×
27.08.2016
216.015.5046

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ

Вид РИД

Изобретение

Аннотация: Изобретение относится к электротермии и может быть использовано для контроля электрических параметров, характеризующих состояние подэлектродных объемов ванны трехфазной трехэлектродной руднотермической печи с расположением электродов в линию и короткой сетью по схеме «звезда» на электродах. Этот результат достигается тем, что в заявляемом способе определения электрических параметров, характеризующих состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи с расположением электродов в линию и короткой сетью по схеме «звезда» на электродах, в соответствии с которым последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, для комбинаций из двух электродов «крайний-крайний», «один из крайних-средний» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуду и фазу ЭДС источника измеряющей частоты оставшегося электрода так, чтобы действующее значение тока измеряющей частоты в нем стало равным нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте, и в качестве параметров, характеризующих состояние подэлектродных пространств, вычисляют собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина» для электродов в соответствии с выражениями: где I, P, P - величины тока в первичной цепи источника питания измеряющей частоты одного из электродов и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «крайний-крайний»; I, P, P - величины тока в первичной цепи источника питания измеряющей частоты «среднего» электрода и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «один из крайних - средний»; w - количество витков первичной обмотки вводного устройства. 3 ил.
Основные результаты: Способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной трехэлектродной руднотермической печи с короткой сетью «звезда» на электродах и расположением их в линию, последовательно к каждому из которых подключен управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, в соответствии с которым изменяют ЭДС и фазы источников питания измеряющей частоты, измеряют токи и активные мощности на измеряющей частоте и определяют электрические параметры подэлектродных пространств, в качестве которых приняты собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина», отличающийся тем, что для комбинаций из двух электродов «крайний-крайний», «один из крайних-средний» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуду и фазу ЭДС источника измеряющей частоты оставшегося электрода так, чтобы действующее значение тока измеряющей частоты в нем стало равным нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина» для электродов в соответствии с выражениями , , ,где I, P, P - величина тока в первичной цепи источника питания измеряющей частоты одного из электродов и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «крайний-крайний»; I, P, P - величина тока в первичной цепи источника питания измеряющей частоты «среднего» электрода и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для одной из комбинаций электродов «один из крайних-средний»; w - количество витков первичной обмотки вводного устройства.

Изобретение относится к электротермии и может быть использовано для контроля электрических параметров, характеризующих состояние подэлектродных объемов ванны трехфазной трехэлектродной руднотермической печи с расположением электродов в линию и короткой сетью по схеме «звезда» на электродах.

Известен способ определения электрических параметров ванны руднотермической электрической печи, при котором изменяют межэлектродные напряжения так, что одно из напряжений участка «электрод-подина» остается неизменным, и по изменениям токов электродов вычисляют проводимости межэлектродных пространств [1].

Недостатком известного способа является то, что при его осуществлении, хотя и кратковременно, нарушается нормальный режим работы печи.

Также известны способы для непрерывного контроля электрических параметров ванны, таких как проводимость подэлектродного пространства ванны, сопротивление между электродом и подиной, собственные разностно-потенциальные коэффициенты (РПК) схемы замещения ванны трехфазной руднотермической печи и не нарушающие нормальный режим работы печи. Эти способы предполагают использование измерительных источников с частотой тока, отличной от частоты тока силового источника питания [2, 3, 4, 5].

Наиболее близким к заявляемому способу, который может использоваться для трехэлектродной печи с короткой сетью по схеме «звезда» на электродах и любым расположением электродов (как в линию, так и по диаметру распада), является способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи, в качестве которого используется собственный разностно-потенциальный коэффициент (РПК) схемы замещения ванны, при котором последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, оставляют неизменными амплитуды и фазу ЭДС источника питания измеряющей частоты электрода, для которого определяют собственный РПК ванны, изменяют амплитуды и фазы ЭДС источников измеряющей частоты двух других электродов так, чтобы сумма действующих значений токов измеряющей частоты в них была равна нулю, измеряют ток, активную мощность, выделяющуюся на участке «электрод-подина» на измеряющей частоте этого электрода, и вычисляют собственный РПК участка ванны «электрод-подина».

Недостатками известного способа являются:

- сложность осуществления способа, так как необходимо установление нулевого значения суммы действующих значений токов измеряющей частоты в двух электродах путем одновременного изменения четырех параметров - двух амплитуд и двух фаз ЭДС источников измеряющей частоты.

