×
10.08.2016
216.015.5247

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ЛЮТЕЦИЙ-177

Вид РИД

Изобретение

Аннотация: Изобретение относится к технологии получения радионуклидов для ядерной медицины. Способ получения радионуклида Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу Lu, облучение нейтронами мишени, с последующим выделением целевого радионуклида Lu, полученного в результате реакции Lu(n, γ)Lu . При этом мишень представляет собой композиционный материал, состоящий из наночастиц лютеция или его соединений, окруженных буфером в виде твердого вещества, растворимого в воде или других растворителях, при этом d - характерный размер наночастиц выбирают из условия λ/d>>1, где λ - длина пробега в веществе наночастицы атомов отдачи Lu. После облучения мишени наночастицы и буфер разделяют, буфер направляют на радиохимическую переработку для выделения радионуклида Lu, а наночастицы возвращают в активную зону реактора в составе новой мишени. Изобретение обеспечивает эффективное получение радионуклида Lu с высокой удельной активностью. 6 з.п. ф-лы, 1 ил., 1 пр.

Область техники

Изобретение относится к технологии получения радионуклидов для ядерной медицины, в частности для терапии онкологических заболеваний.

При терапии онкологических заболеваний широкое применение находят β-излучающие радионуклиды. Один из наиболее перспективных β-излучателей для терапии рака - радионуклид лютеций-177 (177Lu), обладающий оптимальными ядерно-физическими характеристиками для использования в ядерной медицине. Радиофармпрепараты (РФП) на основе 177Lu являются высокоэффективными терапевтическими средствами при лечении рака печени, простаты и кожных покровов, а также других заболеваний, в том числе ревматических артритов и гемофилии.

Уровень техники

Среди наиболее перспективных β-излучающих радионуклидов для терапии рака можно выделить 177Lu, обладающий удобным периодом полураспада (T1/2=6,71 суток), приемлемой энергией β-частиц (Eмакс=0,497 МэВ), мягким сопутствующим γ-излучением (Eγ=113 кэВ (6,4%) и 208 кэВ (11%)). Продукт распада 177Lu - стабильный изотоп 177Hf. Сравнительно небольшая длина пробега β-частицы 177Lu в биологических тканях (<2 мм) при локализации значительного количества атомов радионуклида в непосредственной близости от опухолевой клетки обеспечивает избирательное уничтожение опухоли при минимальном повреждении окружающих тканей.

Поскольку 177Lu испускает одновременно β-частицы и γ-кванты, он идеально подходит как для диагностики, так и для терапии злокачественных новообразований.

Во всей полноте преимущества 177Lu раскрываются при радиотерапии опухолей малых размеров, так как β-частицы 177Lu имеют малую глубину проникновения в ткани.

В настоящее время ведутся интенсивные поисковые исследования в области получения и использования препаратов на основе 177Lu.

Одним из ключевых параметров, определяющих возможность применения 177Lu для синтеза радиофармпрепаратов (РФП), является его удельная активность. Для получения препарата 177Lu высокой удельной активности могут быть использованы два способа:

- облучение нейтронами ядерного реактора стартового материала, содержащего стабильный изотоп лютеция 176Lu (так называемый "прямой" способ);

- облучение нейтронами ядерного реактора стартового материала, содержащего изотоп иттербия 176Yb ("непрямой" способ).

Из уровня техники известен способ получения 177Lu по реакции 176Yb(n, γ) с образованием 177Yb и его последующим β-распадом в 177Lu и выделением целевого радионуклида радиохимическим методом твердофазной экстракции (см. Ketring, A.R. Production and Supply of High Specific Activity Radioisotopes for Radiotherapy Applications. Alasbimn Journal 5(19): January 2003. Article №AJ19-2). Мишень массой несколько миллиграмм нитрата иттербия, обогащенного по 176Yb до 97.6% в кварцевой ампуле, облучалась нейтронами в исследовательском реакторе MURR. После выдержки в течение нескольких часов мишень растворяли в 500-700 мл 0.1-0.5 N HCl.

