×
10.08.2013
216.012.5cb5

СПОСОБ ПЕРЕРАБОТКИ ГЛИНОЗЕМСОДЕРЖАЩЕГО СЫРЬЯ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области цветной металлургии. Выщелачивают глиноземсодержащее сырье с получением алюминатного раствора и красного шлама, отделяют красный шлам от алюминатного раствора и его подают на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия. Гидроксид алюминия подают на кальцинацию с получением глинозема. Стадию кристаллизации осуществляют при температуре 25-39°С путем добавки в алюминатный раствор сульфата алюминия в количестве 0,5-5,0% от содержания оксида алюминия в алюминатном растворе. Полученный гидроксид алюминия направляют на стадию кристаллизации при соблюдении затравочного отношения 0,1-0,4. Изобретение позволяет повысить выход продукта и сократить продолжительность процесса. 2 ил., 2 табл., 22 пр.
Основные результаты: Способ переработки глиноземсодержащего сырья, включающий выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия, и его направление на кальцинацию с получением глинозема, отличающийся тем, что стадию кристаллизации осуществляют при температуре 25-39°С путем добавки в алюминатный раствор сульфата алюминия в количестве 0,5-5,0% от содержания оксида алюминия в алюминатном растворе, полученный гидроксид алюминия направляют на стадию кристаллизации при соблюдении затравочного отношения 0,1-0,4.
Реферат Свернуть Развернуть

Изобретение относится к области цветной металлургии, в частности к технологии производства глинозема из глиноземсодержащего сырья.

Из уровня техники известно изобретение по а.с. СССР №1644452 (Способ получения гидроксида алюминия / Давыдов И.В.; Боровинский В.П.; Тесля В.Г. Заяв. ОАО "Всероссийский алюминиево- магниевый институт", МПК C01F 7/14. Опубл. 1998.09.27), заявленное ОАО ВАМИ, которое представляет собой способ получения гидроксида алюминия. Изобретение относится к технологии производства глинозема из бокситов по способу Байера. В алюминатный раствор вводят затравочный гидроксид алюминия, подают полученную суспензию в батарею декомпозеров, выдерживают суспензию при перемешивании с последующим выводом и разделением ее на затравочный и продукционный гидроксид алюминия, подают затравочный гидроксид алюминия в виде суспензии в алюминатный раствор. Продукционный гидроксид алюминия фильтруют, разбавляют промводой и классифицируют.Мелкий гидроксид алюминия используют в виде затравки, а крупный отфильтрованный гидроксид алюминия промывают и выводят из процесса. Тем самым достигается улучшение качества продукта за счет повышения его крупности и снижения содержания примесей.

Недостатком этого аналога является невысокий процент разложения алюминатного раствора.

Фирмой PECHINEY ALUMINIUM IPC получен патент FR 2709302 (Патент Франции FR 2709302. Process for the manufacture of alumina trihydrate with a controlled sodium content and particle size. Inv. Gilbert Bouzat; Jean-Michel Lamerant; Joel Sinquin. Appl.: Pechiney Aluminium. IPC C01F 7/14; C01F 7/00. Publ. 1995-03-03) на способ производства глинозема с контролем содержания щелочи и размера частиц. Особенностью метода является высокое содержание твердого вещества в алюминатном растворе (более 700 г/л). Затравкой при декомпозиции является гидроксид алюминия, как это принято в традиционном процессе разложения алюминатных растворов. Недостатком этого аналога, как и предыдущего, является недостаточно высокий процент разложения алюминатного раствора.

Из уровня техники известен патент РФ №2231497 (Патент РФ №2231497. Способ декомпозиции алюминатных растворов / Тесля В.Г., Мильруд С.М. Заявл. ОАО "Всероссийский алюминиево-магниевый институт", МПК C01F 7/14. Опубл. 2004.06.27), выданный на способ декомпозиции алюминатных растворов, включающий перемешивание алюминатного раствора при температуре 45-70°C в присутствии затравки гидроксида алюминия и модифицирующей добавки, отделение маточного раствора от гидроксида алюминия. Способ отличается тем, что в качестве модифицирующей добавки используют карбонат лития, вводимый в количестве от 0,10 до 0,30% на массу получаемого осадка гидроксида алюминия. Недостатком способа является удорожание процесса производства глинозема из-за необходимости применения в качестве модифицирующей добавки - соединения лития.

Из уровня техники известен способ переработки глиноземсодержащего сырья (Лайнер А.И. Производство глинозема. М.: Металлургиздат, 1961. 620 с., с.571), выбранный в качестве прототипа. Способ включает выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия, и его направление на кальцинацию с получением глинозема.

