×
10.06.2016
216.015.46e6

Результат интеллектуальной деятельности: СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации кручением. Для измельчения микроструктуры металлов и повышения их микротвердости, прочности и пластичности способ включает сжатие и последующее кручение заготовки с получением деформации сдвига, при этом деформацию заготовки проводят на бойках Бриджмена с приложением удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, а в процессе вращения бойка осуществляют плавное изменение температуры заготовки, но не выше 0,4Т металла или сплава, а также изменение температуры в зависимости от режимов деформации. 5 ил., 1 пр., 1 табл.
Основные результаты: Способ обработки заготовок под высоким давлением с интенсивной пластической деформацией кручением, включающий сжатие и последующее кручение заготовки с получением деформации сдвига, отличающийся тем, что сжатие заготовки проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа, кручение заготовки осуществляют с получением деформации сдвига путем вращения подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, при этом в процессе вращения бойка осуществляют ступенчатый нагрев заготовки, причем на каждый 0,5-1 оборота бойка изменяют температуру нагрева путем повышения или уменьшения её на 30-100°C в диапазоне от комнатной температуры до не более 0,4Т материала заготовки, а после кручения заготовки проводят термообработку заготовки в бойках для снятия внутренних напряжений.

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации (ИПД) с целью однородного и более значительного измельчения микроструктуры металлов и повышения их микротвердости и прочности.

Среди различных методов ИПД в последнее десятилетие особое внимание привлекает интенсивная пластическая деформация кручением или кручение под высоким давлением (КВД). Это метод, осуществляемый в специальном устройстве - наковальне Бриджмена (Фиг. 1), широко используется для получения ультрамелкозернистых и наноструктурных материалов в заготовках в форме дисков.

Основная деформация при методе КВД осуществляется за счет кручения образца в наковальне Бриджмена с применением сжимающего давления двух бойков. Прилагаемое соосно давление, достигающее обычно несколько ГПа, играет двоякую роль. Во-первых, оно создает в образце квазигидростатическое сжатие, препятствующее разрушению образца. Во-вторых, оно увеличивает силу трения между бойками и образцом. Благодаря большой силе трения, крутящий момент от подвижного нижнего бойка передается образцу, и он деформируется кручением. Вместе с тем, у получаемых образцов в процессе КВД существует ряд проблем, таких как неоднородность структуры по площади образца, неравномерная микротвердость по диаметру со значительным понижением в центре диска, а соответственно, невысокая прочность и пластичность в средней части заготовок [1, 2].

Известен способ обработки металлов, предназначенный для наностуктурирования металлов с помощью интенсивной пластической деформации кручением, который является наиболее близким по решаемой задаче и принят в качестве прототипа. Общим у известного устройства и заявленного изобретения являются сжатие и кручение заготовки. В прототипе величину усилия сжатия и крутящего момента рассчитывают по математическим формулам в зависимости от диаметра заготовки, предельного напряжения сдвига материала заготовки и коэффициента трения на поверхности контакта пуансон-заготовка [3].

Известный способ позволяет при приложенном давлении более 2 ГПа эффективно измельчать микроструктуру, но обычно не обеспечивает однородную ультрамелкозернистую структуру по всей площади заготовки, в частности в центральной части образца, а значит, и требуемые параметры физико-механических свойств материала.

Задача, на решение которой направлено изобретение, заключается в проведении интенсивной пластической деформации кручением с обеспечением однородного и более существенного измельчения структуры металла по всему объему заготовки.

Технический результат, достигаемый новым способом обработки металлов, заключается в повышении микротвердости, прочности и пластичности материала заготовки, а также их равномерности по площади заготовки.

Поставленная задача решается способом интенсивной пластической деформации, включающим осадку и последующее кручение заготовки с получением деформации сдвига, в котором в отличие от прототипа деформацию проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, причем в процессе вращения бойка осуществляют ступенчатый нагрев заготовки и процесс деформации начинают при комнатной температуре, а заканчивают при температуре не более 0,4Тпл (температуры плавления) металла или сплава и наоборот.

