×
10.06.2016
216.015.455c

Результат интеллектуальной деятельности: ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ

Вид РИД

Изобретение

Аннотация: Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников. Согласно изобретению формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев неорганических и органических полупроводников, и в котором первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью. Изобретение обеспечивает увеличение коэффициента преобразования энергии светового излучения в электрическую энергию. 2 ил.
Основные результаты: Гибридный фотоэлектрический преобразователь, содержащий несколько слоев неорганических и органических полупроводников, отличающийся тем, что первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.

Область техники

Изобретение относится к устройствам преобразования энергии электромагнитного излучения в электричество, в частности фотопреобразователям солнечного излучения на основе органических полупроводников.

Предшествующий уровень техники

Известен гибридный фотоэлектрический преобразователь (ФЭП), содержащий пленку из полупроводникового полимерного широкозонного фотоэлектрического преобразователя и прозрачную пленку окиси титана (TiOx), размещенного на низкоомном кристаллическом кремнии, описанный в Евразийском патенте N017011, опубл. 2012.09.28 "СПОСОБ ПОВЫШЕНИЯ ЭФФЕКТИВНОСТИ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ В ЭЛЕКТРИЧЕСКУЮ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ". При работе такого фотоэлектрического преобразователя, содержащего слой органического и неорганического полупроводников, носители зарядов электроны, образовавшиеся в полимерной пленке за счет поглощения в инфракрасной области спектра при прохождении через него многократно отраженных от межслойных границ солнечного излучения, транспортируются посредством пленки окиси титана в рабочую область кремния, где эти электроны суммируются с носителями зарядов, образовавшимися в слое кремния за счет поглощения в видимой области спектра. Таким образом, происходит увеличение эффективности преобразования солнечного света в электрический ток.

Недостатком этого ФЭПа является то, что в органическом слое преобразуется только небольшая часть спектра солнечного излучения и преобразование света, главным образом, происходит в неорганическом полупроводнике с узкой шириной запрещенной зоны.

Наиболее близкими к предлагаемому изобретению являются фотоэлектрические преобразователи, содержащие слои органических и неорганических полупроводников [Паращук Д.Ю., Кокорин А.И. "Современные фотоэлектрические и фотохимические методы преобразования солнечной энергии", Ж. Рос. хим. об-ва имени Д.И. Менделеева (ЖРХО), 2008, т. 52, N6, с. 113-114]. Эти ФЭП содержат органические полупроводники с шириной запрещенной зоны приблизительно 2 эВ и узкозонные неорганические полупроводники с шириной запрещенной зоны до 0,7 эВ, поэтому в них не происходит фотоэлектрического преобразования фотонов с энергией менее 0,7 эВ, соответствующих близкой инфракрасной области спектра солнечного излучения.

Задачей, решаемой изобретением, является расширение спектра светового излучения, поглощаемого в фотоэлектрическом преобразователе и приводящего к генерации электрического тока.

Техническим результатом, достигаемым при использовании изобретения, является увеличение коэффициента преобразования энергии светового излучения в электрическую энергию в фотоэлектрическом преобразователе (ФЭП), содержащем органические полупроводники и генерирующего электрический ток под действием солнечного излучения.

Технический результат достигается тем, что формируют гибридный фотоэлектрический преобразователь, содержащий пять слоев неорганических и органических полупроводников, и в котором первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащий поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.

Краткое описание чертежей

Изобретение поясняется чертежами.

На фиг. 1 показано расположение слоев полупроводников в фотоэлектрическом преобразователе (ФЭП).

На фиг. 2 показана энергетическая диаграмма гетеропереходов между слоями полупроводников в ФЭП в условиях термодинамического равновесия при отсутствии светового облучения (в темноте).

Раскрытие изобретения

Устройство по заявляемому изобретению осуществляют следующим образом. Формируют многослойную структуру ФЭП, образованную несколькими слоями неорганических и органических полупроводников в порядке, показанном на Фиг. 1, где цифрами обозначены: 1 - обращенный к источнику света слой оксида цинка с дырочной проводимостью, 2 - слой политиофена с дырочной проводимостью, 3 - слой поли-3,4,-этилендиокситиофена, 4 - слой полимерного композита, содержащего поли-3,4,-этилендиокситиофен и перфторированный сульфокатионит, 5 - слой оксида цинка с электронной проводимостью.

