58, 692).

Известное бензофурановое производное аллоколхицина представляет собой карбоциклическое соединение, содержащее конденсированное триметоксизамещенное бензольное кольцо, цеплогептановое кольцо с ацетамидной группой и бензофурановый фрагмент с гидроксильной группой в псевдобензильном положении, представлено формулой

Известное бензофурановое производное аллоколхицина обладает значительной неспецифической токсичностью.

В задачу изобретения положено создание нового производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана и его применение в качестве активного компонента противоопухолевых лекарственных средств для лечения онкологических заболеваний.

Технический результат от использования группы изобретений заключается в повышении активности при ингибировании пролиферации опухолевых клеток и снижении неспецифической токсичности за счет введения в прототип вместо ацетамидной группы NHAc заместителей X=О и X=ОН.

Поставленная задача достигается тем, что производное 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1H-6,7-дигидроциклогепта[3,2-f]бензофурана представлено общей формулой

где R - заместитель, R=СН2ОН, СН(СН3)ОН, СН2СН2ОН, СН2ОАс;

X - функциональная группа, X=О, ОН;

при R=СН2ОН, X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран;

при R=СН(СН3)ОН, X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран;

при R=СН2СН2ОН, X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран;

при R=СН2ОАс, X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-ацетоксиметилбензофуран;

при R=СН2ОН, X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран;

при R=СН(СН3)ОН, X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран;

при R=СН2СН2ОН, X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран.

Поставленная задача достигается также тем, что производное 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана применяют в качестве активного компонента противоопухолевого лекарственного средства для лечения онкологических заболеваний.

На фиг. 1 представлена общая схема получения производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана, в котором группа R соответствует СН2ОН, СН(СН3)ОН, СН2СН2ОН или СН2ОАс группам, а группа X соответствует оксо-группе (О) или гидроксильной группе (ОН):

1а - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран, в котором группа R соответствует гидроксиметильной группе (СН2ОН), группа X соответствует оксо-группе (О);

1b - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1H-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран, в котором группа R соответствует 1-гидроксиэтильной группе (СН(СН3)ОН), группа X соответствует оксо-группе (О);

1с - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран, в котором группа R соответствует 2-гидроксиэтильной группе (СН2СН2ОН), группа X соответствует оксо-группе (О);

1d - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-ацетоксиметилбензофуран, в котором группа R соответствует ацетоксиметильной группе (СН2ОАс), группа X соответствует оксо-группе (О);

2а - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран, в котором группа R соответствует гидроксиметильной группе (СН2ОН), группа X соответствует гидрокси-группе (ОН);

2b - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран, в котором группа R соответствует 1-гидроксиэтильной группе (СН(СН3)ОН), группа X соответствует гидрокси-группе (ОН);

2с - 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран, в котором группа R соответствует 2-гидроксиэтильной группе (СН2СН2ОН), группа X соответствует гидрокси-группе (ОН).

На фиг. 2 представлена таблица 1 «Результаты биологических испытаний, отражающие активность при ингибировании пролиферации опухолевых клеток и апоптозиндуцирующую активность производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана по отношению к клеткам ВхРС, PANC-1, Colo-357, MiaPaCa-2.

Производное 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана представлено общей формулой

где R и X - заместители.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него гидроксиметильной группы R=СН2ОН и группы X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него 1-гидроксиэтильной группы R=СН(СН3)ОН и оксо-группы X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него 2-гидроксиэтильной группы R=СН2СН2ОН и и оксо-группы X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него ацетоксиметильной группы R=(СН2ОАс) и оксо-группы X=О производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-ацетоксиметилбензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него гидроксиметильной группы R=СН2ОН и гидрокси-группы X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′'-гидроксиметилбензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него 1-гидроксиэтильной группы R=СН(СН3)ОН и гидрокси-группы X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран.

При синтезе 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана путем введения в него 2-гидроксиэтильной группы R=СН2СН2ОН и гидрокси-группы X=ОН производное представляет собой 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран.

Применяют производное 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана в качестве активного компонента противоопухолевого лекарственного средства для лечения онкологических заболеваний.

Получение производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана осуществляют следующим образом.

Сначала синтезируют колхицеин. Для этого раствор колхицина (1.5 г, 3.75 ммоль) в 15 мл уксусной кислоты смешивают с 90 мл 0.1М раствора HCl. Полученную смесь перемешивают при 100°С в течение трех часов. Затем раствор охлаждают до комнатной температуры и добавляют Na2CO3 (тв.) до исчезновения запаха уксусной кислоты (рН=6). Полученный желтый раствор трижды экстрагируют CHCl3, органический слой промывают NaCl и сушат над Na2SO4. После упаривания растворителя и удаления всех летучих веществ в вакууме получают 1.42 г (3.63 ммоль, 98%) колхицеина в виде зеленоватой пены, который затем используют без дополнительной очистки.

1Н ЯМР (400 MHz, ДМСО) δ: 8.63 (d, J=7.3 Hz, 1Н), 7.32 (d, 1Н), 7.31 (s, 1Н), 7.15 (d, J=11.8 Hz, 1H), 6.80 (s, 1H), 4.43-4.27 (m, 1H), 3.84 (s, 3H), 3.78 (s, 3H), 3.56 (s, 3H), 2.35-1.89 (m, 4H), 1.87 (s, 3H). Tпл=150°C. Тпл.лит=150°C (Nicolaus, N., Reball, J., Sitnikov, N., Velder, J., Termath, A., Fedorov, A., Schmalz, H.-G. Heterocycles, 2011, 82, 1585).