При этом поставленная задача достигается тем, что деформацию проводят при ступенчатом изменении температуры нагрева на 30-100°C с шагом 0,5-1 оборот.

Кроме того, поставленная задача достигается тем, что после деформации может быть проведена термообработка заготовки в бойках Бриджмена со сжимающим удельным давлением и без.

Технический результат достигается тем, что изменение температуры нагрева заготовки в ходе ИПД кручением ведет к изменению концентрации вакансий в материале заготовки, которое, в свою очередь, влияет на скорость переползания дислокаций и посредством этого на механизмы деформации и механизмы формирования ультрамелкозернистой структуры, обеспечивая ей однородность. Изменение температуры при ИПД ведет к смене систем скольжения в ходе обработки и благодаря этому обеспечивает более однородную микроструктуру материала и, следовательно, повышение физико-механических свойств, таких как предел прочности, пластичность и микротвердость.

Дополнительная термообработка после деформации способствует уменьшению внутренних напряжений в структуре заготовки.

Сущность изобретения поясняется Фиг. 1, Фиг. 2, Фиг. 3, Фиг. 4 и Фиг. 5.

На Фиг. 1 приведена принципиальная схема обработки заготовки способом ИПД кручением, где показана обработка на плоских бойках(а) и бойках с канавкой (б).

На Фиг. 2 приведена фотография микроструктуры исходного титанового сплава ВТ-6 до обработки по предложенному способу (световой микроскоп, увеличение Х500).

На Фиг. 3 приведена фотография микроструктуры в середине образца из титанового сплава ВТ-6 после КВД при комнатной температуре (просвечивающий электронный микроскоп, увеличение Х50000).

На Фиг. 4 приведена фотография микроструктуры в середине образца из титанового сплава ВТ-6 после КВД по предложенному способу (просвечивающий электронный микроскоп, увеличение Х50000).

На Фиг. 5 приведены значения микротвердости по диаметрам заготовок титанового сплава ВТ-6 после обработки кручением под давлением по двум режимам.

Сущность заявляемого изобретения поясняется схемой кручения (Фиг. 1), которая содержит металлическую заготовку 1, подвижный боек Бриджмена 2 и неподвижный боек Бриджмена 3.

Способ осуществляют следующим образом.

Заготовку 1 помещают между подвижным 2 и неподвижным 3 бойками Бриджмена (Фиг. 1). Бойки сжимают с удельным усилием 3-6 ГПа, после чего подвижный боек 2 начинают вращать относительно своей оси со скоростью 0,2-1,5 об/мин, обеспечивая тем самым деформацию сдвига. В процессе вращения подвижного бойка изменяют температуру нагрева заготовки. Согласно способу температуру нагрева заготовки изменяют ступенчато, то есть на каждый 0,5-1 оборот повышают или уменьшают температуру на 30-100 градусов Цельсия. После деформации сдвига проводится термообработка заготовки для снятия внутренних напряжений в структуре заготовки.

Заявленное изобретение было апробировано в лабораторных условиях Санкт-Петербургского государственного университета. В результате экспериментов было подтверждено достижение указанного технического результата: повышение микротвердости и прочности материала заготовки.

Пример конкретного выполнения

Из горячекатаного прутка титанового сплава ВТ-6 диаметром 20 мм были вырезаны заготовки в виде диска толщиной 2 мм на электроискровой установке. Каждая заготовка помещалась между бойками в канавку, затем подвижный и неподвижный бойки сжимались с удельным усилием 6 ГПа. Подвижный боек вращали при комнатной температуре со скоростью 0,2 об/мин до 10 оборотов.

Также был проведен эксперимент со скоростью 0,2 об/мин до 10 оборотов, но с пошаговым изменением температуры в процессе ИПД. Он заключался в том, что после каждого полуоборота или полного оборота останавливали процесс деформации и нагревали образец до определенной температуры, затем продолжали процесс деформации, при этом на 10 обороте температура заготовки не превышала 0,4Тпл сплава ВТ-6. После деформации заготовку поместили в печь на один час при 300°C.