Разделение иттербия и лютеция осуществляли методом твердофазной экстракции с использованием "Ln spec" смолы (50-100 мкм), которая представляла собой раствор кислоты di(2-ethylhexyl)orthophosphoricacid (HDEHP) в инертном полимерном сорбенте Amberchrom™ CG-71.

К недостаткам данного способа следует отнести:

- низкий выход целевого радионуклида 177Lu из-за малого сечения реакции 176Yb(n, γ)177Yb→177Lu, которое для тепловых нейтронов составляет около 2 барн,

- сложный технологический процесс разделения лютеция и иттербия, сопряженный со значительными потерями целевого радионуклида 177Lu.

Кроме того, известен способ получения 177Lu по реакции 176Yb(n, γ)177Yb (см. патент Российской Федерации RU 2542733 на изобретение «Способ получения радиоизотопа лютеций-177», авторы: Верещагин Ю.И., Семенов А.Н., Чувилин Д.Ю. и др., опубл. 27.02.2015), который включает облучение иттербиевой мишени нейтронами и выделение 177Lu из облученной мишени. В качестве мишени берут стабильный изотоп 176Yb, мишень облучают в потоке нейтронов ядерного реактора, в процессе облучения в результате ядерной реакции 176Yb(n, γ) в мишени нарабатывают 177Yb, продукт распада которого - целевой радионуклид 177Lu, затем выделяют хроматографическим методом на ионообменной колонке. В качестве элюэнта для смыва 177Lu с колонки используют 0,07 N раствор α-изомасляной кислоты. Очистку продукта от следов α-изомасляной кислоты осуществляют на второй ионообменной колонке. При этом элюат подкисляют до pH=1-2. 177Lu сорбируют на колонке, элюат с α-изомасляной кислотой направляют в отходы. Затем колонку промывают 100 мл дистиллированной воды, после чего элюируют 177Lu десятью миллилитрами 0,5 N HCl. Элюат упаривают досуха и смывают осадок HCl с pH=5,1.

К недостаткам данного способа следует отнести:

- низкий выход радионуклида 177Lu из-за малого сечения реакции 176Yb(n, γ)177Yb;

- сложный технологический процесс разделения лютеция и иттербия.

В качестве прототипа выбран способ получения 177Lu по реакции 177Lu(n, γ)177Lu (см. Journal of Radioanalytical and Nuclear Chemistry, V. 277, No. 3, 2008, 663-673). Стабильный изотоп 176Lu облучают в реакторе и нарабатывают 177Lu по прямой реакции радиационного захвата нейтрона 176Lu(n, γ)177Lu. Сечение реакции для тепловых нейтронов превышает 2000 барн. В результате 177Lu может быть получен в значительных количествах.

Вместе с тем, данный способ имеет ряд недостатков:

- целевой радионуклид 177Lu невозможно отделить от носителя - сырьевого изотопа 176Lu, что снижает его удельную активность и, в итоге, существенно сужает сферу его применения в ядерной медицине;

- наличие примеси долгоживущего радионуклида 177mLu с периодом полураспада 160 суток.

Возможность повышения удельной активности радионуклида 177Lu в способе, выбранном за прототип, лимитируется принципиальной проблемой ядерных реакторов - ограниченностью отвода тепла от активной зоны реактора, в котором проводиться облучение мишеней для наработки радионуклидов. В результате, плотность потока нейтронов в самых мощных исследовательских реакторах не превышает значения ≈2×1015 см-2×с-1, и дальнейшее повышение этой величины практически невозможно. При облучении 176Lu в потоке 2×1015 см-2 с-1 (такой поток тепловых нейтронов доступен лишь в двух реакторах мира: HFIR, США, Ок-Ридж и СМ, Россия, Димитровград) за 10 суток достигается максимальное значение удельной активности равное ~70 кКи на г лютеция. Это значение составляет 70% от теоретической удельной активности 177Lu (~110 кКи/г) и является на настоящее время пределом при реализации схемы реакторного получения 177Lu из 176Lu.