По прототипу стадия кристаллизации осуществляется путем декомпозиции (выкручивания) в присутствии затравки. Операция декомпозиции (выкручивания) осуществляется непрерывным перемешиванием при температуре 40-62°С (указанный источник Лайнера А.И., с.267) алюминатного раствора с затравкой свежеосажденной гидроокиси алюминия в течение 60…100 ч (указанный источник Лайнера А.И, с.255).

Технической задачей предполагаемого изобретения является повышение процента разложения алюминатного раствора и снижение времени, необходимого для декомпозиции.

В заявляемом способе производят выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия, и его направление на кальцинацию с получением глинозема.

В отличие от прототипа предлагается стадию кристаллизации осуществлять при температуре 25-39°С путем добавки в алюминатный раствор сульфата алюминия в количестве 0,5-5,0% от содержания оксида алюминия в алюминатном растворе.

Как показали эксперименты, выполненные авторами настоящего изобретения, добавка в алюминатный раствор сульфата алюминия при заявленной температуре позволяет резко интенсифицировать процесс выделения из раствора гидроксида алюминия за счет увеличения скорости образования реакции полимеризации катионов алюминия с выделением в раствор полимера, приводящего к массовой кристаллизации гидроксида алюминия из алюминатного раствора. Это позволяет повысить процент разложения алюминатного раствора и снизить время кристаллизации до 18-20 ч.

Полученный таким приемом гидроксид алюминия направляют на стадию кристаллизации при соблюдении затравочного отношения 0,1-0,4. Как показали исследования, выполненные авторами настоящего изобретения, полученный гидроксид отличается от обычно применяемого в качестве затравочного материала гидроксида, полученного в промышленных условиях. Отличие состоит в более развитой поверхности и большей реакционной способности. Это позволяет применять этот материал в качестве затравочного в меньших объемах, чем принято в глиноземном производстве.

На фиг.1. приведено фото электронной микроскопии конгломерата частиц гидроксида алюминия, полученного по промышленной технологии прототипа, а на фиг.2 по предлагаемой технологии с использованием реакции с сульфатом алюминия (б).

Пример 1 (по прототипу).

По прототипу стадия кристаллизации осуществляется путем декомпозиции (выкручивания) в присутствии затравки. Операция декомпозиции (выкручивания) осуществляется непрерывным перемешиванием при температуре 40-62°С алюминатного раствора с затравкой свежеосажденной гидроокиси алюминия в течение 60…100 ч. В результате из алюминатного раствора выделяется около 50-52% оксида алюминия.

Примеры 2-17. В лабораторных условиях производили выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия, и его направление на кальцинацию с получением глинозема. Стадию кристаллизации осуществляли в интервале температур 20-70°С путем добавки в алюминатный раствор сульфата алюминия в количестве 0,1-10,0% от содержания оксида алюминия в алюминатном растворе.

В алюминатный раствор, содержащий 133,3 г/дм3 Na2Oк, 132,4 г/дм3 Al2O3 (каустический модуль исходного раствора αк=1,66) добавляли соль сульфата алюминия и выдерживали 18-24 часа в кристаллизаторе без перемешивания при различных температурах кристаллизации. После выдержки пульпы осадок отделяли от жидкой фазы (маточного раствора), которую анализировали на содержание в ней Na2Oк и Al2O3, рассчитывали каустический модуль полученного маточного раствора и по известной формуле рассчитывали процент разложения алюминатного раствора. Полученные данные представлены в табл.1.

Таблица 1
Сравнение показателей процесса по прототипу и предлагаемому техническому решению
№ примера Температура кристаллизации, °C Количество добавляемой соли, % от содержания Al2O3 г/дм3 в растворе Процент разложения раствора, %
1 (прототип) 40-62 - 50-52
2 20 ОД 0
3 20 0,5 0
4 20 5,0 0
5 20 6,0 0
6 25 од 3
7 25 0,5 57,2
8 25 5,0 67,4
9 25 6,0 67,1
10 39 од 5
11 39 0,5 64,5
12 39 5,0 66,8
13 39 6,0 66,4
14 70 од 0
15 70 0,5 0
16 70 5,0 0
17 70 6,0 0

В таблице строка 1 описывает условия осуществления процесса по прототипу. При отсутствии добавки сульфата алюминия достигнут процент разложения 50-52%. При температуре 20°C и изменении количества добавляемого сульфата алюминия в пределах 0,1-6% от содержания Al2O3 в растворе (опыты 2-5) не выявлено признаков разложения раствора, что связано с слишком большой вязкостью алюминатного раствора и малой диффузионной способностью смеси.

