×
10.06.2016
216.015.4979

ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к способам для управления тяговой системой транспортных средств с электротягой. Способ управления асинхронными тяговыми двигателями включает вычисление текущих значений электромагнитного момента и потокосцепления статора в блоке DTC (Direct Torque Control) по двигателю первой оси тележки. При этом вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей. В режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения. Задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя. При включении двигателей под напряжение в первые моменты времени задание на потокосцепление определяется в зависимости от времени. Технический результат заключается в обеспечении высокодинамичного регулирования момента тяговых двигателей и предупреждения буксования и юза. 1 ил.
Основные результаты: Способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, использующий прямое управление моментом (Direct Torque Control - DTC), в котором вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями: . где и - потокосцепления первого двигателя по оси α и β соответственно; и - напряжения статора параллельно включенных двигателей по оси α и β соответственно; и - токи статора первого двигателя по оси α и β соответственно; - сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки; - электромагнитный момент первого двигателя; - число пар полюсов; - модуль вектора потокосцепления статора первого двигателя; - фаза вектора потокосцепления статора первого двигателя;а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент М, поступающее в блок DTC, вычисляется по формулам: - в режиме тяги - в режиме торможенияи ограничивается на величине , в случае ее превышения,где - коэффициент усиления пропорционального звена регулятора скорости; - постоянная времени интегрального звена регулятора скорости; - задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес; - максимальная скорость вращения параллельно включенных двигателей; - минимальная скорость вращения параллельно включенных двигателей; - ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.
Реферат Свернуть Развернуть

Изобретение относится к рельсовому транспорту и может быть использовано на подвижном составе с асинхронными тяговыми двигателями (АТД), подключенными параллельно к одному автономному инвертору напряжения (АИН). На локомотивах такое параллельное подключение к одному инвертору и совместное управление (регулирование) АТД осуществляется обычно в пределах каждой тележки, поэтому его часто называют «потележечным» регулированием АТД.

Известен способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору (Патент РФ на изобретение RU 2428326 / Федяева Г.А., Федяев Н.А., Матюшков С.Ю., Роговцев Г.В. // Официальный бюллетень Российского агентства по патентам и товарным знакам. Изобретения. Полезные модели. Опубл. 10.09.2011. - Бюл. №25 - прототип) с использованием прямого управления моментом АТД (Direct Torque Control, сокращенно DTC). В данном способе задание на потокосцепление статора , подаваемое в блок DTC, определяется в системе управления верхнего уровня по заданной зависимости , где - средняя скорость вращения двигателей или скорость локомотива, приведенная к валу двигателя. Такой подход является традиционным, и к недостаткам данного способа относится то, что данный подход не использует энергетически эффективные (энергоэффективные) законы управления АТД.

Целью изобретения является управление асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, обеспечивающее высокодинамичное регулирование момента двигателей и предупреждение буксования (и юза) при энергоэффективном управлении АТД по критерию минимума тока статора.

Технический результат достигается тем (рис. 1), что в данном способе, использующем прямое управление моментом, вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями:

.

где и - потокосцепления первого двигателя по оси α и β соответственно;

и - напряжения статора параллельно включенных двигателей по оси α и β соответственно;

и - токи статора первого двигателя по оси α и β соответственно;

- сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки;

- электромагнитный момент первого двигателя;

p - число пар полюсов;

- модуль вектора потокосцепления статора первого двигателя;

- фаза вектора потокосцепления статора первого двигателя;

а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент Мз, поступающее в блок DTC, вычисляется по формулам:

- в режиме тяги

- в режиме торможения

и ограничивается на величине , в случае ее превышения,

где - коэффициент усиления пропорционального звена регулятора скорости;

- постоянная T ω времени интегрального звена регулятора скорости;

- задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес;

- максимальная скорость вращения параллельно включенных двигателей;

- минимальная скорость вращения параллельно включенных двигателей;

- ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.