- необходимость применения фильтра, прозрачного для токов измеряющей частоты, соединяющего нулевые точки ванны и вторичных обмоток печного трансформатора.

Техническим результатом заявляемого изобретения является упрощение процесса определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной трехэлектродной прямоугольной руднотермической печи с расположением электродов в линию и токоподводом по схеме «звезда» на электродах.

Этот результат достигается тем, что в заявляемом способе определения электрических параметров, характеризующих состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи с расположением электродов в линию и короткой сетью по схеме «звезда» на электродах, в соответствии с которым последовательно к каждому электроду подключают управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, для комбинаций из двух электродов «крайний-крайний», «один из крайних-средний» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуду и фазу ЭДС источника измеряющей частоты оставшегося электрода так, чтобы действующее значение тока измеряющей частоты в нем стало равным нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте, и в качестве параметров, характеризующих состояние подэлектродных пространств, вычисляют собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина» для электродов в соответствии с выражениями:

, , ,

где I, P1и, P - величины тока в первичной цепи источника питания измеряющей частоты одного из электродов и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «крайний-крайний»; I, P, P - величины тока в первичной цепи источника питания измеряющей частоты «среднего» электрода и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «один из крайних-средний»; wт - количество витков первичной обмотки вводного устройства.

Сопоставительный анализ заявляемого решения с прототипом показывает, что заявляемый способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной трехэлектродной прямоугольной руднотермической печи, отличается от известного тем, что в качестве параметров, характеризующих состояние подэлектродных пространств, вычисляют собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина» для электродов. При этом:

1) оставляют неизменными амплитуды и фазы ЭДС управляемых источников питания измерительной частоты в двух электродах такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов;

2) требуется установление равенства нулю действующего значения тока измерительной частоты только одного электрода, осуществляемое итерационным процессом последовательного изменения величин амплитуды и фазы одного управляемого источника питания измерительной частоты. Это упрощает и ускоряет процесс определения разностно-потенциального коэффициента, характеризующего состояние подэлектродного пространства ванны;

3) отсутствует необходимость в фильтре, прозрачном для тока измеряющей частоты и непрозрачном для тока рабочей частоты, подключаемом к выводу подины печи и к нулевому выводу вторичных обмоток печного трансформатора.

Эти отличия позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной области техники и, следовательно, обеспечивает заявленному техническому решению соответствие критерию «изобретательский уровень».

Как параметры схемы замещения ванны РТП резистивного нагрева РПК ванны предложены в [6]. Согласно принципу суперпозиции, справедливому для линейных систем, напряжение на участке ванны «электрод-подина» можно представить алгебраической суммой частичных напряжений, каждое из которых обусловлено действием тока, протекающим в одном из электродов

где , , - напряжения на участках ванны «электрод-подина», - частичные напряжения на участках ванны «электрод-подина», Ri,j - разностно-потенциальные коэффициенты схемы замещения ванны.

Разностно-потенциальный коэффициент Ri,j определяет связь между частичным напряжениям на участке ванны «i-й электрод-подина» и током j-го электрода печи . РПК схемы замещения ванны зависят от ее формы, от расположения и геометрических размеров электродов, формы их рабочих поверхностей, а также от электрической проводимости материалов среды ванны [6]. В зависимости от того, к каким электродам относятся частичное напряжение на участке ванны и ток электрода , различают собственные и взаимные РПК. Например, собственный РПК R1,1 ванны трехэлектродной печи определяет связь между частичным напряжением участка ванны «первый электрод-подина», наводимым током первого электрода за счет его растекания по материалам среды ванны, и значением тока этого электрода. В свою очередь, взаимный РПК R1,2 устанавливает связь между частичным напряжением участка ванны «первый электрод-подина» и током, протекающим во втором электроде. Для взаимных РПК схемы замещения справедлив принцип взаимности Rij=Rji, i≠j [6].

Известно [7], что для расстояний между осями электродов, характерных для действующих печей, собственный РПК участка «электрод-подина» ванны для каждого электрода весьма слабо зависит от состояния подэлектродных пространств соседних электродов, что дает основание использовать его в качестве электрического параметра, характеризующего состояние пространства под электродом ванны. Например, независимо от положения в ванне первого электрода при изменении заглубления в ванну соседних электродов (в данном случае - второго и третьего) значение собственного РПК R1,1 участка ванны «первый электрод-подина» изменяется незначительно.