Геометрические границы между слоями 1, 2, 3, 4 и 5 структуры ФЭП показаны на Фиг. 2 вертикальными линиями. Прямая горизонтальная линия Wf обозначает положение уровня энергии химического потенциала (уровня Ферми), одинакового во всех слоях в условиях термодинамического равновесия электронного газа при отсутствии солнечного излучения. Линиями, претерпевающими разрывы и изломы в областях контактов слоев, показаны относительно уровня химического потенциала уровни энергии электронов в вакууме W0, вблизи условного дна зона проводимости Wc и вблизи верха валентной зоны Wv.

Слои 1 и 5 выполнены из оксида цинка, являющегося полупроводником с шириной запрещенной зоны 3,2-3,6 эВ, который поглощает коротковолновую часть спектра солнечного излучения с длинами волн, меньшими 400 нм, и пропускает более 80% излучения с длинами волн 400-2000 нм. Оксид цинка может быть легирован донорами или акцепторами электронов для создания электронной или дырочной проводимости с большими значениями концентрации и подвижности носителей заряда и, соответственно, большой удельной проводимостью.

При контакте сильно легированных слоев 1 и 5 оксида цинка с дырочной и электронной проводимостью между ними возникает разность потенциалов, максимальное значение которой можно оценить как отношение значения ширины запрещенной зоны к заряду электрона, и которое может достигать 3,2-3,6 В. При расположении между слоями оксида цинка проводников или полупроводников контактная разность потенциалов между крайними слоями 1 и 5 структуры в случае соединения их внешней цепью останется неизменной. Между промежуточными слоями возникнут контактные разницы потенциалов, равные разностям работ выхода электронов из этих слоев, но сумма таких разностей потенциалов будет равна разности потенциалов между слоями 1 и 5.

Слой 2 ФЭП выполнен из политиофена с дырочной проводимостью, легированного отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в диапазоне длин волн света от 475 до 580 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Слой 3 ФЭП выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в видимом диапазоне длин волн света с максимумом 620 нм и в ближнем инфракрасном спектральном диапазоне с максимумом при длинах волн 1000-1100 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Слой 4 ФЭП выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен и перфторированный сульфокатионит и легированного неорганическими отрицательными ионами, например, ионами тетраборфтората или перхлората. Этот слой имеет полосы поглощения в видимом диапазоне длин волн света с максимумом 880 нм и в ближнем инфракрасном спектральном диапазоне с максимумом при длинах волн 1000-2000 нм, соответствующие переходу электронов из валентной зоны в зону проводимости полупроводника.

Фотоэлектрический преобразователь работает следующим образом.

При облучении ФЭП солнечным светом со стороны слоя 1 в слоях с дырочной проводимостью 1, 2, 3, 4 под действием света будут переходить из валентной зоны в зону проводимости электроны, которые являются несобственными (неравновесными) носителями заряда в полупроводниках с дырочной проводимостью. Вблизи границ слоев ФЭП, как показано на Фиг. 2, энергия Wc электронов в зоне проводимости полупроводников изменяется относительно уровня энергии Wf химического потенциала. Поэтому неравновесные электроны, образовавшиеся в зоне проводимости под действием света, мигрируют из слоев с меньшей энергией Wc электронов в зоне проводимости в слои с большей энергией Wc. Из-за этого в ФЭП возникает электрический ток, направленный от слоя 1 к слою 5, а перепад потенциалов между слоями 1 и 5 уменьшается.

При соединении слоев 1 и 5 через внешнюю электрическую цепь некоторая часть энергии, преобразованной из энергии солнечного излучения в энергию неравновесных электронов, будет выделяться во внешней электрической сети и может быть полезно использована.

В слое 1 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, меньшими 400 нм. В слое 2 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн 475-580 нм. В слое 3 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, лежащими вблизи максимумов поглощения света для этого слоя 630 нм и 1000-1100 нм. В слое 4 в энергию неравновесных электронов преобразуется энергия фотонов солнечного излучения с длинами волн, лежащими вблизи максимума поглощения света 880 нм и в диапазоне 1000-2000 нм. До слоя 5 коротковолновое излучение с длинами волн менее 400 нм практически не достигает, поэтому в нем не образуются дырки, являющиеся неосновными носителями заряда для этого слоя с электронной проводимостью. Из слоя 5 инжектируются в слой 4 электроны из-за перепада энергии Wc электронов в зонах проводимости слоев 4 и 5.

