×
10.06.2016
216.015.46e6

Результат интеллектуальной деятельности: СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК

Вид РИД

Изобретение

Аннотация: Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации кручением. Для измельчения микроструктуры металлов и повышения их микротвердости, прочности и пластичности способ включает сжатие и последующее кручение заготовки с получением деформации сдвига, при этом деформацию заготовки проводят на бойках Бриджмена с приложением удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, а в процессе вращения бойка осуществляют плавное изменение температуры заготовки, но не выше 0,4Т металла или сплава, а также изменение температуры в зависимости от режимов деформации. 5 ил., 1 пр., 1 табл.
Основные результаты: Способ обработки заготовок под высоким давлением с интенсивной пластической деформацией кручением, включающий сжатие и последующее кручение заготовки с получением деформации сдвига, отличающийся тем, что сжатие заготовки проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа, кручение заготовки осуществляют с получением деформации сдвига путем вращения подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, при этом в процессе вращения бойка осуществляют ступенчатый нагрев заготовки, причем на каждый 0,5-1 оборота бойка изменяют температуру нагрева путем повышения или уменьшения её на 30-100°C в диапазоне от комнатной температуры до не более 0,4Т материала заготовки, а после кручения заготовки проводят термообработку заготовки в бойках для снятия внутренних напряжений.

Изобретение относится к обработке металлов давлением и может быть использовано для интенсивной пластической деформации (ИПД) с целью однородного и более значительного измельчения микроструктуры металлов и повышения их микротвердости и прочности.

Среди различных методов ИПД в последнее десятилетие особое внимание привлекает интенсивная пластическая деформация кручением или кручение под высоким давлением (КВД). Это метод, осуществляемый в специальном устройстве - наковальне Бриджмена (Фиг. 1), широко используется для получения ультрамелкозернистых и наноструктурных материалов в заготовках в форме дисков.

Основная деформация при методе КВД осуществляется за счет кручения образца в наковальне Бриджмена с применением сжимающего давления двух бойков. Прилагаемое соосно давление, достигающее обычно несколько ГПа, играет двоякую роль. Во-первых, оно создает в образце квазигидростатическое сжатие, препятствующее разрушению образца. Во-вторых, оно увеличивает силу трения между бойками и образцом. Благодаря большой силе трения, крутящий момент от подвижного нижнего бойка передается образцу, и он деформируется кручением. Вместе с тем, у получаемых образцов в процессе КВД существует ряд проблем, таких как неоднородность структуры по площади образца, неравномерная микротвердость по диаметру со значительным понижением в центре диска, а соответственно, невысокая прочность и пластичность в средней части заготовок [1, 2].

Известен способ обработки металлов, предназначенный для наностуктурирования металлов с помощью интенсивной пластической деформации кручением, который является наиболее близким по решаемой задаче и принят в качестве прототипа. Общим у известного устройства и заявленного изобретения являются сжатие и кручение заготовки. В прототипе величину усилия сжатия и крутящего момента рассчитывают по математическим формулам в зависимости от диаметра заготовки, предельного напряжения сдвига материала заготовки и коэффициента трения на поверхности контакта пуансон-заготовка [3].

Известный способ позволяет при приложенном давлении более 2 ГПа эффективно измельчать микроструктуру, но обычно не обеспечивает однородную ультрамелкозернистую структуру по всей площади заготовки, в частности в центральной части образца, а значит, и требуемые параметры физико-механических свойств материала.

Задача, на решение которой направлено изобретение, заключается в проведении интенсивной пластической деформации кручением с обеспечением однородного и более существенного измельчения структуры металла по всему объему заготовки.

Технический результат, достигаемый новым способом обработки металлов, заключается в повышении микротвердости, прочности и пластичности материала заготовки, а также их равномерности по площади заготовки.

Поставленная задача решается способом интенсивной пластической деформации, включающим осадку и последующее кручение заготовки с получением деформации сдвига, в котором в отличие от прототипа деформацию проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа и последующим вращением подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, причем в процессе вращения бойка осуществляют ступенчатый нагрев заготовки и процесс деформации начинают при комнатной температуре, а заканчивают при температуре не более 0,4Тпл (температуры плавления) металла или сплава и наоборот.