Использованная в данном способе система прямого управления моментом (Direct Torque Control, сокращенно DTC) (Козярук А.Е., Рудаков В.В. Системы прямого управления моментом в частотно-регулируемых электроприводах переменного тока/под ред. Народицкого А.Г. - СПб.: Санкт-Петербургская электротехническая компания, 2005. - 100 с.) обладает высоким быстродействием и весьма устойчива к возмущениям и неточности информации о переменных состояния объекта управления, что очень важно в тяговом электроприводе.

К отличительным особенностям DTC можно отнести наличие в системе (рис. 1):

- гистерезисных релейных регуляторов потокосцепления статора (РРп) и момента (РРм) асинхронного двигателя;

- электронной адаптивной модели двигателя (АМД) для вычисления текущих управляемых координат асинхронного двигателя (потокосцепления статора и электромагнитного момента) по значению фазных токов, напряжения в звене постоянного тока и коммутационной функции АИН;

- блока вычисления фазового сектора (БВФС), в котором в текущий момент времени находится вектор потокосцепления статора двигателя;

- табличного (матричного) вычислителя оптимального вектора напряжения двигателя, выполняемого в виде блока логического автомата (БЛА) и определяющего функцию переключения вентилей АИН.

Использование для вычисления фактических значений потокосцепления и момента только датчиков первого двигателя АТД_1 (рис. 1), а не двигателя с минимальной или максимальной скоростью вращения, по которой в данный момент ведется управление, позволяет избежать электромеханических колебаний, возникающих при переключении обратных связей из-за разброса параметров обмоток двигателей. При этом двигатель АТД_1 первой оси, имеющей наименьшую вертикальную нагрузку, наиболее склонен к буксованию и юзу, поэтому он наиболее часто имеет максимальную и минимальную скорость в режимах тяги и торможения соответственно, и именно его скорость используется для управления. Переключения на управление по скорости других двигателей, например двигателя второй оси АТД_2, происходят, например, при поочередном проезде осями масляного пятна, когда вторая ось наезжает на пятно, а первая уже выехала на чистые рельсы, в этом случае буксование и юз соответствующих осей также эффективно подавляются.

Примененная система DTC позволяет отдельно регулировать электромагнитный момент и поток двигателя с высоким быстродействием, что открывает возможность высокодинамичного регулирования двигателей, подключенных параллельно к одному инвертору, по одному из известных энергосберегающих законов: условию минимума тока статора. Для этого предварительно рассчитывается зависимость потокосцепления статора от электромагнитного момента двигателя с учетом насыщения, определяемая из условия получения заданных значений электромагнитного момента при минимальном токе статора. Рассчитанная зависимость реализуется в блоке задания потокосцепления , размещенном непосредственно в системе управления двигателем (в системе управления нижнего уровня), и имеет вид кривой с насыщением (рис. 1). На вход блока задания потокосцепления подается задание на электромагнитный момент двигателя Мз, а с выхода снимается задание на потокосцепление статора, подаваемое в блок DTC.

Так как при включении тяговых двигателей под напряжение после остановки или режима выбега задание на момент нарастает постепенно от нуля, то и задание на потокосцепление статора будет нарастать постепенно в соответствии с зависимостью, приведенной в блоке задания потокосцепления (рис. 1). Это затягивает нарастание в двигателе магнитного потока и затрудняет регулирование. Поэтому в начальные моменты времени следует с целью форсирования создания в двигателе магнитного потока использовать формирование задания на потокосцепление в зависимости от времени , где - время, а затем переключаться на формирование задания на потокосцепление в зависимости от задания момента двигателя .

Предлагаемый способ позволяет осуществить высокодинамичное регулирование момента тяговых двигателей, подключенных параллельно к одному инвертору, и предупреждение буксования (и юза) при энергоэффективном управлении АТД по критерию минимума тока статора, позволяющем уменьшить потребляемый ток в среднем на 7% и тем самым снизить потери энергии в двигателе и статическом преобразователе.