При температуре 25°C и изменении количества добавляемой соли в пределах 0,1-6% от содержания Al2O3 в растворе (опыты 6-9) достигли процента разложения раствора в пределах 3-67,4%, при этом ниже 0,5% добавки получено только 3% разложения, при использовании добавки в пределах 0,5-5% происходит увеличение процента разложения раствора. Однако при дальнейшем увеличении количества добавки до 6% не наблюдается дальнейшего увеличения процента разложения.

При температуре 39°C и изменении количества добавляемой соли в пределах 0,1-6% от содержания Al2O3 в растворе (опыты 10-12) достигли процента разложения раствора в пределах 5-66,8%, при этом ниже 0,5% добавки получено только 5% разложения, при использовании добавки в пределах 0,5-5% происходит увеличение процента разложения раствора. Однако при дальнейшем увеличении количества добавки до 6% не наблюдается дальнейшего увеличения процента разложения. Таким образом, верхним пределом содержания добавки является 5%.

При температуре 70°C и изменении количества добавляемой соли в пределах 0,1-6% от содержания Al2O3 в растворе (опыты 13-17) не достигли разложения раствора ни при одном варианте введения добавки. Это объясняется тем, что при повышенных температурах соль алюминия слишком быстро растворяется в алюминатном растворе и ионы алюминия быстро теряют свою активность.

Таким образом, если осуществлять стадию кристаллизации при температуре 25-39°C путем добавки в алюминатный раствор сульфата алюминия в количестве 0,5-5,0% от содержания оксида алюминия в алюминатном растворе, то достигается процент разложения раствора выше, чем это происходит в объекте по прототипу. Дополнительным эффектом является снижение времени декомпозиции: вместо 60-100 ч указанная операция в условиях заявляемого способа осуществляется за 18-24 ч.

Примеры 18-22. Гидроксид алюминия, который был получен с помощью сульфата алюминия, использовали в опытах в качестве затравки с целью разложения пересыщенного алюминатного раствора. Для этого полученный в соответствии с примером 6 просушенный гидроксид алюминия добавляли в алюминатный раствор, содержащий 133,3 г/дм3 Na2Oк, 132,4 г/дм3 Al2O3 (каустический модуль исходного раствора αк=1,66). Выдерживали пульпу 24 часа в кристаллизаторе без перемешивания при температуре кристаллизации, равной 25°C. После выдержки пульпы осадок отделяли от жидкой фазы (маточного раствора), которую анализировали на содержание Na2Oк и Al2O3. Рассчитывали каустический модуль полученного маточного раствора и по известной формуле рассчитывали процент разложения алюминатного раствора. Полученные данные представлены в табл.2.

Таблица 2
Сравнение показателей процесса по прототипу и предлагаемому техническому решению
№ примера Количество используемой затравки, г/дм3 Затравочное отношение Процент разложения раствора, %
1 (прототип) - 50-52
18 10 0,05 29,2
19 20 0,1 60,5
20 40 0,2 67,4
21 70 0,4 70,4
22 90 0,5 70,3

Как видно из приведенных результатов, при затравочных отношениях 0,1-0,4 получены показатели разложения раствора на уровне 60,5-70,4%, что выше показателей прототипа 50-52%. При дальнейшем увеличении затравочного отношения процент разложения раствора не увеличивается. Применение затравочного отношения 0,05 слишком мало для получения положительного результата. Таким образом, установили рациональный диапазон затравочных отношений на уровне 0,1-0,4.

Более высокий процент разложения алюминатного раствора достигнут за счет изменения кристаллического строения гидроксида алюминия, что иллюстрируется фото фиг.2. Кристаллы гидроксида алюминия, полученные по данному техническому решению, отличаются волокнистым строением (на фото видны верхушки волокон), что создает развитую поверхность. По прототипу кристаллы отличаются более грубой формой с менее развитой поверхностью.

Следует отметить, что полученный результат достигнут за более короткое время 24 ч по сравнению с прототипом, где время разложения составляет 60-100 ч.

Технический результат заключается в повышении процента разложения алюминатного раствора в способе Байера и сокращении времени проведения операции декомпозиции.