При этом поставленная задача достигается тем, что деформацию проводят при ступенчатом изменении температуры нагрева на 30-100°C с шагом 0,5-1 оборот.

Кроме того, поставленная задача достигается тем, что после деформации может быть проведена термообработка заготовки в бойках Бриджмена со сжимающим удельным давлением и без.

Технический результат достигается тем, что изменение температуры нагрева заготовки в ходе ИПД кручением ведет к изменению концентрации вакансий в материале заготовки, которое, в свою очередь, влияет на скорость переползания дислокаций и посредством этого на механизмы деформации и механизмы формирования ультрамелкозернистой структуры, обеспечивая ей однородность. Изменение температуры при ИПД ведет к смене систем скольжения в ходе обработки и благодаря этому обеспечивает более однородную микроструктуру материала и, следовательно, повышение физико-механических свойств, таких как предел прочности, пластичность и микротвердость.

Дополнительная термообработка после деформации способствует уменьшению внутренних напряжений в структуре заготовки.

Сущность изобретения поясняется Фиг. 1, Фиг. 2, Фиг. 3, Фиг. 4 и Фиг. 5.

На Фиг. 1 приведена принципиальная схема обработки заготовки способом ИПД кручением, где показана обработка на плоских бойках(а) и бойках с канавкой (б).

На Фиг. 2 приведена фотография микроструктуры исходного титанового сплава ВТ-6 до обработки по предложенному способу (световой микроскоп, увеличение Х500).

На Фиг. 3 приведена фотография микроструктуры в середине образца из титанового сплава ВТ-6 после КВД при комнатной температуре (просвечивающий электронный микроскоп, увеличение Х50000).

На Фиг. 4 приведена фотография микроструктуры в середине образца из титанового сплава ВТ-6 после КВД по предложенному способу (просвечивающий электронный микроскоп, увеличение Х50000).

На Фиг. 5 приведены значения микротвердости по диаметрам заготовок титанового сплава ВТ-6 после обработки кручением под давлением по двум режимам.

Сущность заявляемого изобретения поясняется схемой кручения (Фиг. 1), которая содержит металлическую заготовку 1, подвижный боек Бриджмена 2 и неподвижный боек Бриджмена 3.

Способ осуществляют следующим образом.

Заготовку 1 помещают между подвижным 2 и неподвижным 3 бойками Бриджмена (Фиг. 1). Бойки сжимают с удельным усилием 3-6 ГПа, после чего подвижный боек 2 начинают вращать относительно своей оси со скоростью 0,2-1,5 об/мин, обеспечивая тем самым деформацию сдвига. В процессе вращения подвижного бойка изменяют температуру нагрева заготовки. Согласно способу температуру нагрева заготовки изменяют ступенчато, то есть на каждый 0,5-1 оборот повышают или уменьшают температуру на 30-100 градусов Цельсия. После деформации сдвига проводится термообработка заготовки для снятия внутренних напряжений в структуре заготовки.

Заявленное изобретение было апробировано в лабораторных условиях Санкт-Петербургского государственного университета. В результате экспериментов было подтверждено достижение указанного технического результата: повышение микротвердости и прочности материала заготовки.

Пример конкретного выполнения

Из горячекатаного прутка титанового сплава ВТ-6 диаметром 20 мм были вырезаны заготовки в виде диска толщиной 2 мм на электроискровой установке. Каждая заготовка помещалась между бойками в канавку, затем подвижный и неподвижный бойки сжимались с удельным усилием 6 ГПа. Подвижный боек вращали при комнатной температуре со скоростью 0,2 об/мин до 10 оборотов.

Также был проведен эксперимент со скоростью 0,2 об/мин до 10 оборотов, но с пошаговым изменением температуры в процессе ИПД. Он заключался в том, что после каждого полуоборота или полного оборота останавливали процесс деформации и нагревали образец до определенной температуры, затем продолжали процесс деформации, при этом на 10 обороте температура заготовки не превышала 0,4Тпл сплава ВТ-6. После деформации заготовку поместили в печь на один час при 300°C.