Затем синтезируют йодоколхинол. Для этого раствор колхицеина (1.42 г, 3.63 ммоль) в 29 мл воды охлаждают до 0°С, затем к раствору добавляют NaOH (1.45 г, 36.3 ммоль) с последующим добавлением по каплям раствора йода (2.82 г, 11.1 ммоль) и NaI (15.83 г, 85.1 ммоль) в 143 мл воды в течение часа. Полученный раствор перемешивают 90 минут при температуре 0-5°С. Затем полученный желто-коричневый раствор доводят до комнатной температуры и добавляют эквивалентное количество Na2SO3 для нейтрализации избытка йода, цвет раствора изменяется на оранжевый. После этого добавляли HCl (конц.) до рН=2, при этом выпадают желто-зеленые кристаллы, которые отделяют фильтрованием, промывают водой и сушат под вакуумом. Оставшийся маточный раствор трижды экстрагируют EtOAc, органический слой промывают NaCl и сушат над Na2SO4. После упаривания растворителя полученные желтоватые кристаллы добавляют к кристаллам, выделенным ранее фильтрованием. После проведения колоночной хроматографии на силикагеле (элюент ПЭ/ЭА/EtOH 3:1:1) йодколхинол получают в виде светло-желтого порошка (1.25 г, 2.6 ммоль, 70%).

1Н ЯМР (400 MHz, ДМСО) δ: 10.28 (s, 1Н), 8.38 (d, J=8.0 Hz, 1Н), 7.56 (s, 1H), 6.86 (s, 1H), 6.76 (s, 1H), 4.40-4.33 (m, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.48 (s, 3H), 2.23-1.87 (m, 4H), 1.87 (s, 3Н). Тпл=238°C. Тпл.лит=238°C (Nicolaus, N., Reball, J., Sitnikov, N., Velder, J., Termath, A., Fedorov, A., Schmalz, H.-G. Heterocycles, 2011, 82, 1585).

Затем синтезируют N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-ацетамид. Для этого раствор DIPEA (72.0 мкл) в CH2Cl2 (1 мл) охлаждают до 0°С и приливают 27 мкл MOMCl. Полученную смесь прикапывают при перемешивании к раствору йодоколхинола 3 (0.1 г, 0.206 ммоль) в 1 мл CH2Cl2 при 0°С в атмосфере аргона. Температуру постепенно доводят до комнатной. После удаления растворителя при пониженном давлении остаток очищают методом колоночной хроматографии на силикагеле, элюент 7:1:1 (ПЭ:ЭА:EtOH), и получают (N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-ацетамид) (0.093 г, 88%) в виде белых кристаллов.

1Н ЯМР (400 MHz, ДМСО) δ: 8.40 (t, J=12.0 Hz, 1Н), 7.68 (s, 1H), 7.08 (s, 1H), 6.78 (s, 1H), 5.28 (q, J=6.7 Hz, 2H), 4.46 (dt, J=12.2, 7.9 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.51 (s, 3H), 3.47 (t, J=5.9 Hz, 3H), 2.10 (dtd, J=25.5, 12.5, 6.6 Hz, 4H), 1.88 (s, 3Н). 13C ЯМР (101 MHz, ДМСО) δ: 168.49, 154.69, 152.54, 150.15, 142.53, 140.51, 139.50, 134.83, 129.38, 122.74, 109.86, 108.20, 94.72, 84.23, 60.66, 60.55, 56.17, 55.83, 48.21, 38.17, 29.97, 22.58. Тпл=187°C. Масс-спектр (EI): m/z (%)=527 (100), 468 (24), 440 (43), 423 (34), 401 (12), 358 (39), 341 (10), 326 (15), 311 (12), 283 (20), 281 (14), 268 (12), 207 (12).

Затем синтезируют N-третбутоксикарбонил, N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-ацетамид. Для этого к смеси, содержащей N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо-[а,с]циклогептен-5-ил)-ацетамид (0.063 г, 0.119 ммоль) и DMAP (0.015 г, 0.119 ммоль) в MeCN (3 мл) в атмосфере аргона, приливают 1/2 раствора Вос2О (0.119 г, 0.548 ммоль) в MeCN (2 мл) и 33 мкл TEA. Полученный раствор перемешивают при 100°С в течение часа. Далее добавляют вторую половину раствора Вос2О в MeCN и перемешивают в течение двух часов при 90°С, а затем сутки при комнатной температуре. По окончании реакции к смеси приливают CH2Cl2 и экстрагируют лимонной кислотой. После этого органический слой промывают NaCl и сушат над Na2SO4. После упаривания растворителя N-третбутоксикарбонил, N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-ацетамид (0.044 г, 60%) в виде белых кристаллов выделяют методом колоночной хроматографии на силикагеле, элюент 10:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (399 MHz, ДМСО) δ: 7.71 (s, 1Н), 7.13 (s, 1Н), 6.81 (s, 1Н), 5.30 (d, J=6.6 Hz, 1H), 5.20 (s, 2H), 5.19 (s, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.44 (s, 3H), 3.32 (s, 9H), 1.54-1.34 (m, 4H), 1.23 (s, 3Н). 13C ЯМР (101 MHz, ДМСО) δ: 154.69, 153.22, 152.64, 150.37, 140.64, 140.11, 139.47, 134.70, 129.57, 122.75, 111.52, 108.17, 94.88, 84.61, 83.79, 60.63, 60.61, 56.00, 55.80, 34.73, 30.13, 27.98, 27.73, 27.36. Тпл=105°C. Масс-спектр (EI): m/z (%) = 627 (100), 527 (34), 468 (23), 423 (28), 358 (21), 326 (15), 281 (14), 268 (10).