На фиг. 1 изображены полученные физическим и математическим моделированием зависимости относительных собственного (кривая 1) и взаимных РПК и (кривые 2 и 3 соответственно) ванны прямоугольной печи с расположением электродов в линию от их относительного заглубления , где Rэу1 - сопротивление ванны первого электрода в предположении отсутствия в ванне остальных электродов. Анализ зависимостей показывает, что взаимный РПК R1.3 примерно на порядок меньше взаимных РПК R1.2, R2,3 и на два порядка меньше собственных РПК R1,1, R2,2, R3,3 ванны прямоугольной печи. Это дает основание при исследовании электрического режима печи пренебречь влиянием взаимного РПК R1,3. Поэтому для токов измерительной частоты справедливы равенства

Для прямоугольной печи производства карбида кальция с тремя плоскими электродами, имеющими одинаковые заглубления, мощностью 60 MB·A (Iэ=119,5 kA) путем математического моделирования определены РПК ванны: R1,1=R3,3=1,1 мОм; R2,2=1,08 мОм; R1,2=R2,3=0,05 мОм; R1,3=0,01 мОм. Из результатов моделирования видно, что значение взаимного РПК R1,3 составляет менее 1% по сравнению с собственными РПК ванны.

Допустим, что обеспечен электрический режим печи, при котором отсутствует ток измерительной частоты в среднем (втором) электроде I=0. Тогда очевидно I=I и справедливы соотношения

В случае, когда отсутствует ток в одном из крайних электродов, например в первом, справедливы соотношения I=0, I=I. Подставляя их в (2), получим

и с учетом (3)

На фиг. 2 изображена схема цепи печи с источниками питания измеряющей частоты и приборами для измерения, в которой E1пит, Е2пит, Е3пит - ЭДС вторичных обмоток печного трансформатора; Z1кс, Z2кс, Z3кс - сопротивления вторичных обмоток трансформатора и короткой сети; R1,1, R2,2, R3,3 - собственные разностно-потенциальные коэффициенты схемы замещения ванны; R1,2, R2,3, R1,3 - взаимные разностно-потенциальные коэффициенты схемы замещения ванны.

Ввод ЭДС источников питания измеряющей частоты можно осуществить, например, при помощи вводных устройств, по конструкции напоминающие трансформаторы тока, которые на фиг. 2 обозначены T1, T2, T3. Вторичными обмотками вводных устройств являются ветви короткой сети, охваченные магнитопроводами, на которых расположены первичные обмотки с большим числом витков. Первичные цепи вводных устройств содержат фильтры Ф1, Ф2, Ф3, прозрачные для тока рабочей частоты источника питания, фильтры Ф4, Ф5, Ф6, прозрачные для токов измеряющей частоты, источники питания измеряющей частоты e1изм, е2изм, е3изм с изменяемыми амплитудой и фазой ЭДС. В первичную цепь включены датчики действующего значения тока ДТ1, ДТ2, ДТ3, токовые обмотки ваттметров W1, W2, W3. По величине тока первичной цепи вводного устройства судят о токе измеряющей частоты в электроде. Обмотки напряжения ваттметров W1, W2, W3 последовательно соединены с прозрачными для тока измеряющей частоты фильтрами соответственно Ф7, Ф8, Ф9 и подключены к электродам и подине ванны.

На фиг. 3а, 3б изображены возможные схемы фильтров, прозрачные для токов одной частоты и непрозрачные для токов другой частоты. Например, если схемы прозрачны для токов измерительной частоты и непрозрачны для токов рабочей частоты, то в каждой из них параллельный контур имеет резонансную настройку на частоте рабочего тока. Сопротивление параллельного контура имеет индуктивный характер для измеряющей частоты, если она ниже частоты питающего печь тока. Поэтому для пропускания токов измеряющей частоты последовательно с этим контуром включен конденсатор, емкостное сопротивление которого совместно с индуктивным сопротивлением контура обеспечивает резонанс напряжений на измеряющей частоте. Если же измеряющая частота больше рабочей частоты, то параллельный контур имеет емкостное сопротивление, к которому последовательно подключена катушка, обеспечивающая резонанс напряжений на измеряющей частоте.

Способ осуществляется следующим образом.

Пусть необходимо определить собственные разностно-потенциальные коэффициенты R1,1, R3,3 участков ванны «крайний электрод-подина». Тогда амплитуды и фазы ЭДС источников измеряющей частоты e1изм и е3изм оставляют неизменными такими, что их фазы ЭДС отличаются друг от друга на 180 электрических градусов. Амплитуду и фазу ЭДС источника измеряющей частоты е2изм изменяют так, чтобы действующее значение тока I измеряющей частоты в ветви среднего электрода достигло значения, равного нулю. При этом условии действующие значения токов I и I будут равны, а собственные разностно-потенциальные коэффициенты ванны для крайних электродов определяются по выражениям (3).

