×
27.05.2016
216.015.42d0

Результат интеллектуальной деятельности: ИМПЛАНТИРОВАННОЕ ИОНАМИ ЦИНКА КВАРЦЕВОЕ СТЕКЛО

Вид РИД

Изобретение

Аннотация: Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем. Кварцевое стекло представляет собой основу из диоксида кремния с модифицированным поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Стекло получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C. Полученное стекло характеризуется повышенной удельной интенсивностью в зеленой области спектра (500-600 нм). 2 ил., 1 табл., 3 пр.
Основные результаты: Имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, отличающееся тем, что оно получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C, при этом нанокластеры ZnSiO имеют диаметры 4-10 нм и распределены в поверхностном слое стекла на глубине 10-50 нм.

Изобретение относится к кварцевым стеклам, имплантированным ионами цинка, и может быть использовано при создании компонентов микро-(нано-) и оптоэлектронных устройств, в частности микроминиатюрных источников света для планарных тонкопленочных волноводных систем и оптических интегральных схем.

Известен коммерческий люминофор в виде кристаллов и порошков виллемита Zn2SiO4, активированных марганцем [James Н. Schulman J. Appl. Phys. 17, 902 (1946)]. Материал характеризуется полосой фотолюминесценции в зеленой области спектра 500÷550 нм. Однако материал не соответствует требованиям при создании нового поколения приборов оптоэлектроники и нанофотоники с повышенной степенью интеграции светоизлучающих компонентов, в частности, при разработке эффективных микроминиатюрных источников света для планарных тонкопленочных волноводных систем с соответствующей областью прозрачности.

Прототипом изобретения является имплантированное ионами цинка кварцевое стекло [Y. Shen et al. Fabrication and thermal evolution of nanoparticles in SiO2 by Zn ion implantation. Journal of Crystal Growth, 2009, 311, 4605-4609]. Стекло содержит четыре фазы - основу из диоксида кремния, а также микровключения металлического цинка, оксида цинка ZnO и виллемита Zn2SiO4. Фазовый состав определен методом рентгеновской дифракции. Композит получен путем имплантации в диоксид кремния ионов цинка в непрерывном режиме облучения с энергией 45 кэВ, с последующим отжигом полученного материала при температуре 700÷900°C в течение одного часа в кислородной атмосфере. Фаза виллемита образуется при температуре отжига не менее 900°C.

Недостатком прототипа является пониженная удельная интенсивность излучения в зеленой области спектра 500÷600 нм вследствие присутствия фаз металлического цинка и ZnO, обуславливающих наличие полос оптического поглощения в спектральной области 250÷350 нм, что приводит к значительному снижению выхода люминесценции в указанных диапазонах спектра.

Задачей изобретения является создание кварцевого стекла в виде основы SiO2, имеющего зеленое излучение в видимой области (500÷600 нм) с высокой удельной интенсивностью и обеспечение возможности использования кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники.

Для решения указанной задачи имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим микрокристаллы виллемита Zn2SiO4, отличается тем, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм.

Фазовый состав стекла определен методом рентгеновской дифракции (фиг. 1). В дифрактограммах имплантированного и отожженного стекла присутствуют рефлексы 110 и 220 (индексы Миллера), соответствующие фазе Zn2SiO4, включающей кристаллические нанокластеры Zn2SiO4, с диаметрами 4÷10 нм, распределенные в поверхностном слое стекла на глубинах 10÷50 нм, и присутствует рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2. Размер и распределение наночастиц контролировалось методами электронной микроскопии и рентгеновской дифракции. Отсутствие в стекле фаз металлического Zn и оксида ZnO обеспечивает оптическую прозрачность стекла в спектральной области 200÷350 нм, что способствует повышению выхода люминесценции стекла в зеленой области спектра (500÷600 нм, фиг. 2, сплошная линия). Кроме того, возникшая в стекле оптическая прозрачность в области 200÷350 нм обеспечивает возможность введения в стекло дополнительных соактиваторов и сенсибилизаторов люминесценции, имеющих полосы поглощения в этой области спектра и обеспечивающих дополнительное повышение интенсивности излучения стекла в зеленой области спектра.