После обработки получили заготовки толщиной 1 мм, из которых вырезали образцы для механических испытаний на растяжение с размером базы 4 мм и длиной 12 мм. Каждый образец полировали на алмазных пастах для исключения рисок - концентраторов разрушения.

Механические испытания на растяжение всех образцов производили на стандартной разрывной машине при комнатной температуре со скоростью деформации 10-4c-1 до их полного разрушения.

Кроме того, образцы исследовали на просвечивающем электронном микроскопе (ПЭМ). Для этого из полученных образцов изготавливали тонкие фольги путем электролитического полирования, затем фольгу помещали в колонну микроскопа, где и исследовали микроструктуру сплава в исходном и наноструктурном состояниях. На Фиг. 2 показана структура исходного сплава ВТ-6. Как видно на Фиг. 3, после КВД при комнатной температуре в середине полученного диска структура измельчилась, но не наблюдается однородности. На Фиг. 4 показана структура середины образца, полученного по предлагаемому способу. Видно, что структура сильно измельчена и достаточно однородна.

На Фиг. 5 приведены графики микротвердости вдоль диаметра заготовки из сплава ВТ-6 после кручения под высоким давлением при комнатной температуре (среднее значение 420 HV) и после кручения по предлагаемому способу. Как видно на графиках, деформация по предлагаемому способу заметно увеличивает уровень микротвердости (в среднем 490 HV), а также однородность структуры по всему диаметру образцов.

Результаты испытаний образцов представлены в таблице, в которой приведены сравнительные характеристики титанового сплава ВТ-6 до и после его обработки по предложенному способу. Как следует из результатов испытаний, обработанный по предложенному способу материал имеет более высокую прочность и значительную пластичность.

Таким образом, предложенное изобретение позволяет получить более однородную микроструктуру материала по всей площади заготовки и существенно повысить его микротвердость, прочность и пластичность

Изобретение может быть применено для создания нового поколения функциональных и конструкционных материалов. Создание однородной наноструктуры в металлах и сплавах открывает путь для получения необычных свойств, весьма привлекательных для инновационных применений в области энергетики, работе при низких температурах, использовании в аэрокосмических установках, спорте и биомедицине. Например, повышенная прочность и износостойкость ультрамелкозернистых металлов с однородным распределением структуры при сохранении достаточной пластичности дает возможность увеличить надежность и долговечность механизмов и конструкций, а также уменьшить расход материала на их изготовление.

Источники информации

1. Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. Получение, структура и свойства. - М.: Академкнига, 2007. - 398 с.

2. A. Vorhauer, R. Pippan. On the homogeneity of deformation by high pressure torsion. Scripta Materialia.Volume 51, Issue 9, November 2004, Pages 921-925.

3. Патент РФ №2382687, МПК C21J 6/04, опубл. 27.02.2010 г. (прототип).

Способ обработки заготовок под высоким давлением с интенсивной пластической деформацией кручением, включающий сжатие и последующее кручение заготовки с получением деформации сдвига, отличающийся тем, что сжатие заготовки проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа, кручение заготовки осуществляют с получением деформации сдвига путем вращения подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, при этом в процессе вращения бойка осуществляют ступенчатый нагрев заготовки, причем на каждый 0,5-1 оборота бойка изменяют температуру нагрева путем повышения или уменьшения её на 30-100°C в диапазоне от комнатной температуры до не более 0,4Т материала заготовки, а после кручения заготовки проводят термообработку заготовки в бойках для снятия внутренних напряжений.
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
Источник поступления информации: Роспатент

Показаны записи 71-76 из 76.
04.10.2019
№219.017.d1f2

Способ получения графена в условиях низких температур

Изобретение относится к наноэлектронике, спинтронике, автомобильной промышленности, биомедицине, аэрокосмическому сектору и может быть использовано для среднесерийного производства графенсодержащих композитных материалов и логических компонентов приборов. На подложку из высокоориентированного...
Тип: Изобретение
Номер охранного документа: 0002701920
Дата охранного документа: 02.10.2019
17.10.2019
№219.017.d66e