После обработки получили заготовки толщиной 1 мм, из которых вырезали образцы для механических испытаний на растяжение с размером базы 4 мм и длиной 12 мм. Каждый образец полировали на алмазных пастах для исключения рисок - концентраторов разрушения.

Механические испытания на растяжение всех образцов производили на стандартной разрывной машине при комнатной температуре со скоростью деформации 10-4c-1 до их полного разрушения.

Кроме того, образцы исследовали на просвечивающем электронном микроскопе (ПЭМ). Для этого из полученных образцов изготавливали тонкие фольги путем электролитического полирования, затем фольгу помещали в колонну микроскопа, где и исследовали микроструктуру сплава в исходном и наноструктурном состояниях. На Фиг. 2 показана структура исходного сплава ВТ-6. Как видно на Фиг. 3, после КВД при комнатной температуре в середине полученного диска структура измельчилась, но не наблюдается однородности. На Фиг. 4 показана структура середины образца, полученного по предлагаемому способу. Видно, что структура сильно измельчена и достаточно однородна.

На Фиг. 5 приведены графики микротвердости вдоль диаметра заготовки из сплава ВТ-6 после кручения под высоким давлением при комнатной температуре (среднее значение 420 HV) и после кручения по предлагаемому способу. Как видно на графиках, деформация по предлагаемому способу заметно увеличивает уровень микротвердости (в среднем 490 HV), а также однородность структуры по всему диаметру образцов.

Результаты испытаний образцов представлены в таблице, в которой приведены сравнительные характеристики титанового сплава ВТ-6 до и после его обработки по предложенному способу. Как следует из результатов испытаний, обработанный по предложенному способу материал имеет более высокую прочность и значительную пластичность.

Таким образом, предложенное изобретение позволяет получить более однородную микроструктуру материала по всей площади заготовки и существенно повысить его микротвердость, прочность и пластичность

Изобретение может быть применено для создания нового поколения функциональных и конструкционных материалов. Создание однородной наноструктуры в металлах и сплавах открывает путь для получения необычных свойств, весьма привлекательных для инновационных применений в области энергетики, работе при низких температурах, использовании в аэрокосмических установках, спорте и биомедицине. Например, повышенная прочность и износостойкость ультрамелкозернистых металлов с однородным распределением структуры при сохранении достаточной пластичности дает возможность увеличить надежность и долговечность механизмов и конструкций, а также уменьшить расход материала на их изготовление.

Источники информации

1. Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. Получение, структура и свойства. - М.: Академкнига, 2007. - 398 с.

2. A. Vorhauer, R. Pippan. On the homogeneity of deformation by high pressure torsion. Scripta Materialia.Volume 51, Issue 9, November 2004, Pages 921-925.

3. Патент РФ №2382687, МПК C21J 6/04, опубл. 27.02.2010 г. (прототип).

Способ обработки заготовок под высоким давлением с интенсивной пластической деформацией кручением, включающий сжатие и последующее кручение заготовки с получением деформации сдвига, отличающийся тем, что сжатие заготовки проводят на бойках Бриджмена с приложением сжимающего удельного давления 3-6 ГПа, кручение заготовки осуществляют с получением деформации сдвига путем вращения подвижного бойка относительно своей оси со скоростью 0,2-1,5 об/мин, при этом в процессе вращения бойка осуществляют ступенчатый нагрев заготовки, причем на каждый 0,5-1 оборота бойка изменяют температуру нагрева путем повышения или уменьшения её на 30-100°C в диапазоне от комнатной температуры до не более 0,4Т материала заготовки, а после кручения заготовки проводят термообработку заготовки в бойках для снятия внутренних напряжений.
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
СПОСОБ ИНТЕНСИВНОЙ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ КРУЧЕНИЕМ ПОД ВЫСОКИМ ДАВЛЕНИЕМ ПРИ СТУПЕНЧАТОМ НАГРЕВЕ ЗАГОТОВОК
Источник поступления информации: Роспатент

Показаны записи 41-50 из 76.
10.05.2018
№218.016.3888

Геоэлектрический способ определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса

Изобретение относится к области геофизических исследований мерзлых грунтов и может быть использовано для определения мощности пригодного для инженерно-строительных работ почвенно-мерзлотного комплекса, а также для изучения грунтов криолитозоны. Сущность изобретения заключается в вертикальном...
Тип: Изобретение
Номер охранного документа: 0002646952
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3890

Ультразвуковой способ контроля структуры дисперсных сред

Использование: для определения структуры дисперсных сред. Сущность изобретения заключается в том, что заполняют сосуд дисперсной средой, которую облучают продольной ультразвуковой волной с частотой, при которой длина волны λ больше размеров частиц R, фиксируют величину импульса А, прошедшего...
Тип: Изобретение
Номер охранного документа: 0002646958
Дата охранного документа: 12.03.2018
10.05.2018
№218.016.3b97

Способ получения нативного белка пролонгирующего действия в составе полимерных наносфер и резорбируемых микросфер для доставки

Изобретение относится к области медицины, в частности к наномедицине, которая использует биодеградируемые наносферы и микросферы для включения в их состав биологически активных белков для стабилизации их структуры. Cпособ предусматривает предварительное включение гистона животного происхождения...
Тип: Изобретение
Номер охранного документа: 0002647466
Дата охранного документа: 15.03.2018
10.05.2018
№218.016.411b

Устройство для геоэлектрического профилирования почвенно-мерзлотного комплекса

Изобретение относится к области геофизических измерений и может быть использовано для вертикального электрического зондирования почвенно-мерзлотного комплекса, почв, грунтов и иных минеральных образований. Сущность заявленного устройства заключается в том, что устройство для геоэлектрического...
Тип: Изобретение
Номер охранного документа: 0002649030
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.412d

Способ рентгенофазового анализа нанофаз в алюминиевых сплавах

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно...
Тип: Изобретение
Номер охранного документа: 0002649031
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4176

Устройство для регистрации инфракрасных спектров твердых веществ

Изобретение относится к области измерительной техники и касается устройства для регистрации инфракрасных спектров твердых веществ. Устройство содержит корпус в виде цилиндра, имеющего расширение, выполненное в виде кюветы для регистрации спектров и расположенное на платформе. Корпус имеет...
Тип: Изобретение
Номер охранного документа: 0002649029
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.49c2

Геохимический способ поиска месторождений полезных ископаемых

Изобретение относится к области прикладной геохимии и может быть использовано при поисках месторождений полезных ископаемых, при прогнозно-геохимическом картировании закрытых и полузакрытых территорий на основе данных геохимического картирования исследуемых территорий и последующего анализа...
Тип: Изобретение
Номер охранного документа: 0002651353
Дата охранного документа: 19.04.2018
10.05.2018
№218.016.4cf2

Устройство для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках

Использование: для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках. Сущность изобретения заключается в том, что устройство для определения и контроля скоростей поверхностных и продольных акустических волн в...
Тип: Изобретение
Номер охранного документа: 0002652520
Дата охранного документа: 26.04.2018
18.05.2018
№218.016.51f4

Устройство для определения состава газовых смесей

Изобретение относится к области определения состава газовых смесей, в том числе и углеродосодержащих, и позволяет производить качественный и количественный анализ примесей в основном газе. Техническо-экономическая эффективность ионизационной камеры состоит в существенном упрощении конструкции и...
Тип: Изобретение
Номер охранного документа: 0002653061
Дата охранного документа: 07.05.2018
29.06.2018
№218.016.68c6

Устройство для динамической тарировки датчиков акустических пульсаций давления

Изобретение относится к области измерительной техники и может быть использовано в качестве средства задания пульсаций или акустического калибратора для динамической тарировки индуктивных датчиков давления. Устройство для динамической тарировки датчиков акустических пульсаций давления содержит...
Тип: Изобретение
Номер охранного документа: 0002659185
Дата охранного документа: 28.06.2018
Показаны записи 41-50 из 55.
10.05.2018
№218.016.412d

Способ рентгенофазового анализа нанофаз в алюминиевых сплавах

Использование: для рентгенофазового анализа нанофаз в алюминиевых сплавах. Сущность изобретения заключается в том, что из алюминиевого сплава изготавливают испытуемую фольгу, которую подвергают рентгеновскому излучению, и регистрируют рентгенограмму, по которой идентифицируют и количественно...
Тип: Изобретение
Номер охранного документа: 0002649031
Дата охранного документа: 29.03.2018
10.05.2018
№218.016.4cf2