При фотовозбуждении в ультрафиолетовой области спектра предложенное кварцевое стекло имеет высокое удельное излучение в зеленой полосе спектра (500÷600 нм) с максимумом 521 нм (фиг. 2, сплошная линия). Удельная интенсивность люминесценции полученного материала (фиг. 2, сплошная линия) в 10 раз превышает удельную интенсивность свечения керамики Zn2SiO4 в этой же области спектра (фиг. 2, пунктир). Удельная интенсивность здесь - это отношение интенсивности к объему излучающего слоя, представляющего собой в данном случае поверхностный слой кварцевого стекла размерами 1 см × 1 см × 50 нм.

Новый технический результат - повышение удельной интенсивности излучения и возможность использования в микроминиатюрных устройствах оптоэлектроники и фотоники, обеспечивается в предложенном стекле за счет того, что стекло содержит в поверхностном слое монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. При этом высокая интенсивность излучения в зеленой области спектра (500÷600 нм) обеспечена за счет содержания в поверхностном слое стекла монофазных включений в виде кристаллических нанокластеров Zn2SiO4, имеющих диаметры 4÷10 нм и за счет оптической прозрачности стекла в спектральной области 200÷350 нм.

Увеличение диаметра нанокристаллов более 10 нм приводит к плавному снижению удельной интенсивности зеленого излучения (максимум 521 нм) предложенного стекла. При диаметре нанокристаллов менее 4 нм полоса зеленой люминесценции с максимумом 521 нм в предложенном стекле не проявляется.

Образование нанокристаллов Zn2SiO4 в кварцевом стекле на глубинах менее 10 нм приводит к деградации свойств стекла за счет химического взаимодействия с окружающей средой через слишком тонкий защитный слой диоксида кремния. Формирование нанокристаллов на глубинах более 50 нм не соответствует требованиям при создании современных приборов оптоэлектроники и фотоники с повышенной степенью интеграции светоизлучающих компонентов, а также приводит к необходимости пропорционального увеличения энергии и дозы ионного облучения, что не эффективно.

Повышенная интенсивность излучения в зеленой области спектра является новым, неожиданным техническим результатом изобретения. Другим неожиданным техническим результатом является возможность использования предложенного кварцевого стекла в микроминиатюрных устройствах оптоэлектроники и фотоники. Это обеспечивает, в частности, повышение эффективности работы микроминиатюрных источников света в планарных тонкопленочных волноводных системах.

Изобретение поясняется фигурами, на которых изображены:

фиг. 1 - рентгеновская дифрактограмма предложенного стекла, содержащая рефлексы 110 и 220 фазы Zn2SiO4. и рефлекс А, соответствующий наличию в стекле кристаллических включений в аморфной основе стекла - диоксиде кремния SiO2; по оси абсцисс отложен угол дифракции рентгеновских лучей (, град), по оси ординат отложена интенсивность рентгеновского излучения (отн. ед.);

фиг. 2 - спектры излучения предложенного стекла (сплошная линия) и стекла по прототипу (пунктир), по оси абсцисс отложены длины волн излучения в нм, по оси ординат - удельная интенсивность излучения в относительных единицах.

Предложенное кварцевое стекло получают следующим образом.

Имплантацию ионов цинка в кварцевое стекло SiO2 осуществляют с помощью ионного источника, работающего в импульсном режиме при указанных ниже в таблице параметрах, а также при глубине вакуума (1,4÷2,5)×10-4 Торр. Перед имплантацией вакуум-камеру ионного источника откачивают турбомолекулярным насосом до давления 3×10-5 Торр. Для удаления примесей катода проводят предварительную имплантацию в течение нескольких минут в экран, установленный перед анодом. В качестве катода используют гранулированный цинк с содержанием основного компонента 99,6%, в качестве анода - образцы аморфного кварцевого стекла типа КУ. Перед имплантацией образцы кварцевого стекла промывают в спирте в ультразвуковой ванне.

Отжиг кварцевого стекла после его имплантации ионами цинка производят в воздушной атмосфере с использованием электропечи сопротивления (типа НТ 40/16).

