×
27.01.2020
220.017.fa12

Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов ртути в растворах. Раскрыт состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло, состоящее из: 1) потенциалопределяющего вещества; 2) соединения с высокой ионно-электронной проводимостью; 3) стеклообразователя, где в качестве потенциалопределяющего вещества использован иодид ртути HgI в количестве 15-35 мол. %, в качестве соединения с высокой ионной проводимостью использован селенид серебра AgSe в количестве 15-35 мол. %, а в качестве стеклообразователя - селенид мышьяка AsSe в количестве 40-60 мол. %. Изобретение обеспечивает увеличение ресурса и улучшение стабильности работы химического сенсора на ионы ртути в кислых средах. 2 ил., 1 табл., 4 пр.
Реферат Свернуть Развернуть

Изобретение относится к физико-химическим методам анализа, в частности, к способу определения концентрации ионов ртути в растворах.

Известны химические сенсоры (ионоселективные электроды) с прессованными поликристаллическими мембранами на основе смеси 45-65 мол. % Hg2Cl2 - 35-55 мол. % Ag2S, полученной методом смешения солей с последующей гомогенизацией и горячим прессованием [1].

В настоящее время известен состав прессованных мембран ионоселективных электродов для определения ионов ртути, где в качестве чувствительного вещества используют Hg2O, полученную термическим разложением раствора нитрата ртути на титановой подложке [2]. К недостатку данных электродов является то, что они работают только в узкой области рН от 3 до 8.

Наиболее близким к предлагаемому техническому решению является мембранный материал, где в качестве чувствительного (электродноактивного) вещества используют суперионный проводник (Ag8HgS2I6) в смеси с Ag2S в соотношении 40 - 60 вес. % [3], который принят в качестве прототипа.

Недостатком известного мембранного материала является низкий предел обнаружения, который не превышает 10-4 - 10-5 М, что определяется, в частности, относительно низкой стабильностью суперионного проводника в водных растворах и частичным его разложением даже в слабокислых средах (рН≥2,5). К недостаткам вышеназванных составов мембран для ртутьселективных сенсоров можно отнести также относительно невысокий срок службы около 6 месяцев.

Значительно лучшими характеристиками обладают сенсорные мембранные материалы на основе халькогенидных стекол.

Технический результат заявленного способа состоит в существенном увеличении ресурса работы и повышении стабильности работы химического сенсора на ионы ртути в кислых средах.

Указанный технический результат достигается тем, что в качестве соединения с высокой ионно-электронной проводимостью выбран селенид серебра, в качестве стеклообразователя селенид мышьяка, а в качестве электродноактивного вещества иодид ртути, что обеспечивает высокую устойчивость мембранного материала и, как следствие, лучшие характеристики чувствительности и точности определения ионов ртути, при этом соотношение компонентов халькогенидного стекла, содержащего: иодид ртути (15 - 35 мол. %) - потенциалопределяющее вещество; селенид серебра (15 - 35 мол. %) -соединение с высокой ионной проводимостью; селенид мышьяка (40 - 60 мол. %) - стеклообразователь.

Заявленное изобретение было апробировано в Санкт-Петербургском государственном университете в режиме реального времени. При этом были использованы: иономер (Mettler Toledo S40) с входным сопротивлением 1011 Ом для измерения потенциалов ячейки. В качестве растворов для построения градуировочных графиков применяли: а) 10-1-10-6 моль⋅л-1 Hg(NO3)2, б) 10-1-10-6 моль⋅л-1 Hg(NO3)2 с постоянной ионной силой равной 0.1 по HN03. Определение коэффициента селективности для Hg-селективных сенсоров проводились методом биионных потенциалов в смешанных растворах. Для этого использовались раствор 0,1 М Hg(NO3)2 и 0,1 М растворы, содержащие мешающие ионы тяжелых металлов: Cu(NO3)2, Zn(NO3)2, Cd(NO3)2, Pb(NO3)2.

Результаты апробаций представлены в виде конкретных примеров реализации в реальных лабораторных условиях. После проведения калибровок, сенсоры на ионы ртути (Фиг. 1) были использованы для измерения в ряде лабораторных сред, при этом погрешности измерений составляли 3-5%, для растворов 10-5-10-6 М, погрешность не превышала 10-15%. Пример 1.

Стекла системы HgI2-Ag2Se-As2Se3 были синтезированы из исходных веществ Ag2Se и HgI2 квалификации (х.ч.) и синтезированного нами As2Se3.

Селенид мышьяка As2Se3 был синтезирован по следующей методике. Ампулу с навесками мышьяка и селена общей массой 25-40 г. нагревали до 400-450°С. При этой температуре расплав выдерживали не менее суток для прохождения гетерогенной реакции взаимодействия мышьяка с селеном. Затем температуру повышали до 900°С, при этой температуре выдерживали в течение 12 часов. Закалку проводили от 850°С на воздухе.