Способ переработки глиноземсодержащего сырья, включающий выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия, и его направление на кальцинацию с получением глинозема, отличающийся тем, что стадию кристаллизации осуществляют при температуре 25-39°С путем добавки в алюминатный раствор сульфата алюминия в количестве 0,5-5,0% от содержания оксида алюминия в алюминатном растворе, полученный гидроксид алюминия направляют на стадию кристаллизации при соблюдении затравочного отношения 0,1-0,4.
СПОСОБ ПЕРЕРАБОТКИ ГЛИНОЗЕМСОДЕРЖАЩЕГО СЫРЬЯ
СПОСОБ ПЕРЕРАБОТКИ ГЛИНОЗЕМСОДЕРЖАЩЕГО СЫРЬЯ
Источник поступления информации: Роспатент

Показаны записи 1-10 из 18.
27.02.2013
№216.012.2a09

Способ волочения заготовок

Изобретение относится к области металлургии, а именно к методам интенсивной проработки структуры металла пластической деформацией. Способ включает многопереходное волочение через отверстие волоки одной из мерных трубных заготовок, полученной резкой исходной длинномерной полой заготовки на...
Тип: Изобретение
Номер охранного документа: 0002476288
Дата охранного документа: 27.02.2013
27.05.2013
№216.012.4428

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Способ переработки глиноземсодержащего сырья включает выщелачивание сырья, содержащего глинозем, с получением алюминатного раствора, отделение его от красного шлама и направление алюминатного раствора на стадию кристаллизации с получением...
Тип: Изобретение
Номер охранного документа: 0002483025
Дата охранного документа: 27.05.2013
20.08.2013
№216.012.6000

Способ переработки глиноземсодержащего сырья

Изобретение относится к области цветной металлургии. Глиноземсодержащее сырье выщелачивают с получением алюминатного раствора, отделяют его от красного шлама и направляют алюминатный раствор на стадию кристаллизации с получением маточного раствора и осадка, содержащего гидроксид алюминия....
Тип: Изобретение
Номер охранного документа: 0002490208
Дата охранного документа: 20.08.2013
10.10.2013
№216.012.727c

Способ переработки бокситов на глинозем

Изобретение относится к способу переработки бокситов на глинозем. Способ включает размол боксита в оборотном растворе, выщелачивание, сгущение с получением алюминатного раствора и красного шлама, промывку красного шлама, декомпозицию алюминатного раствора с получением гидроокиси алюминия и...
Тип: Изобретение
Номер охранного документа: 0002494965
Дата охранного документа: 10.10.2013
20.10.2013
№216.012.76eb

Способ изучения первичной рекристаллизации

Использование: для изучения первичной рекристаллизации. Сущность: заключается в том, что осуществляют нагартовку образца и повышение его температуры до температуры прохождения рекристаллизации, при этом к образцу прикладывают постоянную нагрузку, приводящую к упругой деформации, а при повышении...
Тип: Изобретение
Номер охранного документа: 0002496103
Дата охранного документа: 20.10.2013
20.01.2014
№216.012.97f3

Способ получения трубы из технически чистого титана с радиальной текстурой

Изобретение относится к области металлургии, а именно к получению труб из технически чистого титана с радиальной структурой. Для получения трубы из технически чистого титана с радиальной текстурой изготавливают заготовки в виде колец, деформируют с уменьшением толщины их стенок и увеличением их...
Тип: Изобретение
Номер охранного документа: 0002504598
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9c9b

Способ определения коэффициента трения при пластической деформации

Изобретение относится к области изучения трения при обработке металлов давлением, предпочтительно в технологиях ковки. Сущность: осуществляют изготовление испытуемого образца, фиксацию его начальных геометрических параметров, осадку с уменьшением толщины образца, фиксацию геометрических...
Тип: Изобретение
Номер охранного документа: 0002505797
Дата охранного документа: 27.01.2014
20.08.2014
№216.012.ec82

Способ получения цилиндрической заготовки из армированного металлического композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа дисков или колец из композиционных материалов литейными технологиями. Способ включает расплавление металлического материала матрицы, размещение в изложнице с цилиндрической внутренней поверхностью проволоки...
Тип: Изобретение
Номер охранного документа: 0002526354
Дата охранного документа: 20.08.2014
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.01.2016
№216.013.a04f

Способ получения литой цилиндрической заготовки

Предлагаемое изобретение относится к литейному производству и может быть использовано для получения заготовок типа дисков или колец из композиционных материалов. Способ включает получение расплавленного металлического материала матрицы, погружение в расплав трубки из кварцевого стекла, в...
Тип: Изобретение
Номер охранного документа: 0002572681
Дата охранного документа: 20.01.2016
Показаны записи 1-10 из 157.
27.01.2013
№216.012.200f

