×
27.05.2016
216.015.429d

Результат интеллектуальной деятельности: СПОСОБ ЗАЩИТЫ ОТ ЭРОЗИИ И СОЛЕВОЙ КОРРОЗИИ ЛОПАТОК ТУРБОМАШИН ИЗ ЛЕГИРОВАННЫХ СТАЛЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к области машиностроения и металлургии и может быть использовано в авиационном и энергетическом турбостроении для защиты пера лопатки компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800 °C. Способ включает подготовку поверхности пера лопатки под нанесение покрытия, нанесение первого слоя покрытия из сплава на основе Ni, содержащего Со, Cr, Al, Y, нанесение на первый слой второго слоя из сплава на основе А1, содержащего Y, и термообработку лопатки с покрытием. При этом подготовку поверхности пера лопатки под нанесение покрытия осуществляют электролитно-плазменным полированием, затем осуществляют ионно-имплантационную обработку лопаток, а далее производят нанесение упомянутых слоев покрытия, причем ионно-имплантационную обработку лопаток проводят при энергии от 0,3 до 1 кэВ, дозой от 1,6·10 см до 2·10 см, со скоростью набора дозы от 0,7·10 с до 1·10 с, используя в качестве имплантируемых ионов N, Cr, Ni, Со, Y, Yb, La или их комбинацию, а электролитно-плазменное полирование проводят при напряжении 260-320 В в электролите, содержащем 4-8 % водный раствор сульфата аммония при температуре 60-80 °C. 2 з.п. ф-лы, 1 пр.

Изобретение относится к области машиностроения и металлургии и может использоваться в авиационном и энергетическом турбостроении для защиты пера лопаток компрессора от эрозии и солевой коррозии при температурах эксплуатации до 800°C.

Известен гальванический способ нанесения никель-кадмиевого (NiCd) покрытия на лопатки компрессора ГТД (Петухов А.Н. Усталость замковых соединений лопаток компрессоров // Труды ЦИАМ 1213, 1987. - 36 с.).

Недостатками этого способа являются невысокая эрозионная стойкость покрытия, экологический вред гальванического производства, а также вероятность наводороживания поверхности, обусловливающего снижение выносливости и циклической долговечности.

Также известен способ защиты стальных деталей машин от солевой коррозии последовательным осаждением в вакууме на поверхность пера первого слоя конденсированного покрытия сплава на основе никеля толщиной от 6 до 25 мкм и второго слоя покрытия на основе алюминия толщиной от 4 до 12 мкм (Полищук И.Е. Структура и свойства газотермических покрытий на основе интерметаллидов системы никель-алюминий // Электронная микроскопия и прочность материалов: Сб. науч. тр. НАН Украины, Науч. Совет НАНУ по пробл. "Физика твердого тела". - Киев, 1998).

Недостатками этого способа являются высокая температура отжига (610°C), которая приводит к изменениям в структуре материала (например, таких сталей, как 20X13, ЭИ961, 15Х11МФ). Кроме того, процесс осаждения таких покрытий характеризуется высокой трудоемкостью (не менее 4 ч на садку) и материалоемкостью, при этом увеличение толщины покрытия приводит к существенному снижению ее усталостной и адгезионной прочности.

Известен способ защиты стальных изделий от эрозии и солевой коррозии (преимущественно лопаток паровых турбин), включающий последовательное осаждение в вакууме первого слоя из титана толщиной от 0,5 до 5,0 мкм, затем нанесение второго слоя нитрида титана толщиной 6 мкм (патент РФ 2226227, МПК C23C 14/16, 30/00, опубл. 27.03.2004).

Основным недостатком этого способа является обеспечение недостаточно высокой эрозионной стойкости наносимого покрытия из-за малой толщины и твердости. При увеличении толщины покрытия происходит снижение ее усталостной и адгезионной прочности, что ухудшает эксплуатационные свойства деталей.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является способ защиты лопаток турбомашин из легированных сталей от эрозии и солевой коррозии, включающий подготовку поверхности пера лопатки под нанесение покрытия, нанесение первого слоя покрытия из сплава на основе никеля, содержащего хром, кобальт, алюминий, иттрий, нанесение на первый слой второго слоя из сплава на основе алюминия, содержащего иттрий, и термообработку детали с покрытием (патент РФ №2165475, МПК C23C 14/16, опубл. 20.04.2001).

Основным недостатком аналога является низкая коррозионная и эрозионная стойкость, а также низкая циклическая прочность компрессорных лопаток газотурбинных двигателей (ГТД) и лопаток паровых турбин.