Полученные образцы кварцевого стекла представляют собой плоскопараллельные пластины площадью 1 см2, толщиной 1 мм, с поверхностью оптического качества. Поверхностный слой каждого образца включает нанокластеры Zn2SiO4, нижележащая основа образца состоит из нелегированного диоксида кремния. Фотолюминесценцию полученного кварцевого стекла возбуждают ультрафиолетовым излучением с энергией фотонов в интервале 3÷6 эВ через монохроматор. Фотолюминесцентные спектры регистрируют с помощью фотоумножителя R6358P Hamamatsu.

В нижеуказанной таблице приведены режимы импульсного облучения ионами цинка основы из диоксида кремния, режимы отжига, а также удельные интенсивности излучения полученных образцов (1, 2, 3) предложенного кварцевого стекла.

Фотолюминесцентный спектр излучения образца №3 полученного кварцевого стекла приведен на фиг. 2 (сплошная линия). Спектры излучения образцов №1 и №2 по форме соответствуют спектру образца №3, отличаясь амплитудами излучения, указанными в таблице.

Ниже описаны примеры образцов предложенного кварцевого стекла. Номера примеров соответствуют номерам образцов в таблице.

Пример 1. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,35 мс, частотой повторения импульсов 17 Гц, импульсной плотностью ионного тока 0,85 мА/см2, дозой облучения 4,7×1016 ион/см2 и энергией ионов цинка 33 кэВ, при температуре диоксида кремния не более 350°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 870°C в течение 60 мин в воздушной атмосфере. Полученный образец №1 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность удельного излучения полученного образца №1 составила 2311 отн. ед. в максимуме на длине волны 521 нм.

Пример 2. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,3 мс, частотой повторения импульсов 12,5 Гц, импульсной плотностью ионного тока 0,8 мА/см2, дозой облучения 4,5×1016 ион/см2 и энергией ионов цинка 30 кэВ, при температуре диоксида кремния не более 60°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 850°C в течение 50 мин в воздушной атмосфере. Полученный образец №2 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 3÷9 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №2 составила 1956 отн. ед. в максимуме на длине волны 521 нм.

Пример 3. Имплантацию ионов цинка в кварцевое стекло проводят с помощью ионного источника, работающего в импульсном режиме с длительностью импульсов 0,4 мс, частотой повторения импульсов 20 Гц, импульсной плотностью ионного тока 0,6 мА/см2, дозой облучения 5×1016 ион/см2 и энергией ионов цинка 35 кэВ, при температуре диоксида кремния не более 200°C. Последующий отжиг имплантированного ионами цинка кварцевого стекла осуществляют при температуре 900°C в течение 70 мин в воздушной атмосфере. Полученный образец №3 содержит монофазные включения в виде кристаллических нанокластеров Zn2SiO4, которые имеют диаметры 4÷10 нм и распределены в поверхностном слое стекла на глубинах 10÷50 нм. Интенсивность излучения полученного образца №3 составила 2483 отн. ед. в максимуме на длине волны 521 нм.

Имплантированное ионами цинка кварцевое стекло, представляющее собой основу из диоксида кремния с поверхностным слоем, включающим монофазные включения в виде кристаллических нанокластеров ZnSiO, отличающееся тем, что оно получено имплантацией в импульсном режиме при длительности импульсов 0,3-0,4 мс, частоте повторения импульсов 12,5-20 Гц, импульсной плотности тока 0,8-0,9 мА/см, дозе облучения (4,5-5)·10 ион/см, энергии ионов 30-35 кэВ и температуре диоксида кремния 60-350°C, при этом нанокластеры ZnSiO имеют диаметры 4-10 нм и распределены в поверхностном слое стекла на глубине 10-50 нм.
ИМПЛАНТИРОВАННОЕ ИОНАМИ ЦИНКА КВАРЦЕВОЕ СТЕКЛО

Источник поступления информации: Роспатент

Показаны записи 21-30 из 118.
20.10.2014
№216.012.fe8c

Устройство для раздачи труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочие ролики установлены параллельно оси корпуса устройства. При этом рабочая часть корпуса содержит шток, снабженный коническим элементом, выполненным с возможностью осевого перемещения,...
Тип: Изобретение
Номер охранного документа: 0002531020
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fe9f