Все стекла трех составов (навески - 3гр., в кварцевых ампулах, при остаточном давлении ≈ 0,1 Па.) получали в следующем режиме: температуру печи с образцами медленно поднимали до 450°С, ампулы выдерживали 8 ч., после чего температуру повышали до 950°С, при которой расплав выдерживали около суток и периодически перемешивали. Далее температуру снижали до 650°С и расплав выдерживали в ампулах в течении 4-5 ч. Закалку проводили от 650°С со скоростью 60-100°С/сек. Контроль стеклообразного состояния осуществляли с помощью рентгенофазового анализа.

Таким образом, были получены ртутьсодержащие халькогенидные стекла трех составов со следующим содержанием HgI2, Ag2Se и As2Se3 в мол. %, соответственно: 1) 15-35-50; 2) 25-25-50; 3) 35-15-50.

Исследование температурных зависимостей электропроводности образцов выполнено методом импедансной спектроскопии на установке «Novocontrol Concept 40». Диапазон частот 20 МГц-10 Гц, для температурного интервала 0-120°С.

Пример 2. Заявленное изобретение поясняется Фиг. 1, на которой представлена зависимость электродной функции ртутьселективного сенсора с мембраной на основе халькогенидного стекла в системе HgI2-Ag2Se-As2Se3.

Пример 3. Заявленное изобретение поясняется Таблицей 1, на которой представлены результаты определения коэффициентов селективности ртутьселективных сенсоров с халькогенидными стеклянными мембранами на основе HgI2-Ag2Se-As2Se3.

Пример 4. Заявленное изобретение поясняется Фиг. 2, на которой представлена зависимость потенциала Е (мВ), ртутьселективного сенсора, состава мембраны 25 мол. % HgI2-25 мол % Ag2Se-50 мол % As2Se3, от рН исследуемого раствора при постоянных концентрациях потенциалопределяющего иона(моль⋅л-1): 10-1 Hg(NO3)2; 10-2 Hg(NO3)2; 10-3 Hg(NO3)2.

Технико-экономическая значимость заявленного изобретения состоит в возможности измерения концентрации ионов ртути в пробе раствора в течение 5-10 мин.; возможно определение ионов ртути в растворах в полевых условиях, т.к. портативный комплект для измерений состоит из сенсора на ртуть, электрода сравнения, калибровочных растворов и иономера - общий вес комплекта составляет 3 кг. Надо отметить, что разработанного сенсора нет в комплектах ни зарубежных, ни отечественных производителей в настоящее время.

Источники информации, принятые во внимание при экспертизе:

1. Власов Ю.Г., Колодников В.В., Ермоленко Ю.Е., Бычков Е.А., Осипова С.А. Состав мембраны ионоселективного электрода для определения активности ионов ртути /I/ и /II/. Авторское свидетельство СССР №1081520 от 13 декабря 1982 г.

2. Колесников В.А., Кокарев Г.А., Жилова М.Г., Громова Е.В. Способ изготовления мембраны ионоселективного электрода для определения концентрации ионов ртути /II//. Авторское свидетельство СССР №1436050 от 07 ноября 1988 г.

3. Власов Ю.Г., Ермоленко Ю.Е., Колодников В.В., Меркулов Е.В. и др. Состав мембраны ионоселективного электрода для определения активности ионов ртути /2/. Авторское свидетельство СССР №1274455 от 28 декабря 1984 г (прототип)

Состав мембраны химического сенсора для определения концентрации ионов ртути (II) в водных растворах, включающий халькогенидное стекло, состоящее из: 1) потенциалопределяющего вещества; 2) соединения с высокой ионно-электронной проводимостью; 3) стеклообразователя, отличающийся тем, что в качестве потенциалопределяющего вещества использован иодид ртути HgI в количестве 15-35 мол. %, в качестве соединения с высокой ионной проводимостью использован селенид серебра AgSe в количестве 15-35 мол. %, а в качестве стеклообразователя - селенид мышьяка AsSe в количестве 40-60 мол. %.
Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах
Состав мембраны химического сенсора для определения концентрации ионов ртути в водных растворах
Источник поступления информации: Роспатент

Показаны записи 1-10 из 59.
20.04.2016
№216.015.3310

Универсальная рентгеновская трубка для энергодисперсионных рентгеновских спектрометров

Использование: для исследования элементного состава материалов. Сущность изобретения заключается в том, что универсальная рентгеновская трубка для энергодисперсионных рентгеновских спектрометров включает корпус, катод, фокусирующий электрод, анод с рабочей поверхностью, перпендикулярной...
Тип: Изобретение
Номер охранного документа: 0002582310
Дата охранного документа: 20.04.2016
20.05.2016
№216.015.3ef7

Способ рентгенофлуоресцентного определения содержания примесей конструкционных материалов

Использование: для рентгенофлуоресцентного определения примесей. Сущность изобретения заключается в том, что рентгенофлуоресцентное определение содержаний примесей конструкционных материалов включает измерение интенсивностей аналитических линий контролируемых примесей в группе образцов этого...
Тип: Изобретение
Номер охранного документа: 0002584064
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.3eff