Раскрытие изобретения

Техническим результатом заявленного изобретения является:

- повышение удельной активности радионуклида 177Lu, полученного активационным методом по реакции радиационного захвата 176Lu(n, γ)177Lu при облучении в ядерном реакторе лютеция природного изотопного состава или обогащенной по изотопу 176Lu;

- упрощение технологического процесса получения целевого радионуклида 177Lu без носителя на стандартных реакторах.

Технический результат достигается тем, что способ получения радионуклида 177Lu включает изготовление мишени, содержащей лютеций природного изотопного состава или обогащенный по изотопу 176Lu, облучение нейтронами мишени, с последующим выделением целевого радионуклида 177Lu, полученного в результате реакции 176Lu(n, γ)177Lu, отличающийся тем, что мишень представляет собой композиционный материал, состоящий из наночастиц лютеция или его соединений, окруженных буфером в виде твердого вещества, растворимого в воде или других растворителях, при этом d - характерный размер наночастиц выбирают из условия λ/d>>1, где λ - длина пробега в веществе наночастицы атомов отдачи 177Lu, после облучения мишени наночастицы и буфер разделяют, после чего буфер направляют на радиохимическую переработку для выделения целевого радионуклида 177Lu, а наночастицы возвращают в ядерный реактор в составе новой мишени.

В предпочтительном варианте, в качестве материала наночастиц используют металлический лютеций природного изотопного состава или обогащенный по изотопу 176Lu. В качестве материала буфера используют хлористый калий KCl, а разделение буфера и наночастиц проводят в воде. Разделение буфера и наночастиц проводят методом центрифугирования, или фильтрации, или другим известным методом. Облучение мишени проводят в активной зоне исследовательского или энергетического ядерного реактора с тепловым спектром нейтронов. В качестве материала наночастиц используют соединения лютеция Lu2O3, или Lu(OH)3, или LuF3. Характерный размер наночастиц составляет ≈20 нм.

Известно, что образующееся в результате реакции радиационного захвата 176Lu(n, γ) ядро 177Lu в момент снятия возбуждения испусканием γ-квантов, приобретает импульс отдачи, которого, в ряде случаев, бывает достаточно для преодоления атомом 177Lu химических связей с другими атомами и молекулами в исходном веществе мишени. Такие атомы отдачи способны выходить из молекул соединения, в котором они первоначально находились, переходить из твердых тел в газовую фазу и т.д.

Энергия атома отдачи 177Lu, приобретаемая им в результате реакции 176Lu(n, γ) на тепловых нейтронах, составляет [см. А.Н. Несмеянов, Радиохимия, М., 1978]

где

ELu177 - энергия атома отдачи 177Lu;

εγ - энергия мгновенного γ-кванта;

M - масса атома отдачи 177Lu;

c - скорость света.

В энергетическом спектре мгновенных γ-квантов из реакции 176Lu(n, γ)177Lu в диапазоне 3-9 МэВ на один захваченный нейтрон испускается около одного γ-кванта. Принимая, что средняя энергия мгновенных γ-квантов равна 6 МэВ, получим энергию отдачи 177Lu>300 эВ. Этой энергии достаточно для пробега в твердом веществе до 100 нм.

Удельный выход атомов отдачи из мишени будет значителен только в случае, когда отношение λ/d≈1, где λ - длина пробега атома отдачи в веществе мишени, а d - характерный размер мишени. Если λ/d<<1, то в мишени будет работать только поверхностный слой, толщиной ≈λ, а внутренние слои будут недоступны для выхода атомов отдачи. Чем больше размер мишени, тем менее эффективен этот процесс.

Если лютеций локализован в наночастицах размером ≈20 нм, то энергии 300 эВ будет достаточно для выхода значительной доли атомов 177Lu (до 30%) за пределы наночастицы.

Изготовив мишень в виде композиционного материала, состоящего из наночастиц лютеция или его соединений размером ≈20 нм, окруженных связующим материалом (буфером), можно в процессе облучения мишени в поле нейтронов имплантировать атомы отдачи 177Lu в буфере, отделив их тем самым от наночастиц лютеция.