Способ извлечения редкоземельных элементов из фосфогипса

Изобретение относится к технологии получения соединений редкоземельных элементов (РЗЭ) при комплексной переработке апатитов, в частности к извлечению РЗЭ из фосфогипса. Способ включает приготовление пульпы из фосфогипса и сорбцию редкоземельных элементов на сорбенте. Приготовление пульпы ведут...
Тип: Изобретение
Номер охранного документа: 0002473708
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20be

Устройство для бесконтактного фотометрического определения характеристик металлических расплавов

Изобретение относится к устройству для определения, контроля и измерения физических параметров веществ и предназначено для бесконтактного фотометрического определения характеристик металлических расплавов, в частности кинематической вязкости и электропроводности. Устройство содержит тигель с...
Тип: Изобретение
Номер охранного документа: 0002473883
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e8

Способ определения поглощенной дозы β-излучения в твердотельном термолюминесцентном детекторе

Изобретение относится к радиационной физике, является способом оценки накопленной дозы ионизирующего β-излучения с использованием твердотельных термолюминесцентных детекторов и может быть использовано при персональной дозиметрии при мониторинге радиационной обстановки в различных условиях....
Тип: Изобретение
Номер охранного документа: 0002473925
Дата охранного документа: 27.01.2013
27.01.2013
№216.012.20e9

Устройство для определения поглощенной дозы β-излучения в твердотельном термолюминесцентном детекторе

Изобретение относится к радиационной физике, является устройством для определения поглощенной дозы ионизирующего β-излучения в термолюминесцентном детекторе и может быть использовано при персональной дозиметрии, при мониторинге радиационной обстановки в различных условиях. Сущность изобретения...
Тип: Изобретение
Номер охранного документа: 0002473926
Дата охранного документа: 27.01.2013
10.02.2013
№216.012.236a

Способ получения 1,4-дизамещенных [1.1.1.1.1] пентиптиценов

Изобретение относится к способу получения 1,4-дизамещенных [1.1.1.1.1] пентиптиценов R = С≡С-Аr; тиенил-2. Способ включает взаимодействие пентиптиценхинона с литиевыми производными гетаренов и ацетиленов с последующей ароматизацией восстанавливающим агентом. При этом способ характеризуется...
Тип: Изобретение
Номер охранного документа: 0002474568
Дата охранного документа: 10.02.2013
10.02.2013
№216.012.2407

Роторный ветродвигатель с ветронаправляющим экраном

Изобретение относится к области ветроэнергетики и может быть использовано для получения механической или электрической энергии. Роторный ветродвигатель содержит вращающуюся ветротурбину, расположенную внутри ветронаправляющего экрана, состоящего из отдельных лопаток, поворачивающихся на своих...
Тип: Изобретение
Номер охранного документа: 0002474725
Дата охранного документа: 10.02.2013
20.02.2013
№216.012.286f

Устройство защиты ядерного реактора на быстрых нейтронах

Предлагаемое изобретение относится к системам защиты и диагностики ядерного реактора на быстрых нейтронах АЭС. Устройство защиты ядерного реактора содержит измерители и датчики режимов работы АЭС и системы управления защиты, стержень аварийной защиты для гашения цепной реакции при авариях...
Тип: Изобретение
Номер охранного документа: 0002475871
Дата охранного документа: 20.02.2013
27.02.2013
№216.012.2a6c

Волновод для осветления стекломассы

Изобретение относится к области стекловарения, в частности к стекловаренным печам. Волновод для осветления стекломассы, включающий погруженный в расплав стекломассы цилиндрический корпус волновода с закрытым торцом, снабжен газоструйным акустическим излучателем, трубопроводом для подачи и...
Тип: Изобретение
Номер охранного документа: 0002476387
Дата охранного документа: 27.02.2013
20.03.2013
№216.012.2f61

Устройство для получения труб с винтовым профилем

Изобретение относится к области обработки металлов давлением, конкретно - к трубопрофильному производству. Корпус содержит два держателя с профильными кольцами, установленные последовательно вдоль оси трубы. Один держатель выполнен подвижным с возможностью поворота вокруг своей оси при помощи...
Тип: Изобретение
Номер охранного документа: 0002477664
Дата охранного документа: 20.03.2013
20.03.2013
№216.012.2f90

Легированное кварцевое стекло с тетраэдрической координацией атомов титана

Изобретение касается легированного кварцевого стекла с тетраэдрической координацией атомов титана и может быть использовано при создании оптоэлектронных и светоизлучающих устройств. Легированное кварцевое стекло с тетраэдрической координацией атомов титана представляет собой основу, состоящую...
Тип: Изобретение
Номер охранного документа: 0002477711
Дата охранного документа: 20.03.2013
+ добавить свой РИД