При определении собственного разностно-потенциального коэффициента R2,2 участка ванны «средний электрод-подина» амплитуду и фазу ЭДС источника измеряющей частоты е2изм и, например, амплитуду и фазу ЭДС источника измеряющей частоты е3изм оставляют неизменными такими, что фазы их ЭДС отличаются друг от друга на 180 электрических градусов. При этом амплитуду и фазу ЭДС источника измеряющей частоты е1изм изменяют так, чтобы действующее значение тока I измеряющей частоты в ветви первого электрода достигло значения, равного нулю. Тогда действующие значения токов I и I также будут равны, а собственный потенциальный коэффициент R2,2 ванны для среднего электрода определяется по (4).

Источники информации

1. А.С. СССР №436458, кл. Н05B 7/144. Способ определения сопротивления межэлектродного пространства рабочей зоны трехфазной руднотермической печи. 1972.

2. А.С. СССР №706943, кл. Н05B 7/144. Фрыгин В.М. Способ определения проводимости подэлектродного объема трехфазной руднотермической печи. Опубл. 31.12.79 в БИ №48,1979.

3. А.С. СССР №955534, кл. Н05B 7/144. Фрыгин В.М. Способ определения сопротивления между электродом и подиной трехфазной трехэлектродной руднотермической печи. Опубл. 30.08.82 в БИ №32, 1982.

4. А.С. СССР №955535, кл. H05B 7/144. Фрыгин В.М. Способ определения проводимости между электродом и подиной трехфазной трехэлектродной руднотермической печи. Опубл. 30.08.82 в БИ №32,1982.

5. Патент РФ №2550739. Ильгачев А.Н., Абрамов А.В. Способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной печи. Опубл. 10.05.2015. Бюл. №13.

6. Ильгачёв А.Н. Разностно-потенциальные коэффициенты ванн многоэлектродных печей резистивного нагрева / А.Н. Ильгачёв // Вестник Чувашского университета. 2006. №2. С. 227-233.

7. Ильгачёв А.Н. Исследование разностно-потенциальных коэффициентов ванн многоэлектродных печей резистивного нагрева / А.Н. Ильгачёв // Региональная энергетика и электротехника: проблемы и решения. Вып. 7. Чебоксары. Изд-во Чуваш, ун-та. 2011. С. 196-209.

Способ определения электрических параметров, характеризующих состояние подэлектродных пространств ванны трехфазной трехэлектродной руднотермической печи с короткой сетью «звезда» на электродах и расположением их в линию, последовательно к каждому из которых подключен управляемый источник питания измеряющей частоты, отличной от рабочей частоты источника питания печи, в соответствии с которым изменяют ЭДС и фазы источников питания измеряющей частоты, измеряют токи и активные мощности на измеряющей частоте и определяют электрические параметры подэлектродных пространств, в качестве которых приняты собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина», отличающийся тем, что для комбинаций из двух электродов «крайний-крайний», «один из крайних-средний» оставляют неизменными амплитуды и фазы ЭДС их источников питания измеряющей частоты такими, что фазы ЭДС отличаются друг от друга на 180 электрических градусов, изменяют амплитуду и фазу ЭДС источника измеряющей частоты оставшегося электрода так, чтобы действующее значение тока измеряющей частоты в нем стало равным нулю, измеряют ток в цепи попарно выбранных электродов, активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте, и вычисляют собственные разностно-потенциальные коэффициенты участков ванны «электрод-подина» для электродов в соответствии с выражениями , , ,где I, P, P - величина тока в первичной цепи источника питания измеряющей частоты одного из электродов и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для комбинации электродов «крайний-крайний»; I, P, P - величина тока в первичной цепи источника питания измеряющей частоты «среднего» электрода и активные мощности, выделяющиеся на участках «электрод-подина» на измеряющей частоте для одной из комбинаций электродов «один из крайних-средний»; w - количество витков первичной обмотки вводного устройства.
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
СПОСОБ ОПРЕДЕЛЕНИЯ ЭЛЕКТРИЧЕСКИХ ПАРАМЕТРОВ, ХАРАКТЕРИЗУЮЩИХ СОСТОЯНИЕ ПОДЭЛЕКТРОДНЫХ ПРОСТРАНСТВ ВАННЫ ТРЕХФАЗНОЙ ТРЕХЭЛЕКТРОДНОЙ РУДНОТЕРМИЧЕСКОЙ ПЕЧИ С РАСПОЛОЖЕНИЕМ ЭЛЕКТРОДОВ В ЛИНИЮ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 92.
10.04.2015
№216.013.3cff