Способ и устройство для определения плотности и поверхностного натяжения многокомпонентных металлических расплавов

Изобретение относится к технической физике, а именно к анализу материалов, в частности к определению физико-химических параметров многокомпонентных металлических расплавов методом геометрии «большой капли», т.е. путем измерения параметров неподвижно лежащей на подложке эллипсовидной капли...
Тип: Изобретение
Номер охранного документа: 0002531039
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.fea4

Рабочее вещество осл-детектора

Изобретение относится к области дозиметрии ионизирующих излучений, а именно к области оптически стимулированной люминесцентной (ОСЛ) дозиметрии, связанной с разработкой и применением рабочих веществ для ОСЛ-детекторов, пригодных для регистрации рентгеновского, гамма- и электронного излучения, а...
Тип: Изобретение
Номер охранного документа: 0002531044
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feb0

Способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля

Изобретение относится к измерительной технике, представляет собой способ и устройство для бесконтактного измерения удельного электрического сопротивления металлического сплава методом вращающегося магнитного поля и может использоваться для анализа материалов, в частности металлов и сплавов в...
Тип: Изобретение
Номер охранного документа: 0002531056
Дата охранного документа: 20.10.2014
20.10.2014
№216.012.feba

Устройство для крепления электронагревателя в электропечи

Изобретение относится к технической физике, а именно к анализу материалов путем определения вязкости и электрического сопротивления и плотности высокотемпературных металлических расплавов. Предлагается устройство для крепления электронагревателя в электропечи, содержащее, по крайней мере, два...
Тип: Изобретение
Номер охранного документа: 0002531066
Дата охранного документа: 20.10.2014
27.10.2014
№216.013.02fe

Способ синтеза 5,5'-(2,3,7,8-бис-(9н,10н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена) - мономолекулярного оптического сенсора для обнаружения нитроароматических соединений

Изобретение относится к способу получения 5,5'-(2,3,7,8-бис-(9Н,10Н-антрацен-9,10-диил)пирен-1,6-диил)бис(2-додецилтиофена), который включает взаимодействие 1,6-дибромпирена с 2-додецил-5-трибутилстаннилтиофеном по методу Стилле с получением первого полупродукта...
Тип: Изобретение
Номер охранного документа: 0002532164
Дата охранного документа: 27.10.2014
10.11.2014
№216.013.03f0

Способ потенциометрического определения антиоксидантной/оксидантной активности с использованием комплексов металлов

Изобретение относится к области электрохимических методов анализа, в частности к анализу растворов на предмет определения суммарной антиоксидантной/оксидантной активности. Изобретение может быть использовано в исследовательских лабораториях, пищевой промышленности, медицине для определения...
Тип: Изобретение
Номер охранного документа: 0002532406
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.040b

Способ получения синтетического карналлита

Изобретение относится к области цветной металлургии. Способ получения синтетического карналлита включает очистку и концентрирование хлормагниевых растворов, их смешение с твердым измельченным калиевым электролитом магниевых электролизеров, нагрев с выделением газов и охлаждение смеси при...
Тип: Изобретение
Номер охранного документа: 0002532433
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.0454

Способ термолучевой обработки вещества тл-осл твердотельного детектора ионизирующих излучений на основе оксида алюминия

Изобретение относится к способу обработки рабочих веществ твердотельных детекторов ионизирующих излучений, основанных на явлениях термостимулированной люминесценции (ТЛ) и оптически стимулированной люминесценции (ОСЛ). Способ термолучевой обработки вещества твердотельного детектора ионизирующих...
Тип: Изобретение
Номер охранного документа: 0002532506
Дата охранного документа: 10.11.2014
10.11.2014
№216.013.04d9

Минитеплоцентраль для выравнивания графика нагрузки в электрических сетях

Изобретение относится к электроэнергетике. Минитеплоцентраль содержит замкнутый контур низкокипящего рабочего тела, состоящий из теплообменника, турбины, конденсатора и циркуляционного насоса, причем к его теплообменнику подключен гидравлический теплоаккумулятор, оснащенный...
Тип: Изобретение
Номер охранного документа: 0002532639
Дата охранного документа: 10.11.2014
Показаны записи 21-30 из 173.
27.06.2013
№216.012.4fcc