Задачей заявляемого технического решения является повышение коррозионной и эрозионной стойкости, а также циклической прочности компрессорных лопаток газотурбинных двигателей и лопаток паровых турбин.

Техническим результатом заявляемого способа является повышение стойкости покрытия к эрозии и солевой коррозии, при одновременном повышении выносливости и циклической прочности компрессорных лопаток газотурбинных двигателей и лопаток паровых турбин.

Это достигается тем, что в способе защиты от эрозии и солевой коррозии лопаток турбомашин из легированных сталей, включающем подготовку поверхности пера лопатки под нанесение покрытия, нанесение первого слоя покрытия из сплава на основе Ni, содержащего Со, Cr, Al, Y, нанесение на первый слой второго слоя из сплава на основе Al, содержащего Y, и термообработку детали с покрытием, в отличие от прототипа подготовку поверхности пера лопатки под нанесение покрытия осуществляют электролитно-плазменным полированием, затем в едином технологическом цикле установки осуществляют ионно-имплантационную обработку лопаток, а далее производят нанесение упомянутых слоев покрытия, причем ионно-имплантационную обработку лопаток проводят при энергии от 0,3 до 1 кэВ, дозой от 1,6·1019 см-2 до 2·1019 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1, используя в качестве имплантируемых ионов следующие ионы: N, Cr, Ni, Со, Y, Yb, La или их комбинацию, а электролитно-плазменное полирование проводят при напряжении 260-320 В, в электролите: 4-8% водный раствор сульфата аммония при температуре 60-80°C. Кроме того, покрытие может быть нанесено следующим образом: первый слой покрытия наносится из сплава на основе Ni, содержащего компоненты в следующем соотношении, мас. %: Cr - 16-26%, Со - 16-26%, Al - 9-15%, Y - 0,2-0,7%, Ni - остальное, а нанесение второго слоя покрытия производят из сплава на основе Al, дополнительно содержащего Si и Со, при следующем соотношении компонентов, мас. %: Si - 7-11%, Со - 7-14%, Y - 0,2-0,7%, Al - остальное. Согласно изобретению толщина первого слоя составляет 5-7 мкм, а толщина второго слоя составляет 5-7 мкм, термообработку лопатки с покрытием проводят при температуре 580-620°C в течение 3-6 ч.

Использование методов ионно-имплантационной обработки и нанесения ионно-плазменных покрытий позволяет применять для подготовки поверхности под нанесение покрытия электролитно-плазменное полирование. Поэтому покрытие, сформированное на полированной поверхности, имеет высокую адгезию и незначительную шероховатость (Ra=0,08…0,04 мкм), что приводит к повышению циклической прочности деталей. При этом нанесение в качестве первого слоя покрытия сплава на основе никеля, дополнительно содержащего кобальт, а в качестве второго слоя нанесение покрытия алюминиевого сплава, содержащего кремний, иттрий и кобальт, при приведенном выше соотношении компонентов и последующая термообработка покрытия, проводимая в твердой фазе без оплавления сплава на основе алюминия, приводит к образованию во внешнем слое покрытия фаз на основе Ni-Al, Со-Al, Cr-Si и выделению избытка хрома в виде фазы Cr при оптимальном их соотношении, а также закрытии незначительной пористости первого слоя покрытия за счет диффузионных процессов между слоями композиции при ее термообработке, позволяет почти на порядок повысить стойкость к солевой коррозии стальных лопаток компрессора газотурбинного двигателя или лопаток паровых турбин.

Пример конкретной реализации способа.

Для оценки стойкости лопаток паровых турбин и лопаток компрессора газотурбинных двигателей к их сопротивлению эрозионному износу и солевой коррозии были проведены следующие испытания. На образцы из высоколегированных сталей и сплавов на никелевой основе 20X13, 15Х11МФ, ЭИ961, ЭП866ш (15Х16К5Н2МВФАБш), ЭП718 (ХН45МВТЮБРш), ЭП708 были нанесены покрытия как по способу-прототипу (Патент РФ №2165475, МПК C23C 14/16, 20.04.2001), согласно приведенным в способе-прототипе условиям и режимам нанесения, так и покрытия по предлагаемому способу.

Коррозионная стойкость деталей с покрытиями исследовалась на плоских образцах 20×40×1,5 мм по методике ускоренных циклических испытаний по режиму: нагрев до температуры 600°C и выдержка 1 час, охлаждение на воздухе 2 минуты, охлаждение в 3% растворе NaCl, выдержка в течение 22-24 часов во влажной камере. Также на лопатках определялся предел выносливости, причем за 100% был принят предел выносливости лопаток без покрытия.