Способ получения наномодифицированного термопласта

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например,...
Тип: Изобретение
Номер охранного документа: 0002547103
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f58

Способ лечения кариеса

Изобретение относится к медицине, а именно - к терапевтической стоматологии. Способ включает измерение электрического потенциала, проведение механической обработки твердых тканей зуба, пораженного кариесом, и лечебное воздействие на зуб. При этом измерение электрического потенциала проводят в...
Тип: Изобретение
Номер охранного документа: 0002547704
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f6f

Способ получения n-(4-фениламинофенил)малеинимида

Изобретение относится к получению N-(4-фениламинофенил)малеинимида, который может быть использован как химический модификатор многоцелевого назначения для резиновых смесей, а также в производстве термоустойчивых полимеров. Способ включает взаимодействие малеинового ангидрида с...
Тип: Изобретение
Номер охранного документа: 0002547727
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.47ea

Устройство ультразвуковой очистки отложений в теплообменных аппаратах

Изобретение относится к ультразвуковой технике и теплоэнергетике и может быть использовано для очистки теплообменных аппаратов различного назначения от отложений. Установка содержит источник вторичного электропитания, подключенный через инвертор ко входам магнитостриктора, одни его выходы...
Тип: Изобретение
Номер охранного документа: 0002549917
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4849

Способ удаления татуировок

Изобретение относится к медицине, а именно к лазерной хирургии, и может быть использовано для удаления татуировок. Осуществляют забор образцов биопсийной ткани кожи с частицами имплантированного татуажного пигмента. По образцам определяют глубину расположения татуажного пигмента. Устанавливают...
Тип: Изобретение
Номер охранного документа: 0002550012
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4b20

Способ определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи

Изобретение относится к электротермии. В способе определения электрического параметра, характеризующего состояние подэлектродного пространства трехфазной трехэлектродной руднотермической печи, в качестве электрического параметра определяют собственный разностно-потенциальный коэффициент ванны...
Тип: Изобретение
Номер охранного документа: 0002550739
Дата охранного документа: 10.05.2015
20.05.2015
№216.013.4c45

Композиционный материал на основе меди для электродов контактной сварки оцинкованных сталей

Изобретение может быть использовано при контактной сварке оцинкованных сталей. Композиционный материал содержит компоненты в следующем соотношении, мас.%: титан 0,2-1,1, углерод 0,05-0,20, медь - остальное. Изготовленные из указанного материала электроды для контактной сварки обладают высокой...
Тип: Изобретение
Номер охранного документа: 0002551039
Дата охранного документа: 20.05.2015
10.06.2015
№216.013.5136

Способ определения тиосульфата натрия в растворах

Изобретение относится к аналитической химии и может быть использовано в системе контроля за содержанием тиосульфата натрия в растворах. Способ определения тиосульфата натрия в растворах характеризуется введением анализируемой пробы в реакционный сосуд, содержащий соответствующее количество...
Тип: Изобретение
Номер охранного документа: 0002552311
Дата охранного документа: 10.06.2015
20.08.2015
№216.013.6e98

Способ нейтрализации и осушки реакционных газов производства хлорметанов

Изобретение относится к способу нейтрализации и осушки реакционных газов в производстве хлорметанов. Способ включает нейтрализацию реакционных газов нейтрализующим раствором, осушку реакционных газов раствором хлористого кальция при температуре ниже минус 15°C. Способ характеризуется тем, что в...
Тип: Изобретение
Номер охранного документа: 0002559882
Дата охранного документа: 20.08.2015
20.08.2015
№216.013.6e99

Резиновая смесь

Изобретение относится к резиновой смеси и может быть использовано в качестве эластичных резиновых элементов, применяемых в производстве пакерно-якорного оборудования в нефтегазодобывающей отрасли. Резиновая смесь содержит бутадиен-нитрильный каучук и частично гидрированный бутадиен-нитрильный...
Тип: Изобретение
Номер охранного документа: 0002559883
Дата охранного документа: 20.08.2015
Показаны записи 31-40 из 97.
10.12.2014
№216.013.0d5d