Затем синтезируют трет-бутил(2-йодо-3-метоксиметилокси-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)карбамат. Для этого в колбу, содержащую N-третбутоксикарбонил, N-(3-метоксиметилокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-ацетамид (0.36 г, 0.590 ммоль) в атмосфере аргона, приливают перегнанный под аргоном МеОН (5 мл) и 2М раствор свежеприготовленного метилата натрия в метаноле (60 мкл). Полученный раствор перемешивают 1.5 часа при комнатной температуре. После упаривания растворителя остаток экстрагируют смесью CH2Cl2 и Н2О, органический слой промывают NaCl и сушат над Na2SO4. После удаления легколетучих продуктов трет-бутил(2-йодо-3-метоксиметилокси-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)карбамат в виде белых кристаллов (0.268 г, 82%) выделяют методом колоночной хроматографии на силикагеле, элюент 20:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 8.40 (t, J=12.0 Hz, 1Н), 7.68 (s, 1H), 7.08 (s, 1H), 6.78 (d, J=6.4 Hz, 1H), 5.28 (q, J=6.7 Hz, 2H), 4.46 (dt, J=12.2, 7.9 Hz, 1H), 3.83 (s, 3H), 3.78 (s, 3H), 3.51 (s, 3H), 3.47 (d, J=5.9 Hz, 3H), 2.10 (dtd, J=25.5, 12.5, 6.6 Hz, 4H), 1.88 (d, J=11.4 Hz, 3Н). 13C ЯМР (101 MHz, ДМСО) δ: 154.84, 154.72, 152.55, 150.07, 142.94, 140.47, 139.48, 134.87, 129.24, 122.64, 109.79, 108.10, 94.73, 84.05, 77.90, 60.74, 60.50, 59.74, 56.07, 55.83, 54.91, 50.17, 29.93, 28.17. Тпл=111°C. Масс-спектр (EI): m/z (%)=585 (100), 530 (20), 529 (100), 484 (15), 440 (40), 423 (45), 350 (24), 341 (34), 327 (45), 326 (64), 314 (52), 281 (64), 268 (58), 252 (35), 237 (25), 181 (30).

Затем синтезируют N-(3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-амин. Для этого в колбу помещают трет-бутил(2-йодо-3-метоксиметилокси-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)карбамат (0.2 г, 0.350 ммоль) и растворяют в минимальном количестве EtOH. К полученному раствору приливают конц. HCl (10 мл) и оставляют перемешиваться при комнатной температуре на 1 час. Затем приливают еще 5 мл конц. HCl и поднимают температуру до 40°С. По окончании реакции раствор нейтрализуют 2.5М раствором NaOH. После упаривания растворителя остаток в виде темно-желтого масла экстрагируют CH2Cl2, органический слой промывают NaCl и сушат над Na2SO4. После удаления легколетучих компонентов N-(3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-амин в виде белых кристаллов (0.132 г, 85%) выделяют методом колоночной хроматографии на силикагеле, элюент 1:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 7.53 (s, 1Н), 7.25 (s, 1Н), 6.73 (s, 1Н), 3.81 (s, 3Н), 3.74 (s, 3Н), 3.50 (s, 3Н), 2.41 (dd, J=12.5, 6.2 Hz, 2Н), 2.28-2.21 (m, 1Н), 2.10-1.97 (m, 2H), 1.58 (td, J=12.0, 7.9 Hz, 2H). 13C ЯМР (101 MHz, ДМСО) δ: 155.62, 152.15, 150.06, 140.42, 139.15, 135.10, 126.62, 123.09, 110.51, 107.96, 81.38, 60.52, 60.49, 55.82, 50.06, 40.45, 30.22. Тпл=155°C. Масс-спектр (EI): m/z (%)=441 (100), 424 (100), 409 (100), 393 (74), 366 (42), 314 (52), 297 (41), 282 (40), 267 (34), 254 (25), 212 (12), 207 (25), 181 (22).