Таким образом, из-за генерации электронов в слоях ФЭП под действием фотонов с длинами волн, лежащими во всем спектре видимого и ближнего инфракрасного солнечного излучения, достигается технический результат от использования изобретения, заключающийся в повышении коэффициента преобразования энергии светового излучения в электрическую энергию.

Осуществление изобретения

Фотоэлектрический преобразователь изготовлен следующим образом.

Из водного раствора нитрата цинка на алюминиевой фольге электрохимически при положительном потенциале был осажден в кислой среде при температуре 70-80°С слой 5 оксида цинка с электронной проводимостью.

Затем из раствора 3,4-этилендиокситиофена и перфторированного сульфокатионита МФ-ЧСК в смеси воды и ацетонитрила, содержащей отрицательные ионы тетрабората фтора, электрохимически при положительном (анодном) потенциале на слой 5 был осажден слой 4, содержащий поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит МФ-ЧСК и легированный отрицательными ионами тетраборфтората.

На слой 4 электрохимически при положительном потенциале был осажден слой 3 поли-3,4,-этилендиокситиофена из раствора 3,4-этилендиокситиофена в ацетонитриле, содержащем ионы тетрабората фтора.

На слой 3 электрохимически при положительном потенциале был осажден слой 2 политиофена из раствора тиофена в ацетонитриле, содержащем ионы тетраборфтората.

На слой 2 электрохимически при положительном потенциале был осажден слой 1 оксида цинка с дырочной проводимостью из водного раствора, содержащего ацетаты цинка, марганца и аммония.

При электрохимическом осаждении слоев ФЭП толщину этих слоев регулировали величиной электрического заряда, пропущенного через электроды электрохимической системы. Толщину слоев ФЭП формировали в диапазоне 100-1000 нм.

После изготовления образцов ФЭП были измерены их вольт-амперные характеристики при освещении ФЭП имитатором солнечного излучения и по этим характеристикам были определены коэффициенты преобразования энергии светового солнечного излучения в электрическую энергию в образцах ФЭП, лежащие в диапазоне от 7 до 11%.

ФЭП согласно изобретению является промышленно применимым, так как он может быть изготовлен известными методами электрохимического синтеза с использованием промышленно изготавливаемых компонентов и химических реагентов.

Гибридный фотоэлектрический преобразователь, содержащий несколько слоев неорганических и органических полупроводников, отличающийся тем, что первый, обращенный к источнику света, слой выполнен из оксида цинка с дырочной проводимостью, второй по порядку слой выполнен из политиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, третий слой выполнен из поли-3,4,-этилендиокситиофена с дырочной проводимостью, легированного неорганическими отрицательными ионами, четвертый слой выполнен из полимерного композита, содержащего поли-3,4,-этилендиокситиофен, перфторированный сульфокатионит и легированный неорганическими отрицательными ионами, пятый слой выполнен из оксида цинка с электронной проводимостью.
ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ
ГИБРИДНЫЙ МНОГОСЛОЙНЫЙ ФОТОЭЛЕКТРИЧЕСКИЙ ПРЕОБРАЗОВАТЕЛЬ
Источник поступления информации: Роспатент

Показаны записи 21-30 из 56.
12.01.2017
№217.015.612a

Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава LiMnO, где 0,20
Тип: Изобретение
Номер охранного документа: 0002591154
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6592

Способ обработки золы рисовой шелухи, автоматическая установка для его осуществления и аморфизованный продукт, полученный согласно способу

Изобретение относится к способам переработки отходов рисового производства в автоматических установках для получения высокочистого аморфизованного продукта, являющегося сырьем для применения в резиновых изделиях и шинной промышленности. Способ обработки золы рисовой шелухи включает следующие...
Тип: Изобретение
Номер охранного документа: 0002592533
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.725a

Способ получения фторидных стекол с расширенным диапазоном оптического пропускания

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного...
Тип: Изобретение
Номер охранного документа: 0002598271
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
Показаны записи 21-30 из 48.
12.01.2017
№217.015.612a

Способ получения литированного двойного оксида лития и марганца со структурой шпинели