Пример реализации

В качестве примера реализации заявленного способа рассмотрим следующий вариант: композиционная мишень на основе лютеция, обогащенного по изотопу 177Lu, в исследовательском реакторе ИР-8.

Методом электровзрыва проводника изготавливают наночастицы лютеция. Полученный порошок используют для приготовления мишени из композиционного материала, состоящего из наночастиц лютеция природного изотопного состава, окруженных буфером, состоящего из твердого хлористого калия, растворимого в воде. Мишень помещают в поле нейтронов реактора ИР-8. 177Lu нарабатывается по реакции 176Lu(n, γ)177Lu. Характерный размер наночастиц мишени выбран из условия λ/d>>1, где d - эффективный диаметр наночастицы, λ - длина пробега атомов отдачи 177Lu в лютеции.

Активная зона реактора ИР-8 состоит из 16 тепловыделяющих сборок (ТВС) типа ИРТ-ЗМ. Длина активной части ТВС 58 см, содержание урана 235U - 90 грамм, а его обогащение - 90%.

Основные параметры реактора ИР-8 следующие:

- мощность, МВт 8

- максимальная плотность потока тепловых нейтронов, см-2×с-1:

в активной зоне 1.5×1014

в заполненных водой отверстиях сменных

бериллиевых блоков отражателя 2.5×1014

Скорость накопления 177Lu из 176Lu для различных значений плотности потоков нейтронов представлена на фигуре 1.

Поскольку в реакторе ИР-8 поток нейтронов достигает значения 1.5×1014 см-2×с-1, то за 15 дней облучения мишени можно достичь удельной активности 177Lu около 104 Ки/г 176Lu.

В результате облучения в буфер из хлористого калия имплантируются атомы отдачи 177Lu. После облучения мишень помещают в воду, растворяют буфер и переводят радионуклид 177Lu в растворимую форму. Затем раствор подвергают центрифугированию, отделяя нерастворимые в воде наночастицы мишени от находящегося в растворе радионуклида 177Lu. Буфер направляют на радиохимическую переработку для выделения 177Lu, а наночастицы лютеция возвращают в активную зону реактора в составе новой мишени.

В качестве материала наночастиц можно применить металлический лютеций, а также соединения лютеция, например, Lu2O3, Lu(OH)3, LuF3, природного изотопного состава или обогащенные по изотопу 176Lu.

Буфером может служить хлористый калий KCl или другие материалы, легко растворимые в воде, обладающие низким сечением поглощения нейтронов и высокой радиационной стойкостью.

Заявленный способ получения радионуклида 177Lu позволяет значительно повысить его удельную активность по сравнению со способом, выбранным за прототип, что расширит применение радионуклида 177Lu в ядерной медицине, в частности при реализации технологии адресной доставки радионуклида в пораженные органы или ткани.


СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ЛЮТЕЦИЙ-177
СПОСОБ ПОЛУЧЕНИЯ РАДИОНУКЛИДА ЛЮТЕЦИЙ-177
Источник поступления информации: Роспатент

Показаны записи 201-210 из 260.
18.05.2019
№219.017.5a88

Способ и устройство локализации расплава активной зоны ядерного реактора

Изобретение относится к системам локализации аварии на АЭС для улавливания компонентов активной зоны ядерного реактора и их обломков из разрушенного корпуса. Способ локализации расплава включает в себя улавливание, выдерживание и охлаждение расплава в резервуаре, расположенном под реактором....
Тип: Изобретение
Номер охранного документа: 0002432628
Дата охранного документа: 27.10.2011
18.05.2019
№219.017.5ad7

Способ облучения минералов

Изобретение относится преимущественно к радиационным методам обработки ювелирных минералов для повышения их ювелирной ценности. Для этого в способе облучения минералов в нейтронном потоке реактора в контейнере предложено в процессе облучения облучаемые минералы экранировать от тепловых и...
Тип: Изобретение
Номер охранного документа: 0002431003
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5add