Удовлетворительным результатом (У.Р.) считалось покрытие, повышающее не менее чем в 2,5-3 раза сопротивление материала основы к коррозионному растрескиванию под напряжением при K=(0,3-0,8) от 0,2 при испытаниях в камере солевого тумана и камере тропического климата после предварительного длительного нагрева (500 часов) при t = 450°C.

У.Р. считалось покрытие, обеспечивающее снижение предела выносливости на лопатках не более чем на 10% от значения передела выносливости лопаток без покрытия.

У.Р. считалось покрытие, обеспечивающее повышение эрозионной стойкости лопаток не менее чем в 1,5 раза по сравнению с прототипом (патент РФ №2165475).

Режимы обработки образцов и нанесения покрытия по предлагаемому способу.

Электролитно-плазменное полирование проводили, погружая детали в водный раствор электролита и прикладывая к ним положительное по отношению к электролиту электрическое напряжение. Полирование осуществляли до обеспечения шероховатости не ниже Ra=0,04…0,08 мкм. Режимы полирования: напряжение 260-320 В (250 В - Неудовлетворительный результат (Н.Р.); 250 В (У.Р.); 290 В (У.Р.); 320 В (У.Р.); 330 В (Н.Р.)), электролит: 4-8% сульфат аммония (3% (Н.Р.), 4% (У.Р.), 8% (У.Р.), 9% (Н.Р.)), температура 60-80°C (50°C (Н.Р.), 60°C (У.Р.), 80°C (У.Р.), 90°C (Н.Р.)).

Ионная имплантация ионами N, Cr, Ni, Со, Y, Yb, La или их комбинацией: энергия 0,2 кэВ (Н.Р.); 0,3 кэВ (У.Р.); 0,5 кэВ (У.Р.); 1,0 кэВ(У.Р.); 1,4 кэВ (Н.Р.); доза - 1,2-1019 см-2 (Н.Р.); 1,6·1019 см-2 (У.Р.); 2·1019 см-2 (У.Р.); 3·1019 см-2 (Н.Р.); скорость набора дозы - 0,4·1015 с-1 (Н.Р.); 0,7·1015 с-1 (У.Р.); 1·1015 с-1(У.Р.); 3·1015 с-1 (Н.Р.).

Первый слой покрытия наносился из сплава на основе никеля, содержащего компоненты в следующем соотношении, мас. %: (Cr - 14% (Н.Р.); Cr - 16% (У.Р.); Cr - 20% (У.Р.); Cr - 26% (У.Р.); Cr - 28% (Н.Р.). Со - 14% (Н.Р.); Со - 16% (У.Р.); Со - 20% (У.Р.); Со - 26% (У.Р.); Со - 28% (Н.Р.). Al - 7% (Н.Р.), Al - 9% (У.P.), Al - 12% (У.P.), Al - 15% (У.Р.), Al - 17% (H.P.).Y - 0,1% (H.P.), Y - 0,2% (У.Р.), Y - 0,5% (У.P.), Y - 0,7% (У.P.), Y - 0,9% (H.P.), Ni, во всех случаях - остальное).

Второй слой покрытия наносился из сплава на основе алюминия, дополнительно содержащего Si и Со, при следующем соотношении компонентов, мас. %: Si - 7-11%, Со - 7-14%, Y - 0,2-0,7%, Al - остальное.

Детали загружались в установку, и в едином технологическом цикле установки (за одну садку) проводилась, вначале ионная имплантация, а затем наносились слои покрытия.

Толщина первого слоя бралась: 4 мкм (Н.Р.), 5 мкм (У.Р.), 7 мкм (У.Р.), 9 мкм (Н.Р.). Толщина второго слоя бралась: 4 мкм (Н.Р.), 5 мкм (У.Р.), 7 мкм (У.Р.), 9 мкм (Н.Р.).

Термообработку лопатки с покрытием проводили при температуре: 570°C (Н.Р.), 580°C (У.Р.), 620°C (У.Р.), 630°C (Н.Р.), в течение: 2 ч. (Н.Р.), 3 ч. (У.Р.), 6 ч. (У.Р.), 7 ч. (Н.Р.). Оптимальный режим термообработки: 580-620°C в течение 4-6 часов, на воздухе.