Изобретение относится к технологии получения материала на основе смешанного оксида лития и марганца со структурой шпинели для использования его во вторичных батареях. Предложен способ получения литированного двойного оксида лития и марганца состава LiMnO, где 0,20
Тип: Изобретение
Номер охранного документа: 0002591154
Дата охранного документа: 10.07.2016
13.01.2017
№217.015.6592

Способ обработки золы рисовой шелухи, автоматическая установка для его осуществления и аморфизованный продукт, полученный согласно способу

Изобретение относится к способам переработки отходов рисового производства в автоматических установках для получения высокочистого аморфизованного продукта, являющегося сырьем для применения в резиновых изделиях и шинной промышленности. Способ обработки золы рисовой шелухи включает следующие...
Тип: Изобретение
Номер охранного документа: 0002592533
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.725a

Способ получения фторидных стекол с расширенным диапазоном оптического пропускания

Изобретение относится к области получения фторидных стекол с широким диапазоном пропускания. Технический результат изобретения заключается в получении оптически прозрачных стекол без кислородсодержащих примесей с расширенным диапазоном пропускания от 0,21 мкм до 7,5 мкм для фторцирконатного...
Тип: Изобретение
Номер охранного документа: 0002598271
Дата охранного документа: 20.09.2016
25.08.2017
№217.015.ba0d

Способ определения удельной электропроводности ионпроводящих материалов

Изобретение относится к физико-химическим исследованиям и может быть использовано в химической и других родственных с ней отраслях промышленности для определения удельной электропроводности ионпроводящих материалов, в том числе полимерных пленок и тканей. Предложен способ определения удельной...
Тип: Изобретение
Номер охранного документа: 0002615601
Дата охранного документа: 05.04.2017
25.08.2017
№217.015.bab7

Способ получения стабильных водных коллоидных растворов наночастиц диоксида церия

Изобретение может быть использовано в химической промышленности, биохимии, медицине. Для получения стабильных водных коллоидных растворов наночастиц диоксида церия готовят водный раствор гексанитроцерата(IV) аммония, тщательно перемешивая до его полного растворения. Проводят гидротермальную...
Тип: Изобретение
Номер охранного документа: 0002615688
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.bae7

Способ получения композиционного порошка mb-sic, где m=zr, hf

Изобретение относится к неорганической химии и неорганическому материаловедению, конкретно к получению порошковых материалов состава MB-SiC, где М = Zr, Hf, содержащих нанокристаллический карбид кремния. Получаемые композиционные порошки ZrB-SiC и/или HfB-SiC могут быть применены для нанесения...
Тип: Изобретение
Номер охранного документа: 0002615692
Дата охранного документа: 06.04.2017
25.08.2017
№217.015.d135

Индикаторный элемент для обнаружения утечки гидразиновых ракетных горючих

Изобретение относится к химмотологии, а именно к химическим индикаторам на твердофазных носителях для определения компонентов ракетных, авиационных и автомобильных топлив, и может быть использовано для экспрессного обнаружения утечки гидразиновых ракетных горючих на месте сварных швов и...
Тип: Изобретение
Номер охранного документа: 0002622026
Дата охранного документа: 08.06.2017
25.08.2017
№217.015.d2ee

Мембрана ионоселективного электрода для определения октагидротриборатного аниона

Изобретение относится к потенциометрическим методам количественного определения веществ (ионометрия) и может быть использовано для неразрушающего контроля и автоматического регулирования содержания октагидротриборатного аниона в водных, включая технологические, растворах. Предложена мембрана...
Тип: Изобретение
Номер охранного документа: 0002621888
Дата охранного документа: 07.06.2017
26.08.2017
№217.015.d40c

Способ получения керамического прекурсора для синтеза лейкосапфира

Изобретение относится к области неорганической химии, в частности к способу получения прекурсора для синтеза лейкосапфира. Предложенный способ заключается в том, что смесь гидраргиллита с 1÷15 мас.% электрокорунда с размером зерна от 10 до 50 мкм заливают 0,5÷2 мас.% водного раствора соляной...
Тип: Изобретение
Номер охранного документа: 0002622133
Дата охранного документа: 13.06.2017
26.08.2017
№217.015.d75a

Композиционный катодный материал

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей с повышенной удельной емкостью при циклировании токами высокой плотности. Предложен композиционный катодный материал...
Тип: Изобретение
Номер охранного документа: 0002623212
Дата охранного документа: 23.06.2017
+ добавить свой РИД