Способ управления асинхронными тяговыми двигателями, подключенными параллельно к одному инвертору, использующий прямое управление моментом (Direct Torque Control - DTC), в котором вычисление текущих значений электромагнитного момента и потокосцепления статора ведется в блоке DTC всегда только по двигателю первой оси тележки в соответствии с выражениями: . где и - потокосцепления первого двигателя по оси α и β соответственно; и - напряжения статора параллельно включенных двигателей по оси α и β соответственно; и - токи статора первого двигателя по оси α и β соответственно; - сопротивление фазы обмотки статора первого двигателя, корректируемое с учетом изменения температуры обмотки; - электромагнитный момент первого двигателя; - число пар полюсов; - модуль вектора потокосцепления статора первого двигателя; - фаза вектора потокосцепления статора первого двигателя;а вычисление задания на момент, подаваемого в блок DTC, ведется регулятором скорости с использованием сигналов максимальной или минимальной скорости вращения параллельно включенных асинхронных двигателей: в режиме тяги управление ведется по максимальной, а в режиме торможения - по минимальной скорости вращения при использовании пропорционально-интегрального регулятора скорости, задание на момент М, поступающее в блок DTC, вычисляется по формулам: - в режиме тяги - в режиме торможенияи ограничивается на величине , в случае ее превышения,где - коэффициент усиления пропорционального звена регулятора скорости; - постоянная времени интегрального звена регулятора скорости; - задание скорости вращения, поступающее из системы управления верхнего уровня и определяемое с учетом обеспечения оптимального проскальзывания колес; - максимальная скорость вращения параллельно включенных двигателей; - минимальная скорость вращения параллельно включенных двигателей; - ограничение по моменту, вырабатываемое в системе управления верхнего уровня, отличающийся тем, что задание на потокосцепление статора , подаваемое в блок DTC, определяется по заданной зависимости потокосцепления от задания на электромагнитный момент двигателя , предварительно рассчитанной из условия минимума тока статора с учетом насыщения двигателя, причем при включении двигателей под напряжение в первые моменты времени после включения задание на потокосцепление определяется в зависимости от времени для ускоренного в двигателе магнитного потока.
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
ЭНЕРГОЭФФЕКТИВНЫЙ СПОСОБ УПРАВЛЕНИЯ АСИНХРОННЫМИ ТЯГОВЫМИ ДВИГАТЕЛЯМИ, ПОДКЛЮЧЕННЫМИ ПАРАЛЛЕЛЬНО К ОДНОМУ ИНВЕРТОРУ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 43.
20.10.2013
№216.012.775c

Линейный генератор возвратно-поступательного движения

Изобретение относится к электротехнике, к электромагнитным генераторам, служащим автономными источниками питания, и может быть использовано совместно с двигателями внутреннего сгорания без кривошипно-шатунного механизма, в устройствах, преобразующих вибрацию в напряжение (например, в подвеске...
Тип: Изобретение
Номер охранного документа: 0002496216
Дата охранного документа: 20.10.2013
27.12.2013
№216.012.906c

Способ ограничения перекоса мостового крана

Изобретение относится к области мостовых кранов. При ограничениия перекоса мостового крана с асинхронным электроприводом передвижения (M1, M2), положение крана определяют по дифференциальным значениям Δ и Δ, получаемым путем разности показаний бесконтактных датчиков (Д1, Д2, Д3, Д4), измеряющих...
Тип: Изобретение
Номер охранного документа: 0002502665
Дата охранного документа: 27.12.2013
10.09.2014
№216.012.f297

Двигатель внутреннего сгорания

Изобретение относится к машиностроению, а именно к четырехтактным двигателям внутреннего сгорания. Техническим результатом является повышение надежности пуска двигателя внутреннего сгорания. Сущность изобретения заключается в том, что двигатель содержит цилиндр с поршнем, впускной клапан и два...
Тип: Изобретение
Номер охранного документа: 0002527925
Дата охранного документа: 10.09.2014
10.09.2014
№216.012.f299