Затем синтезируют 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил-1-он. Для этого в колбу, содержащую N-(3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-ил)-амин (0.078 г, 0.176 ммоль) в атмосфере аргона, приливают 4 мл смеси СН2Cl2/ДМФА (1:1). После этого к смеси добавляют N-метил-4-формилпиридинийбензолсульфонат (0.064 г, 0.230 ммоль). Полученный раствор перемешивают 10 часов при комнатной температуре. Затем в колбу приливают 59 мкл DBU. Смесь перемешивают 30 минут, после этого добавляют 3 мл насыщенного водного раствора щавелевой кислоты и оставляют перемешиваться на 12 часов. Полученный раствор трижды экстрагируют смесью CH2Cl2 и H2O. Органический слой концентрируют при пониженном давлении. 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]циклогептен-5-илк-1-он в виде желтых кристаллов (0.043 г, 56%) выделяют методом колоночной хроматографии на силикагеле, элюент 3:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 10.75 (s, 1H), 7.77 (s, 1Н), 6.90 (s, 1Н), 6.83 (s, 1H), 3.82 (s, 3Н), 3.74 (s, 3Н), 3.49 (s, 3Н), 2.93-2.62 (m, 4Н). 13С ЯМР (101 MHz, ДМСО) δ: 205.49, 155.84, 152.58, 151.14, 141.04, 140.78, 140.46, 135.73, 125.64, 122.22, 112.41, 107.77, 88.38, 60.62, 60.46, 55.82, 47.42, 29.10. Тпл=185°С. Масс-спектр (EI): m/z (%)=440 (100), 425 (100), 412 (68), 383 (80), 366 (28), 339 (33), 311 (30), 298 (40), 283 (53), 255 (45), 220 (28), 184 (28).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофурана (1а) осуществляют следующим образом. В колбу, содержащую 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]цикло-гептен-5-ил-1-он (0.162 г, 0.370 ммоль), Pd(OAc)2 (0.004 г, 0.018 ммоль), CuI (0.007 г, 0.040 ммоль), PPh3 (0.014 г, 0.050 ммоль) и КОАс (0.061 г, 1.100 ммоль) в атмосфере аргона, приливают перегнанный под аргоном MeCN. Затем по каплям прибавляют пропаргиловый спирт (0.021 г, 0.370 ммоль). Полученный раствор перемешивают в течение 1 часа при 100°С, а затем снижают температуру до 90°С и перемешивают еще 1 час. За ходом реакции следят по ТСХ. После окончания реакции полученный раствор доводят до комнатной температуры. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-окси-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран (1а) в виде белых кристаллов (0.095 г, 70%) выделяют методом колоночной хроматографии на силикагеле, элюент 7:1:1 (ПЭ:ЭА:EtOH).

1Н NMR (400 MHz, ДМСО) δ: 7.65 (s, 1Н), 7.56 (s, 1Н), 6.87 (s, 1Н), 6.86 (s, 1Н), 5.58 (s, 1Н), 4.61 (s, 2Н), 3.84 (s, 3Н), 3.76 (s, 3Н), 3.40 (s, 3Н), 3.03 (d, J=17.5 Hz, 1Н), 2.90-2.81 (m, 1H), 2.77-2.66 (m, 2H). 13C ЯМР (100 MHz, ДМСО) δ: 206.77, 162.13, 153.47, 153.27, 152.16, 141.48, 136.65, 136.33, 131.01, 128.56, 124.15, 123.73, 109.83, 108.01, 103.72, 63.38, 60.62, 55.93, 49.38, 47.79, 29.18. Тпл=100°C. Масс-спектр (EI): m/z (%)=368 (100), 352 (10), 340 (18).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофурана (1b) осуществляют следующим образом. В колбу, содержащую 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]цикло-гептен-5-ил-1-он (0.137 г, 0.310 ммоль), Pd(OAc)2 (0.004 г, 0.016 ммоль), CuI (0.006 г, 0.031 ммоль), PPh3 (0.012 г, 0.046 ммоль) и КОАс (0.056 г, 0.930 ммоль) в атмосфере аргона, приливают перегнанный под аргоном MeCN. Затем по каплям прибавляют бутин-3-ол-2 (0.022 г, 0.310 ммоль). Полученный раствор перемешивают в течение 1 часа при 100°С, а затем снижают температуру до 90°С и перемешивают еще 1 час. За ходом реакции следят по ТСХ. После окончания реакции раствор доводят до комнатной температуры. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран (1b) в виде белых кристаллов (0.078 г, 66%) выделяют методом колоночной хроматографии на силикагеле, элюент 7:1:1 (ПЭ:ЭА:EtOH).