Способ производства труб

Изобретение предназначено для повышения точности и стабильности труб, получаемых волочением. Способ включает волочение трубы на длинной подвижной оправке через ряд роликовых волок. Повышение скорости волочения и величины деформации обеспечивается за счет того, что волочение проводят непрерывно...
Тип: Изобретение
Номер охранного документа: 0002486021
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.4fcf

Устройство для внутреннего профилирования труб

Изобретение относится к области обработки металлов давлением, а именно к трубопрофильному производству. Рабочая часть корпуса выполнена в виде двух или более шпинделей, установленных один внутри другого с возможностью поворота относительно своей продольной оси, а ролики установлены на концевых...
Тип: Изобретение
Номер охранного документа: 0002486024
Дата охранного документа: 27.06.2013
27.06.2013
№216.012.50d1

Способ получения имплантированного ионами олова кварцевого стекла

Изобретение относится к способу получения имплантированного ионами олова кварцевого стекла из диоксида кремния с поверхностным слоем, содержащим нанокластеры олова. Упомянутый способ может быть использован при создании компонентов микро-(нано-) и оптоэлектронных устройств. Проводят имплантацию...
Тип: Изобретение
Номер охранного документа: 0002486282
Дата охранного документа: 27.06.2013
20.07.2013
№216.012.5736

Метод определения неоплодотворенных яиц дрозофилы

Изобретение относится к области биохимии. Неразвившиеся яйца помещают на 45-50 минут в четырехпроцентный раствор гипохлорита натрия (NaOCl) и по количеству растворенных яиц определяют количество неоплодотворенных яиц. Предложенный метод позволяет осуществить массовые исследования достаточно...
Тип: Изобретение
Номер охранного документа: 0002487934
Дата охранного документа: 20.07.2013
27.07.2013
№216.012.59e9

Способ извлечения платины из шлама, получаемого при растворении платиносодержащего чугуна в серной кислоте

Изобретение относится к металлургии благородных металлов, в частности к переработке шламов и концентратов, содержащих элементные кремний, углерод и платину. Подобные шламы, в частности, образуются при растворении платиносодержащего чугуна в серной кислоте. Шламы смешивают с карбонатом натрия...
Тип: Изобретение
Номер охранного документа: 0002488638
Дата охранного документа: 27.07.2013
10.08.2013
№216.012.5cb5

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Выщелачивают глиноземсодержащее сырье с получением алюминатного раствора и красного шлама, отделяют красный шлам от алюминатного раствора и его подают на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид...
Тип: Изобретение
Номер охранного документа: 0002489354
Дата охранного документа: 10.08.2013
20.08.2013
№216.012.6000

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Глиноземсодержащее сырье выщелачивают с получением алюминатного раствора, отделяют его от красного шлама и направляют алюминатный раствор на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия....
Тип: Изобретение
Номер охранного документа: 0002490208
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.727c

Способ переработки бокситов на глинозем

Изобретение относится к способу переработки бокситов на глинозем. Способ включает размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроокиси алюминия и...
Тип: Изобретение
Номер охранного документа: 0002494965
Дата охранного документа: 10.10.2013
10.10.2013
№216.012.746a

Оптический монокристалл

Монокристаллы предназначены для ИК-техники и для изготовления из них методом экструзии одно- и многомодовых ИК-световодов для спектрального диапазона от 2 до 50 мкм, при этом формируется нанокристаллическая структура ИК-световодов с размером зерна от 30 до 100 нм, определяющая их функциональные...
Тип: Изобретение
Номер охранного документа: 0002495459
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.75fd

Способ получения п-ацетиламинофенола

Изобретение относится к способу получения п-ацетиламинофенола (парацетамола) формулы I. Способ заключается в каталитическом восстановлении п-нитрозофенола в этилацетате при перемешивании с катализатором Ni-Ренея при давлении водорода 2-4 атм и при температуре 20-50°C, последующей обработке...
Тип: Изобретение
Номер охранного документа: 0002495865
Дата охранного документа: 20.10.2013
+ добавить свой РИД