Крылатая ракета

Изобретение относится к ракетной технике и касается крылатой ракеты (КР) со стартово-разгонной ступенью (СРС) и маршевой силовой установкой (МСУ) со сверхзвуковым прямоточным воздушно-реактивным двигателем (СПВРД). КР содержит маршевую ступень (МС) с лобовым воздухозаборником с центральным...
Тип: Изобретение
Номер охранного документа: 0002534838
Дата охранного документа: 10.12.2014
10.01.2015
№216.013.17c7

Многослойное покрытие тонкостенной оболочки из полимерного композиционного материала космического антенного рефлектора

Изобретение может использоваться в многослойных комбинированных покрытиях зеркальных космических антенн с рефлекторами из полимерного композиционного материала - углепластика. Многослойное покрытие содержит три последовательных слоя с равномерной толщиной: нижний зеркальный металлический...
Тип: Изобретение
Номер охранного документа: 0002537515
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.271c

Способ формирования пористых ограничителей наддува в газостатических подшипниках

Изобретение относится, прежде всего, к прецизионному станкостроению и приборостроению и может применяться для создания пористых газостатических опор в высокоскоростных и/или высокоточных шпиндельных узлах, линейных направляющих, подпятниках и в других устройствах станков и измерительного...
Тип: Изобретение
Номер охранного документа: 0002541465
Дата охранного документа: 10.02.2015
27.03.2015
№216.013.35fd

Импульсный безбарьерный озонатор

Импульсный безбарьерный генератор озона относится к системам получения озона для использования его в технологиях очистки и обеззараживания воды. В импульсном безбарьерном озонаторе, содержащем металлический корпус и размещенную в корпусе электродную систему, содержащую разрядные элементы,...
Тип: Изобретение
Номер охранного документа: 0002545305
Дата охранного документа: 27.03.2015
27.03.2015
№216.013.367d

Способ моделирования атеросклероза

Изобретение относится к экспериментальной медицине, патофизиологии и может быть использовано при изучении атеросклеротического процесса. Для этого проводят моделирование атеросклероза путем кормления исследуемых животных атерогенным рационом. В качестве атерогенного рациона в течение 12 месяцев...
Тип: Изобретение
Номер охранного документа: 0002545433
Дата охранного документа: 27.03.2015
10.04.2015
№216.013.3cff

Способ получения наномодифицированного термопласта

Изобретение относится к области полимеров, а именно к области создания многофункциональных нанокомпозиционных материалов, и может быть использовано для получения конструкционных материалов с повышенными механическими и теплофизическими характеристиками, стойкими к агрессивным средам, например,...
Тип: Изобретение
Номер охранного документа: 0002547103
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f58

Способ лечения кариеса

Изобретение относится к медицине, а именно - к терапевтической стоматологии. Способ включает измерение электрического потенциала, проведение механической обработки твердых тканей зуба, пораженного кариесом, и лечебное воздействие на зуб. При этом измерение электрического потенциала проводят в...
Тип: Изобретение
Номер охранного документа: 0002547704
Дата охранного документа: 10.04.2015
10.04.2015
№216.013.3f6f

Способ получения n-(4-фениламинофенил)малеинимида

Изобретение относится к получению N-(4-фениламинофенил)малеинимида, который может быть использован как химический модификатор многоцелевого назначения для резиновых смесей, а также в производстве термоустойчивых полимеров. Способ включает взаимодействие малеинового ангидрида с...
Тип: Изобретение
Номер охранного документа: 0002547727
Дата охранного документа: 10.04.2015
10.05.2015
№216.013.47ea

Устройство ультразвуковой очистки отложений в теплообменных аппаратах

Изобретение относится к ультразвуковой технике и теплоэнергетике и может быть использовано для очистки теплообменных аппаратов различного назначения от отложений. Установка содержит источник вторичного электропитания, подключенный через инвертор ко входам магнитостриктора, одни его выходы...
Тип: Изобретение
Номер охранного документа: 0002549917
Дата охранного документа: 10.05.2015
10.05.2015
№216.013.4849

Способ удаления татуировок

Изобретение относится к медицине, а именно к лазерной хирургии, и может быть использовано для удаления татуировок. Осуществляют забор образцов биопсийной ткани кожи с частицами имплантированного татуажного пигмента. По образцам определяют глубину расположения татуажного пигмента. Устанавливают...
Тип: Изобретение
Номер охранного документа: 0002550012
Дата охранного документа: 10.05.2015
+ добавить свой РИД