1H NMR (400 MHz, ДМСО) δ: 7.64 (s, 1H), 7.55 (s, 1H), 6.86 (s, 1H), 6.82 (s, 1H), 5.54 (d, J=5.5 Hz, 1H), 4.48-4.40 (m, 1H), 3.84 (s, 3H), 3.76 (s, 3H), 3.40 (s, 3H), 2.92-2.79 (m, 2H), 2.76-2.70 (m, 2H), 1.49 (d, J=1.3 Hz, 2H). 13C NMR (101 MHz, ДМСО) δ: 205.85, 164.99, 164.89, 152.62, 151.52, 140.91, 136.02, 135.80, 130.48, 128.04, 123.70, 123.23, 109.44, 107.64, 101.54, 62.35, 62.31, 60.55, 60.53, 55.86, 47.78, 29.26. Тпл=120°C. Масс-спектр (EI): m/z (%)=384 (100), 366 (20), 325 (10), 181 (37).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофурана (1c) осуществляют следующим образом. В колбу, содержащую 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]цикло-гептен-5-ил-1-он (0.085 г, 0.193 ммоль), Pd(OAc)2 (0.002 г, 0.009 ммоль), CuI (0.004 г, 0.019 ммоль), PPh3 (0.008 г, 0.029 ммоль) и КОАс (0.035 г, 0.579 ммоль) в атмосфере аргона, приливают перегнанный под аргоном MeCN. Затем по каплям прибавляют бутин-3-ол-1 (0.014 г, 0.193 ммоль). Полученный раствор перемешивают в течение 1 часа при 65°С, а затем поднимают температуру до 85°С и перемешивают еще 5 часов. За ходом реакции следят по ТСХ. После окончания реакции раствор доводят до комнатной температуры. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-окси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран (1с) в виде белых кристаллов (0.04 г, 51%) выделяют методом колоночной хроматографии на силикагеле, элюент 7:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 7.59 (s, 1Н), 7.52 (s, 1Н), 6.85 (s, 1Н), 6.74 (s, 1Н), 4.87 (t, J=5.3 Hz, 1Н), 3.84 (s, 3Н), 3.81-3.77 (m, 2H), 3.76 (s, 3H), 3.40 (s, 3H), 3.01 (d, J=17.7 Hz, 1H), 2.96 (t, J=6.5 Hz, 2H), 2.83 (dd, J=13.9, 3.9 Hz, 1H), 2.75-2.69 (m, 2H). 13C ЯМР (101 MHz, ДМСО) δ: 205.86, 160.21, 152.59, 152.57, 151.52, 140.90, 135.81, 135.49, 131.09, 127.96, 123.78, 122.62, 109.15, 107.62, 103.34, 60.56, 60.52, 59.35, 58.79, 55.86, 31.95, 29.28. Тпл=95°C. Масс-спектр (EI): m/z (%)=382 (100), 354 (22), 323 (25), 293 (9).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-ацетоксиметилбензофурана (1d) осуществляют следующим образом. В колбу, содержащую 3-гидрокси-2-йодо-9,10,11-триметокси-6,7-дигидро-5Н-дибензо[а,с]цикло-гептен-5-ил-1-он (0.05 г, 0.113 ммоль), Pd(OAc)2 (0.001 г, 0.006 ммоль), CuI (0.002 г, 0.013 ммоль), PPh3 (0.005 г, 0.017 ммоль) и КОАс (0.002 г, 0.340 ммоль) в атмосфере аргона, приливают перегнанный под аргоном MeCN. Затем по каплям прибавляют пропаргилацетат (0.011 г, 0.113 ммоль). Полученный раствор перемешивают в течение 1 часа при 60°С, а затем поднимают температуру до 80°С и перемешивают еще 5 часов. За ходом реакции следят по ТСХ. После окончания реакции раствор доводят до комнатной температуры. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-ацетоксиметилбензофуран (1d) в виде белых кристаллов (0.033 г, 69%) выделяют методом колоночной хроматографии на силикагеле, элюент 2:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 7.70 (s, 1Н), 7.61 (s, 1Н), 7.10 (s, 1Н), 6.86 (s, 1Н), 5.25 (s, 2Н), 3.84 (s, 3Н), 3.76 (s, 3Н), 3.40 (s, 3Н), 3.04 (d, J=15.2 Hz, 1Н), 2.89-2.81 (m, 1H), 2.77-2.69 (m, 2H), 2.10 (s, 3Н). 13C ЯМР (101 MHz, ДМСО) δ: 205.85, 169.96, 154.90, 153.01, 152.72, 151.49, 140.91, 137.05, 135.78, 129.86, 128.30, 123.75, 123.47, 109.65, 107.69, 107.03, 60.60, 60.53, 57.94, 55.87, 47.80, 29.19, 20.55. Тпл=101°C. Масс-спектр (EI): m/z (%)=410 (100), 383 (20), 351 (14), 323 (12), 279 (8).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофурана (2a) осуществляют следующим образом. В колбу, содержащую 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран (0.063 г, 0.170 ммоль) (1а), приливают 2 мл ТГФ, 2.4 мл 40%-ного раствора метанола и добавляют NaBH4 (0.003 г, 0.085 ммоль). Полученный раствор перемешивают в течение 30 минут при комнатной температуре. По окончании реакции добавляют 6 мл воды. После упаривания растворителя полученный раствор трижды экстрагируют МТВЕ. Органический слой концентрируют при пониженном давлении. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-гидроксиметилбензофуран (2а) в виде белых кристаллов (0.041 г, 66%) выделяют методом колоночной хроматографии на силикагеле, элюент 10:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 7.67 (s, 1H), 7.50 (s, 1Н), 6.78 (s, 1Н), 6.75 (s, 1Н), 5.45 (t, J=5.9 Hz, 1Н), 5.31 (d, J=4.7 Hz, 1H), 4.57 (d, J=5.9 Hz, 2H), 4.39-4.33 (m, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.45 (s, 3H), 2.48-2.32 (m, 2H), 2.08-2.00 (m, 1H), 1.76-1.68 (m, 1H). 13C ЯМР (100 MHz, ДМСО) δ: 158.94, 154.42, 152.74, 150.84, 141.03. 140.75, 135.76, 127.97. 126.50, 124.92, 122.02, 108.23, 105.89, 103.66, 68.42, 60.63, 60.52, 56.34, 55.89, 41.23, 29.82. Тпл=128°C. Масс-спектр (EI): m/z (%)=370 (100), 352 (10), 339 (11), 311 (12), 181 (30).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофурана (2b) осуществляют следующим образом. В колбу, содержащую 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран (1b) (0.069 г, 0.181 ммоль), приливают 2 мл ТГФ, 2.6 мл 40%-ного раствора метанола и добавляют NaBH4 (0.003 г, 0.090 ммоль). Полученный раствор перемешивают в течение 30 минут при комнатной температуре. По окончании реакции добавляют 6 мл воды. После упаривания растворителя полученный раствор трижды экстрагируют МТВЕ. Органический слой концентрируют при пониженном давлении. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(1-гидроксиэтил)бензофуран (2b) в виде белых кристаллов (0.044 г, 66%) выделяют методом колоночной хроматографии на силикагеле, элюент 11:1:1 (ПЭ:ЭА:EtOH).