Способ хемотермической передачи тепловой энергии

Изобретение относится к способам передачи энергии, преимущественно от ядерных энергетических установок и при участии хемотермических систем, например, конверсии углеродсодержащего вещества. В предложенном способе хемотермической передачи тепловой энергии осуществляют эндотермическую реакцию...
Тип: Изобретение
Номер охранного документа: 0002431208
Дата охранного документа: 10.10.2011
18.05.2019
№219.017.5b19

Способ разработки залежи тяжелой нефти

Изобретение относится к разработке нефтяных месторождений, в частности к способам теплового воздействия на залежь, содержащую высоковязкую нефть. Технический результат - снижение расхода теплоносителя, уменьшение затрат на его прокачку и потери. В способе разработки залежи тяжелой нефти...
Тип: Изобретение
Номер охранного документа: 0002444618
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b1a

Способ генерации энергии

Изобретение относится к способам преобразования энергии газообразного топлива (природный или синтез-газ, водород) в механическую (электрическую), преимущественно к транспортным энергетическим установкам и системам энергообеспечения на их основе и предназначено для транспортных средств,...
Тип: Изобретение
Номер охранного документа: 0002444637
Дата охранного документа: 10.03.2012
18.05.2019
№219.017.5b69

Способ генерации энергии в гибридной энергоустановке

Способ генерации энергии в гибридной энергоустановке, в котором окислитель направляют в камеру сгорания теплового двигателя, а также в топливный элемент. В камеру сгорания подают основное топливо. В топливный элемент подают также вторичное топливо. По меньшей мере часть продуктов, выходящих из...
Тип: Изобретение
Номер охранного документа: 0002465693
Дата охранного документа: 27.10.2012
29.05.2019
№219.017.6259

Способ синхронизации устройств в накопительных электронных синхротронах источников синхротронного излучения

Изобретение относится к методам синхронизации для получения точных синхронизирующих импульсов для устройств, располагаемых по периметру кольца электронного синхротрона-накопителя, и может быть использовано в системах временной синхронизации множества разнесенных по периметру электронного...
Тип: Изобретение
Номер охранного документа: 0002689297
Дата охранного документа: 27.05.2019
07.06.2019
№219.017.7537

Способ изготовления наноструктурированной мишени для производства радионуклида мо-99

Изобретение относится к реакторной технологии получения радионуклидов и может быть использовано для производства радионуклида молибден-99 (Мо) высокой удельной активности (без носителя), являющегося основой создания радионуклидных генераторов технеция-99m (Tc), нашедших широкое применение в...
Тип: Изобретение
Номер охранного документа: 0002690692
Дата охранного документа: 05.06.2019
09.06.2019
№219.017.7e02

Способ определения энерговыделения в активной зоне по показаниям нейтронных детекторов в процессе эксплуатации реактора типа ввэр

Изобретение относится к ядерной энергетике, в частности к исследованиям тепловых режимов активной зоны и осуществлению контроля за полем энерговыделения в реакторе типа ВВЭР. Способ определения энергетических показателей топливной сборки ядерного реактора включает создание компьютерной модели...
Тип: Изобретение
Номер охранного документа: 0002451348
Дата охранного документа: 20.05.2012
09.06.2019
№219.017.7ea2

Система внутриреакторного контроля и защиты активной зоны реакторов ввэр

Изобретение относится к системам контроля и управления и может быть использовано для контроля и защиты активной зоны реакторов типа ВВЭР. Система внутриреакторного контроля и защиты активной зоны реакторов ВВЭР включает детекторы прямой зарядки (ДПЗ) и термоэлектрические преобразователи (ТЭП),...
Тип: Изобретение
Номер охранного документа: 0002435238
Дата охранного документа: 27.11.2011
Показаны записи 161-161 из 161.
20.04.2023
№223.018.4d78

Способ получения радиоизотопов тербий-154 и тербий-155

Изобретение относится к технологии получения радионуклидов для ядерной медицины на ускорителях заряженных частиц. Способ получения радиоизотопов Тb и Тb включает облучение на ускорителе заряженных частиц мишени с изотопами гадолиния, которую изготавливают каскадной из двух последовательно...
Тип: Изобретение
Номер охранного документа: 0002793294
Дата охранного документа: 31.03.2023
+ добавить свой РИД