Устройство для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках

Использование: для определения и контроля скоростей поверхностных и продольных акустических волн в материалах при квазистатических и циклических нагрузках. Сущность изобретения заключается в том, что устройство для определения и контроля скоростей поверхностных и продольных акустических волн в...
Тип: Изобретение
Номер охранного документа: 0002652520
Дата охранного документа: 26.04.2018
04.07.2018
№218.016.6a4b

Сверхпрочная высокомарганцевая сталь, полученная за счет комбинирования механизмов упрочнения

Изобретение относится к области материалов с ультрамелкозернистой (УМЗ) структурой, а именно к сталям, которые могут быть использованы в автомобильной промышленности, атомной энергетике, при разработке микроэлектромеханических систем. Ультрамелкозернистая высокомарганцевая сталь обладает...
Тип: Изобретение
Номер охранного документа: 0002659542
Дата охранного документа: 02.07.2018
01.09.2018
№218.016.81f1

Способ импульсного термоэлектрического неразрушающего контроля теплофизических свойств металлов и полупроводников

Изобретение относится к области неразрушающего контроля материалов и может быть использовано для контроля изменения теплофизических свойств контролируемых объектов из металлических материалов и полупроводников в результате термомеханической обработки или эксплуатационного воздействия. Предложен...
Тип: Изобретение
Номер охранного документа: 0002665590
Дата охранного документа: 31.08.2018
22.09.2018
№218.016.890e

Термостойкий проводниковый ультрамелкозернистый алюминиевый сплав и способ его получения

Изобретение относится к области цветной металлургии и электротехники, в частности к сплавам на основе алюминия, и может быть использовано при производстве изделий электротехнического назначения, таких как проводники круглого и квадратного сечения, токопроводящие элементы в виде проволоки,...
Тип: Изобретение
Номер охранного документа: 0002667271
Дата охранного документа: 18.09.2018
20.02.2019
№219.016.bf40

Способ штамповки заготовок из наноструктурных титановых сплавов

Изобретение относится к области обработки металлов давлением и может быть использовано, например, в авиационной промышленности при изготовлении деталей из титановых сплавов, преимущественно лопаток. Производят предварительную и окончательную штамповку наноструктурных заготовок из титановых...
Тип: Изобретение
Номер охранного документа: 0002382686
Дата охранного документа: 27.02.2010
22.03.2019
№219.016.ec6c

Api для построения сетей программного комплекса madt

Разработанное решение является частью программного комплекса Сетевое Моделирование и Анализ Распределенных Технологий (Modeling and Analysys of Distributed Technologies - MADT) и позволяет описывать структуру сети на более высоком уровне, чем стандартные средства предоставляемые в таких системах...
16.04.2019
№219.017.0cb7

Веб-сервис динамического изменения пропускной способности сети комплекса madt

Качество работы виртуальных сетей регулируется утилитами пакета tcconfig. Нами реализована регулировка пропускной способности, задержки, процента потери, повреждения, дупликации и перестановки пакетов в сети в формате веб-сервиса и визуального интерфейса, позволяющего пользователю...
16.04.2019
№219.017.0cb8

Веб сервис визуализации работы распределённого приложения в лаборатории программного комплекса madt

Приложение строит трёхмерный граф на основе конфигурации лаборатории комплекса MADT и визуализирует в нём сообщения, получаемые от узлов сети. В зависимости от содержания сообщения узел графа, соответствующий узлу сети, в реальном времени меняет размер и цвет. Также приложение выводит текстовый...
19.04.2019
№219.017.3069

Способ изготовления кумулятивных облицовок

Изобретение относится к перфорационной технике при прострелочно-взрывных работах в нефтедобыче. Способ включает получение исходной заготовки из медного прутка, ее деформирование с образованием заданной формы и низкотемпературный отжиг полученной заготовки. Медный пруток подвергают интенсивной...
Тип: Изобретение
Номер охранного документа: 0002362111
Дата охранного документа: 20.07.2009
+ добавить свой РИД