Способ градуировки партии рентгеновских спектрометров

Использование: для градуировки рентгеновских спектрометров. Сущность изобретения заключается в том, что осуществляют отбор из стандартных образцов состава конструкционных материалов образец с нижними значениями скоростей счета по всем определяемым элементам и второй образец с верхними...
Тип: Изобретение
Номер охранного документа: 0002584065
Дата охранного документа: 20.05.2016
20.05.2016
№216.015.408b

Устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей

Использование: для энергодисперсионного рентгенофлуоресцентного анализа. Сущность изобретения заключается в том, что устройство для энергодисперсионного рентгенофлуоресцентного анализа на основе вторичных излучателей включает рентгеновскую трубку, вторичные излучатели, устройство подачи...
Тип: Изобретение
Номер охранного документа: 0002584066
Дата охранного документа: 20.05.2016
10.06.2016
№216.015.46e6

Способ интенсивной пластической деформации кручением под высоким давлением при ступенчатом нагреве заготовок

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации кручением. Для измельчения микроструктуры металлов и повышения их микротвердости, прочности и пластичности способ включает сжатие и последующее кручение заготовки с получением...
Тип: Изобретение
Номер охранного документа: 0002586188
Дата охранного документа: 10.06.2016
13.01.2017
№217.015.84fb

Устройство для диагностики импульсных пучков ионизирующих частиц

Изобретение относится к области ядерной физики и может быть использовано в ускорительной технике для измерения распределения ионизирующих частиц в поперечном сечении импульсных пучков. Устройство для диагностики профиля пучка ионизирующих частиц содержит систему регистрации распределения...
Тип: Изобретение
Номер охранного документа: 0002603231
Дата охранного документа: 27.11.2016
25.08.2017
№217.015.b323

Способ определения аминов в безводных средах

Изобретение относится к области аналитической химии для определения аминов в безводных средах. Для этого анализируемую пробу, содержащую амины, растворяют в ацетонитриле с добавкой от 0,01 до 1 моль/л инертной соли, погружают электрод с предварительно нанесенным на него покрытием толщиной от...
Тип: Изобретение
Номер охранного документа: 0002613880
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b388

Реагент для количественного спектрофотометрического определения ферроцена в бензине

Изобретение относится к аналитической химии, а именно к аналитическим реагентам, которые позволяют определять содержание ферроцена в бензине. Реагент для количественного спектрофотометрического определения ферроцена в бензине содержит окислитель, воду, катализатор, в качестве которого...
Тип: Изобретение
Номер охранного документа: 0002613899
Дата охранного документа: 21.03.2017
25.08.2017
№217.015.b4ee

Способ получения гибридных плазмонно-люминесцентных маркеров

Изобретение относится к способам синтеза гибридных наноструктурированных материалов, а именно к способу получения гибридных плазмонно-люминесцентных маркеров. Способ заключается в формировании металлических плазмонных наночастиц на поверхности неорганических люминесцентных наночастиц,...
Тип: Изобретение
Номер охранного документа: 0002614245
Дата охранного документа: 24.03.2017
26.08.2017
№217.015.d738

Способ химической переработки полихлорированных бифенилов

Изобретение относится к способу химической переработки технических полихлорированных бифенилов (ПХБ), включающему взаимодействие ПХБ с метоксидом натрия (MeONa), неосушенным от метанола (МеОН), в среде диметилсульфоксида (ДМСО) при мольном соотношении ПХБ:MeONa, равном 1:5, при объемном...
Тип: Изобретение
Номер охранного документа: 0002623216
Дата охранного документа: 23.06.2017
Показаны записи 1-3 из 3.
20.11.2017
№217.015.efac

Состав мембраны химического сенсора для определения концентрации ионов таллия в водных растворах

Изобретение относится к физико-химическим методам анализа, в частности к потенциометрическому способу определения концентрации ионов таллия в растворах, и касается состава мембраны химического сенсора для определения концентрации ионов таллия в водных растворах. Состав мембраны химического...
Тип: Изобретение
Номер охранного документа: 0002629196
Дата охранного документа: 25.08.2017
24.10.2019
№219.017.daa6

Способ получения радионуклида lu-177

Изобретение относится к способу получения радионуклида лютеция-177 без носителя. В качестве вещества мишени используется металлический иттербий. Мишенное вещество облучается в потоке тепловых нейтронов на реакторе. Отделение мишенного вещества осуществляется путем его испарения в балластный...
Тип: Изобретение
Номер охранного документа: 0002704005
Дата охранного документа: 23.10.2019
21.05.2023
№223.018.686c

Стеновая панель

Стеновая панель относится к области строительства и может быть использована для стен, перегородок, облицовки фасадов зданий и сооружений. Технический результат, на достижение которого направлено заявляемое изобретение, заключается в создании многоцелевой, пустотной панели, полученной...
Тип: Изобретение
Номер охранного документа: 0002794697
Дата охранного документа: 24.04.2023
+ добавить свой РИД