1Н ЯМР (400 MHz, ДМСО) δ: 7.65 (s, 1Н), 7.49 (s, 1Н), 6.77 (s, 1Н), 6.70 (s, 1Н), 5.49 (d, J=1.1 Hz, 1Н), 5.30 (d, J=4.7 Hz, 1H), 4.87-4.82 (m, 1H), 4.39-4.32 (m, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.44 (s, 3H), 2.47-2.31 (m, 2H), 2.04 (m, J=16.4, 11.2, 3.6 Hz, 1H), 1.76-1.67 (m, 1H), 1.48 (dd, J=6.5, 0.9 Hz, 3Н). 13C ЯМР (101 MHz, ДМСО) δ: 161.76, 153.48, 152.07, 150.19, 140.45, 140.00, 135.21, 127.42, 125.97, 124.46, 121.52, 107.85, 105.50, 101.24, 68.26, 62.30, 62.27, 60.53, 55.80, 41.23, 29.89, 22.04. Тпл=124°C. Масс-спектр (EI): m/z (%)=384 (100), 366 (20), 325 (10), 181 (37).

Синтез 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофурана (2c) осуществляют следующим образом. В колбу, содержащую 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-оксо-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран (1с) (0.035 г, 0.092 ммоль), приливают 1 мл ТГФ, 1.3 мл 40%-ного раствора метанола и добавляют NaBH4 (0.002 г, 0.046 ммоль). Полученный раствор перемешивают в течение 30 минут при комнатной температуре. По окончании реакции добавили 3 мл воды. После упаривания растворителя полученный раствор трижды экстрагируют МТВЕ. Органический слой концентрируют при пониженном давлении. 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-1-гидрокси-6,7-дигидроциклогепта[3,2-f]-2′′-(2-гидроксиэтил)бензофуран (2с) в виде белых кристаллов (0.012 г, 33%) выделяют методом колоночной хроматографии на силикагеле, элюент 3:1 (ЭА: ПЭ).

1Н ЯМР (400 MHz, ДМСО) δ: 7.62 (s, 1Н), 7.44 (s, 1Н), 6.77 (s, 1Н), 6.62 (s, 1Н), 5.28 (d, J=4.7 Hz, 1Н), 4.82 (t, J=5.4 Hz, 1H), 4.38-4.32 (m, 1H), 3.83 (s, 3H), 3.77 (s, 3H), 3.49 (dd, J=12.2, 6.5 Hz, 2H), 3.44 (s, 3H), 2.40 (t, J=5.0 Hz, 1H), 2.37-2.32 (m, 1H), 2.12-1.98 (m, 2H), 1.71 (dd, J=18.8, 10.8 Hz, 1H). 13C ЯМР (101 MHz, ДМСО) δ: 156.75, 153.48, 152.05, 150.20, 140.45, 139.41, 135.23, 127.28, 126.53, 124.56, 120.94, 107.85, 105.25, 102.95, 68.25, 60.53, 60.42, 59.04, 55.81, 41.27, 31.93, 29.91. Тпл=97°C. Масс-спектр (EI): m/z (%)=384 (100), 353(13), 325 (13), 293 (8), 181 (38).

Биологические испытания

Заявляемое производное 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана были испытаны с целью определения их активности при ингибировании пролиферации опухолевых клеток колориметрическим методом с использованием красителя МТТ (3-(4,5-диметилтиазол-2-ил)-2,5-дифенилтетразолиум бромид). При добавлении красителя в культуры окрашиваются живые клетки за счет восстановления молекулы МТТ до нерастворимой формы формазана. Эксперимент проводится в 96-луночном плоскодонном планшете (Costar, USA). Для анализа активности производных использовали клетки аденокарциномы поджелудочной железы человека AsPC-1, ВхРС, PANC-1, Colo-357, MiaPaca-2 и мышиные клетки Jurkat (тимома мыши). Набор шести линий клеток позволяет исключить случайные эффекты, когда какая-то из линий оказывается более резистентной к препаратам. Эксперименты проводили трижды в разные дни для повышения достоверности данных. Эксперименты проводили в двух форматах: препараты добавляли сразу при засеве клеток или разносили клетки, давали им прикрепляться ночь (для эпителиальных клеток и фибробластов), затем разносили препараты в различных концентрациях. Диапазон разведений составил от 100 мкМ до 1 нМ. Клетки инкубировали с препаратами 72 ч для определения кумулятивного цитотоксичного и цитостатичного эффектов. Анализ проводили с помощью планшетного ридера после растворения кристаллов формазана диметилсульфоксидом при длине волны 540 нм. Активность приведена в виде индексов подавления пролиферации (ИПП), которые подсчитывали по формуле ИПП=1-ОПо/ОПк, где ОПо и ОПк означают оптическую плотность в опыте и контроле. Примеры ИПП для различных клеточных линий приведены в таблице 1. Данные по всем линиям и препаратам по IC50 суммированы в таблице 1 (Фиг. 2).