Переносная электрическая установка

Изобретение относится к энергетике. Переносная электрическая установка содержит тепловой двигатель и электрический генератор, установленные в корпусе. Соединенные между собой штоком рабочий поршень и вспомогательный поршень образуют в корпусе рабочую камеру теплового двигателя и вспомогательную...
Тип: Изобретение
Номер охранного документа: 0002527927
Дата охранного документа: 10.09.2014
10.11.2014
№216.013.0426

Толкатель клапана двигателя внутреннего сгорания

Изобретение может быть использовано в клапанных механизмах двигателей внутреннего сгорания. Толкатель клапана двигателя внутреннего сгорания состоит из корпуса (1) с цилиндрической направляющей поверхностью, износостойкой наплавки (2), расположенной в основании корпуса (1), и колпачка (3),...
Тип: Изобретение
Номер охранного документа: 0002532460
Дата охранного документа: 10.11.2014
10.02.2015
№216.013.21e5

Рубашка гильзы цилиндра двигателя внутреннего сгорания жидкостного охлаждения

Изобретение может быть использовано в двигателестроении. Рубашка гильзы (1) цилиндра двигателя внутреннего сгорания жидкостного охлаждения содержит кольцевую полость (2) между наружной поверхностью гильзы (1) и стенками (3) блока цилиндров, по которой циркулирует охлаждающая жидкость. В полости...
Тип: Изобретение
Номер охранного документа: 0002540130
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.2300

Преобразователь вибраций в элетрическое напряжение

Изобретение относится к электротехнике, к электромагнитным генераторам и может быть использовано для получения электрической энергии от любого вибрирующего тела, в том числе для электропитания устройств и подзарядки аккумуляторов во время движения транспортного средства (автомобиль,...
Тип: Изобретение
Номер охранного документа: 0002540413
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.240d

Привод конвейера

Привод конвейера включает приводной барабан (1), или приводную звездочку, или приводной шкив, муфты (2, 4), редуктор (3), тормоз (6), электродвигатель (5), подключенный к электросети (7), блок управления (8). Дополнительно привод содержит автономный источник энергии, например суперконденсатор,...
Тип: Изобретение
Номер охранного документа: 0002540682
Дата охранного документа: 10.02.2015
20.04.2015
№216.013.450a

Способ управления нелинейной динамикой преобразователей постоянного напряжения

Изобретение относится к цифровым системам управления преобразователями постоянного напряжения с функцией стабилизации выходного напряжения. Технический результат - обеспечение работы системы в проектном режиме. Технический результат достигается тем, что в стандартный метод линеаризации...
Тип: Изобретение
Номер охранного документа: 0002549172
Дата охранного документа: 20.04.2015
27.04.2015
№216.013.4602

Фрикционно-полимерный амортизатор удара

Фрикционно-полимерный амортизатор удара для автосцепного устройства содержит корпус (1), в котором размещены нажимной конус, фрикционные клинья, расположенные в контакте с поджатым комплектом упругих полимерных элементов, подвижные фрикционные пластины и неподвижные фрикционные пластины с...
Тип: Изобретение
Номер охранного документа: 0002549426
Дата охранного документа: 27.04.2015
Показаны записи 1-10 из 54.
20.05.2013
№216.012.40fd

Металлокерамический фрикционный сплав

Изобретение относится к порошковой металлургии, в частности к порошковым фрикционным сплавам на основе железа, и может быть использовано в узлах трения фрикционных муфт сцепления быстродействующих электроприводов для механизированных сортировочных горок железных дорог. Порошковый фрикционный...
Тип: Изобретение
Номер охранного документа: 0002482207
Дата охранного документа: 20.05.2013
10.08.2013
№216.012.5dc1

Автоматический переналаживаемый фрикционный клиноременный вариатор

Изобретение относится к механизмам передач с бесступенчатым изменением передаточного числа. Автоматический переналаживаемый фрикционный клиноременный вариатор содержит ведущий и ведомый валы, установленные на них раздвижные шкивы, клиновой ремень, охватывающий шкивы. На фланцах ведущего и...
Тип: Изобретение
Номер охранного документа: 0002489622
Дата охранного документа: 10.08.2013
10.08.2013
№216.012.5deb