Способ контроля содержания противотуберкулёзных препаратов основного ряда и их токсичных метаболитов в плазме крови

Изобретение относится к области аналитической химии. Способ контроля содержания противотуберкулезных препаратов (ПТП) основного ряда и их токсичных метаболитов в плазме крови заключается в подготовке плазмы крови к хроматографическому анализу путем добавления антиоксиданта, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002702998
Дата охранного документа: 15.10.2019
18.10.2019
№219.017.d78e

Способ подподбородочный интубации трахеи

Изобретение относится к медицине, а именно к челюстно-лицевой хирургии и анестезиологии, и может быть использовано при проведении подподбородочный интубации трахеи. Для этого формируют туннель в мягких тканях дна полости рта. Формирование туннеля осуществляют путем разреза кожи в...
Тип: Изобретение
Номер охранного документа: 0002703345
Дата охранного документа: 16.10.2019
22.11.2019
№219.017.e4f3

Способ определения активности изотопа th (тория) в урансодержащих минералах

Изобретение относится к способу определения величины альфа-активности Th. Контроль химического выхода целевого нуклида проводится по величине активности изотопа Th, содержащегося в изучаемом минерале и находящегося в состоянии векового равновесия с материнским изотопом U. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002706642
Дата охранного документа: 19.11.2019
27.01.2020
№220.017.fa12

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов ртути в растворах. Раскрыт состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло,...
Тип: Изобретение
Номер охранного документа: 0002712190
Дата охранного документа: 24.01.2020
16.05.2023
№223.018.6277

Устройство пробоподготовки для иммуноферментных исследований

Изобретение относится к клинической лабораторной диагностике. Раскрыто устройство пробоподготовки для иммуноферментных исследований, выполненное в виде контейнера прямоугольной формы и состоящее из полки, которая содержит углубления в форме гнезд, при этом полка имеет 136 гнезд, содержащих по...
Тип: Изобретение
Номер охранного документа: 0002781008
Дата охранного документа: 05.10.2022
Показаны записи 51-55 из 55.
20.04.2019
№219.017.3606

Api мониторинга узлов комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT). Для осуществления мониторинга узлов программного комплекса MADT разработан интерфейс прикладного программирования...
20.04.2019
№219.017.3607

Программный комплекс моделирование и анализ распределенных технологий (madt)

Программный комплекс MADT позволяет осуществлять моделирование работы сетевых приложений, веб- и микросервисов, распределенных реестров и баз данных, алгоритмов консенсуса, протоколов взаимодействия между ними. Основными компонентами решения являются: - инструменты построения и моделирования сети...
23.04.2019
№219.017.369c

Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы

Изобретение относится к области деформационно-термической обработки сплавов титан-никель с эффектом памяти формы и может быть использовано в машиностроении, медицине и технике. Способ получения длинномерных прутков ультрамелкозернистых сплавов титан-никель с эффектом памяти формы включает...
Тип: Изобретение
Номер охранного документа: 0002685622
Дата охранного документа: 22.04.2019
18.05.2019
№219.017.5906

Способ деформационной обработки металлической заготовки в виде прутка

Изобретение относится к деформационной обработке металлов с изменением их физико-механических свойств, в частности к деформационной обработке длинномерных заготовок в виде прутка. Способ включает подачу заготовки в рабочий канал, образованный между вращающимся диском и неподвижной...
Тип: Изобретение
Номер охранного документа: 0002417857
Дата охранного документа: 10.05.2011
31.10.2019
№219.017.dbee

Распределенный реестр рингчейн (ringchain)

Программа Рингчейн является базовой единицей для построения распределенного реестра на основе сети типа точка-точка с использованием технологии низкой латентности и высоким уровнем безопасности webrtc. На основе программы Рингчейн выстраивается точка-точка сеть, узлы которой являются реестрами,...
+ добавить свой РИД