Приведенные данные демонстрируют, что заявляемые производные 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана 1a, 1d и 2а обладают более высокими значениями активности при ингибировании пролиферации опухолевых клеток по сравнению с прототипом - бензофурановым призводным аллоколхицина.

Заявляемые производные 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана могут быть использованы для лечения онкологических заболеваний, связанных с неоваскуляризацией новообразований. Это относится, в частности, к лимфомам, к солидным (твердым) опухолям типа карцином и аденокарцином молочной железы, раку легких и т.д. Кроме того, они могут применяться в терапии в сочетании с другими химиотерапевтическими препаратами, а также после хирургических операций и при облучении.

Таким образом, введение в бензофурановое производное аллоколхицина вместо ацетамидной группы NHAc заместителей X=О и X=ОН способствует получению нового производного 1′,2′,3′-триметоксибензо[5′,6′:5,4]-1Н-6,7-дигидроциклогепта[3,2-f]бензофурана, применение которого в качестве активного компонента лекарственного средства для лечения онкологических заболеваний обеспечивает повышение активности при ингибировании пролиферации опухолевых клеток и снижение неспецифической токсичности.


ПРОИЗВОДНОЕ 1', 2', 3'-ТРИМЕТОКСИБЕНЗО[5', 6:5, 4]-1H-6, 7-ДИГИДРОЦИКЛОГЕПТА[3, 2-f]БЕНЗОФУРАНА И ЕГО ПРИМЕНЕНИЕ
ПРОИЗВОДНОЕ 1', 2', 3'-ТРИМЕТОКСИБЕНЗО[5', 6:5, 4]-1H-6, 7-ДИГИДРОЦИКЛОГЕПТА[3, 2-f]БЕНЗОФУРАНА И ЕГО ПРИМЕНЕНИЕ
ПРОИЗВОДНОЕ 1', 2', 3'-ТРИМЕТОКСИБЕНЗО[5', 6:5, 4]-1H-6, 7-ДИГИДРОЦИКЛОГЕПТА[3, 2-f]БЕНЗОФУРАНА И ЕГО ПРИМЕНЕНИЕ
ПРОИЗВОДНОЕ 1', 2', 3'-ТРИМЕТОКСИБЕНЗО[5', 6:5, 4]-1H-6, 7-ДИГИДРОЦИКЛОГЕПТА[3, 2-f]БЕНЗОФУРАНА И ЕГО ПРИМЕНЕНИЕ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 30.
13.01.2017
№217.015.73b0

Способ генерации спиновой поляризации носителей зарядов в квантовой точке

Изобретение относится к нанополупроводниковому приборостроению и может быть использовано в устройствах спиновой электроники (спинтроники) в качестве спинового фильтра. Спиновый фильтр действует следующим образом. В открытую двумерную квантовую точку инжектируются носители зарядов. В режиме...
Тип: Изобретение
Номер охранного документа: 0002597942
Дата охранного документа: 20.09.2016
13.01.2017
№217.015.7ae9

Способ формирования эпитаксиального массива монокристаллических наноостровков кремния на сапфировой подложке в вакууме

Изобретение относится к сублимационному выращиванию эпитаксиальных массивов самоорганизованных монокристаллических наноостровков кремния на сапфировых подложках и может быть использовано в качестве нанотехнологического процесса, характеризующегося повышенной стабильностью формирования...
Тип: Изобретение
Номер охранного документа: 0002600505
Дата охранного документа: 20.10.2016
13.01.2017
№217.015.8be0

Способ получения полиметилметакрилата

Изобретение относится к способу получения полиметакрилата, который может быть использован в производстве органического стекла для авиационной промышленности, приборостроении, для изготовления товаров народного потребления. Способ получения полиметилметакрилата в массе метилметакрилата в...
Тип: Изобретение
Номер охранного документа: 0002604538
Дата охранного документа: 10.12.2016
25.08.2017
№217.015.9d95

Способ взрывной фотолитографии

Изобретение относится к взрывной фотолитографической технологии и может быть использовано, когда получение рабочего рисунка из активного материала (металла или полупроводника) методами избирательного химического или плазмохимического травления через фоторезистную маску затруднено или...
Тип: Изобретение
Номер охранного документа: 0002610843
Дата охранного документа: 16.02.2017
25.08.2017
№217.015.9db9

Способ изготовления резистной маски с расширенным диапазоном разрешения изображения

Изобретение относится к технологии изготовления резистных масок в производстве микросхем, в частности изготовления резистных масок с расширенным диапазоном разрешения изображений. Технический результат изобретения - разработка способа изготовления резистной маски позитивного типа с расширенным...
Тип: Изобретение
Номер охранного документа: 0002610782
Дата охранного документа: 15.02.2017
25.08.2017
№217.015.acf1

Установка для получения водного конденсата из воздуха и способ концентрирования примесей из воздуха, осуществляемый на этой установке

Группа изобретений относится к получению водного конденсата из воздуха и способу концентрирования примесей из воздуха, которые могут быть использованы для высокочувствительного определения примесей в воздухе при проведении экологических исследований. Установка содержит концентратор 1,...
Тип: Изобретение
Номер охранного документа: 0002612719
Дата охранного документа: 13.03.2017
25.08.2017
№217.015.b89b