Кожухотрубный теплообменник

Изобретение относится к теплообменной технике. Кожухотрубный теплообменник содержит пучок труб переменного сечения с чередующимися соосными одинаковыми по длине цилиндрическими участками двух разных диаметров и соединяющими их диффузорными и конфузорными коническими участками с оптимальными...
Тип: Изобретение
Номер охранного документа: 0002489664
Дата охранного документа: 10.08.2013
20.10.2013
№216.012.76e8

Стенд для моделирования динамических процессов в тяговом приводе локомотива с электропередачей

Изобретение относится к области транспортного машиностроения и может быть использовано для моделирования динамических процессов в тяговом приводе локомотива с электропередачей. Стенд содержит дизель-генераторную установку, регулируемую дистанционно от контроллера машиниста и соединенную через...
Тип: Изобретение
Номер охранного документа: 0002496100
Дата охранного документа: 20.10.2013
20.10.2013
№216.012.775c

Линейный генератор возвратно-поступательного движения

Изобретение относится к электротехнике, к электромагнитным генераторам, служащим автономными источниками питания, и может быть использовано совместно с двигателями внутреннего сгорания без кривошипно-шатунного механизма, в устройствах, преобразующих вибрацию в напряжение (например, в подвеске...
Тип: Изобретение
Номер охранного документа: 0002496216
Дата охранного документа: 20.10.2013
20.11.2013
№216.012.82c0

Камера сгорания двигателя внутреннего сгорания с воздушным аккумулятором

Изобретение относится к машиностроению, повышает надежность пуска двигателя внутреннего сгорания с воздушным аккумулятором. Камера сгорания двигателя внутреннего сгорания с воздушным аккумулятором имеет лепестковый клапан, закрывающий в период пуска и прогрева холодного двигателя сопло...
Тип: Изобретение
Номер охранного документа: 0002499148
Дата охранного документа: 20.11.2013
27.12.2013
№216.012.9147

Автоматическая самонастраивающаяся микропроцессорная система регулирования частоты вращения вала тепловой машины

Изобретение относится к области двигателестроения, в частности к автоматическим системам регулирования частоты вращения валов тепловых машин с двигателями внутреннего сгорания. Технический результат заключается в высоких показателях качества системы регулирования при всех режимах работы...
Тип: Изобретение
Номер охранного документа: 0002502884
Дата охранного документа: 27.12.2013
10.01.2014
№216.012.94fa

Двигатель внутреннего сгорания

Изобретение относится к четырехтактным двигателям внутреннего сгорания. Техническим результатом является повышение пусковых качеств двигателя внутреннего сгорания путем разъединения основного и дополнительного цилиндров в период пуска и прогрева двигателя. Сущность изобретения заключается в...
Тип: Изобретение
Номер охранного документа: 0002503832
Дата охранного документа: 10.01.2014
10.01.2014
№216.012.9504

Поршень двигателя внутреннего сгорания

Изобретение может быть использовано в двигателестроении. Поршень (1) двигателя внутреннего сгорания содержит полость (4) охлаждения, ограниченную днищем (5) поршня и перегородкой, (6) отделяющей полость от картера двигателя, и имеет подводящий, отводящий, а также дополнительный отводящий каналы...
Тип: Изобретение
Номер охранного документа: 0002503842
Дата охранного документа: 10.01.2014
20.01.2014
№216.012.9843

Автоматическая самонастраивающаяся микропроцессорная система регулирования частоты вращения вала тепловой машины

Изобретение может быть использовано в двигателестроении. Автоматическая самонастраивающаяся микропроцессорная система регулирования частоты вращения вала тепловой машины содержит тепловую машину (1) (объект регулирования) с агрегатом нагрузки, топливную аппаратуру с приводом - исполнительным...
Тип: Изобретение
Номер охранного документа: 0002504678
Дата охранного документа: 20.01.2014
+ добавить свой РИД