Винтовая опора с решетчатой направляющей

Изобретение относится к мостостроению и может быть использовано при сооружении фундаментов опор краткосрочных железнодорожных мостов. Винтовая опора с решетчатой направляющей состоит из пары стоек с установленной внутри каждой из них с возможностью вертикального перемещения, имеющей отверстия...
Тип: Изобретение
Номер охранного документа: 0002615187
Дата охранного документа: 04.04.2017
29.12.2017
№217.015.f18a

Автономный фундамент

Автономный фундамент относится к области мостостроения и может быть использован при сооружении промежуточных опор временных мостов при большой глубине воды. Автономный фундамент промежуточных опор временных мостов включает платформу с узлами сопряжения разной высоты для поворота в требуемое...
Тип: Изобретение
Номер охранного документа: 0002636835
Дата охранного документа: 28.11.2017
29.12.2017
№217.015.f41f

Рабочий узел детектора импульсного терагерцового излучения

Изобретение относится к области оптического приборостроения и касается рабочего узла детектора импульсного терагерцового излучения. Детектор обеспечивает детектирование терагерцового излучения путем изменения направления вектора поляризации оптического фемтосекундного импульса под действием...
Тип: Изобретение
Номер охранного документа: 0002637182
Дата охранного документа: 30.11.2017
19.01.2018
№218.016.03cd

Производное 1'-бромо-2',3',4'-триметоксибензо[5',6':4,5]-(ar, 1s)-1-ацетамидо-6,7-дигидроциклогепта-[3,4-f]-1н-индола и его применение

Настоящее изобретение относится к области органической химии, а именно к производному 1'-бромо-2',3',4'-триметоксибензо[5',6':4,5]-(R,1S)-1-ацетамидо-6,7-дигидроциклогепта-[3,4-ƒ]-1Н-индола и его применению в качестве активного компонента противоопухолевых лекарственных средств для лечения...
Тип: Изобретение
Номер охранного документа: 0002630303
Дата охранного документа: 08.09.2017
Показаны записи 31-36 из 36.
31.01.2019
№219.016.b599

Производное 1",2",3"-триметоксибензо[5",6":5',4']1h-(ar,1s)-1-ацетамидо-6',7'-дигидроциклогепта[2',3'-f]-2,3-дигидрофурана и его применение

Изобретение относится к производным 1'',2'',3''-триметоксибензо[5'',6'':5',4']1H-(aR, 1S)-1-ацетамидо-6',7'-дигидроциклогепта[2',3'-f]-2,3-дигидрофурана формулы: где X, Y, Z - заместители, Х=Н, Me, Y=H, Me, CF, Cl, Z=H, H; О и его применению в качестве активного компонента противоопухолевых...
Тип: Изобретение
Номер охранного документа: 0002678440
Дата охранного документа: 29.01.2019
20.06.2019
№219.017.8c98

Производное цинкового металлокомплекса хлорина-e и его применение

Изобретение относится к производному цинкового металлокомплекса хлорина-е общей формулы: Также предложено применение производного в качестве агента для фотодинамической терапии. Изобретение позволяет повысить однородность, улучшить водорастворимость, увеличить селективность накопления...
Тип: Изобретение
Номер охранного документа: 0002691754
Дата охранного документа: 18.06.2019
23.08.2019
№219.017.c257

Способ получения производных хитозана для визуализации клеточных мембран и создания систем доставки лекарств с повышенной мукоадгезией

Изобретение относится к способу получения производных хитозана, которые могут использоваться для создания носителей для доставки лекарств к эпителиальным клеткам барьерных органов и тканей, а также для получения флуоресцентных проб для маркирования мембран клеток в медицинской и...
Тип: Изобретение
Номер охранного документа: 0002697872
Дата охранного документа: 21.08.2019
16.11.2019
№219.017.e326

Способ бескрановой установки надстройки опоры с распорками

Изобретение относится к области мостостроения. Технический результат - возможность бескрановой установки надстройки на ростверк свайного фундамента без разделения балок оголовка и ростверка. В способе бескрановой установки надстройки к балкам оголовка шарнирно прикрепляют две распорки...
Тип: Изобретение
Номер охранного документа: 0002706290
Дата охранного документа: 15.11.2019
15.05.2023
№223.018.59f6

Способ погрузки-выгрузки железнодорожных рельсов

Изобретение относится к области транспортировки длинномерных грузов, в частности к способам погрузки-выгрузки железнодорожных рельсов. К головке рельса присоединяют три одинаковых рельсозахватных устройства. Устройства выполнены из металла и содержат основание и две лапки. Лапки выполнены в...
Тип: Изобретение
Номер охранного документа: 0002761888
Дата охранного документа: 13.12.2021
15.05.2023
№223.018.59f7

Способ погрузки-выгрузки железнодорожных рельсов

Изобретение относится к области транспортировки длинномерных грузов, в частности к способам погрузки-выгрузки железнодорожных рельсов. К головке рельса присоединяют три одинаковых рельсозахватных устройства. Устройства выполнены из металла и содержат основание и две лапки. Лапки выполнены в...
Тип: Изобретение
Номер охранного документа: 0002761888
Дата охранного документа: 13.12.2021
+ добавить свой РИД