Таким образом, использование в предлагаемом способе защиты от эрозии и солевой коррозии лопаток турбомашин из легированных сталей следующих признаков: подготовку поверхности пера лопатки под нанесение покрытия; нанесение первого слоя покрытия из сплава на основе Ni, содержащего Со, Cr, Al, Y; нанесение на первый слой второго слоя из сплава на основе А1, содержащего Y; термообработку детали с покрытием; подготовку поверхности пера лопатки под нанесение покрытия электролитно-плазменным полированием; в едином технологическом цикле установки осуществляют ионно-имплантационную обработку лопаток и нанесение упомянутых слоев покрытия; ионно-имплантационную обработку лопаток проводят при энергии от 0,3 до 1 кэВ, дозой от 1,6·1019 см-2 до 2·1019 см-2, со скоростью набора дозы от 0,7·1015 с-1 до 1·1015 с-1; использование в качестве имплантируемых ионов ионов: N, Cr, Ni, Со, Y, Yb, La или их комбинации; электролитно-плазменное полирование при напряжении 260-320 В, в электролите: 4-8% водного раствора сульфата аммония при температуре 60-80°C; нанесение первого слоя покрытия из сплава на основе Ni, содержащего компоненты в следующем соотношении, мас. %: Cr - 16-26%, Со - 16-26%, Al - 9-15%, Y - 0,2-0,7%, Ni - остальное; нанесение второго слоя покрытия производят из сплава на основе Al, дополнительно содержащего Si и Со, при следующем соотношении компонентов, мас. %: Si - 7-11%, Со - 7-14%, Y - 0,2-0,7%, Al - остальное; толщина первого слоя составляет 5-7 мкм; толщина второго слоя составляет 5-7 мкм; термообработку лопатки с покрытием проводят при температуре 580-620°C в течение 3-6 ч, позволяет достичь технического результата заявляемого способа, которым является повышение стойкости покрытия к эрозии и солевой коррозии, при одновременном повышении выносливости, циклической прочности.

Источник поступления информации: Роспатент

Показаны записи 131-133 из 133.
27.06.2020
№220.018.2bbe

Способ электрополирования детали

Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу...
Тип: Изобретение
Номер охранного документа: 0002724734
Дата охранного документа: 25.06.2020
20.05.2023
№223.018.67f8

Способ подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием

Изобретение относится к способу подбора дозы ионной имплантации для активации поверхности детали из легированной стали перед азотированием. Используют одинаковые по форме и размерам плоские образцы из легированной стали для испытания на разрыв толщиной, равной толщине заданного азотированного...
Тип: Изобретение
Номер охранного документа: 0002794640
Дата охранного документа: 24.04.2023
21.05.2023
№223.018.6a6d

Способ азотирования детали из легированной стали

Изобретение относится к металлургии, в частности к способам химико-термической обработки деталей из легированных сталей, и может быть использовано в машиностроении для поверхностного упрочнения деталей машин, в том числе деталей, работающих в парах трения, зубчатых колес и роторов винтовых...
Тип: Изобретение
Номер охранного документа: 0002795620
Дата охранного документа: 05.05.2023
Показаны записи 171-180 из 213.
21.08.2019
№219.017.c1bd

Способ электрохимической обработки внутреннего канала металлической детали и электрод-инструмент для его реализации

Изобретение относится к области машиностроения и может быть использовано для обработки каналов путем электрохимического шлифования или полирования. Способ включает перемещение электрода-инструмента по внутренней поверхности канала, вдоль его оси при подключении детали к аноду, а...
Тип: Изобретение
Номер охранного документа: 0002697759
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1fb

Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей. Способ включает закрепление блиска на держателе, погружение лопаток блиска в электропроводящие пористые...
Тип: Изобретение
Номер охранного документа: 0002697757
Дата охранного документа: 19.08.2019
21.08.2019
№219.017.c1ff

Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава

Изобретение относится к области машиностроения и может быть использовано для обработки отверстий малого диаметра, например перфорационных отверстий в лопатках из жаропрочных сплавов путем удаления дефектного слоя электрохимической обработкой. Способ включает прожиг отверстий на пере лопатки...
Тип: Изобретение
Номер охранного документа: 0002697751
Дата охранного документа: 19.08.2019
24.08.2019
№219.017.c37a

Пальчиковое уплотнение

Изобретение относится к области турбо- и двигателестроения и может быть использовано в конструкциях газотурбинных двигателей и паровых турбин для уплотнения радиальных зазоров. Пальчиковое уплотнение содержит примыкающие друг к другу кольцевые детали, каждая из которых содержит равномерно...
Тип: Изобретение
Номер охранного документа: 0002698170
Дата охранного документа: 22.08.2019
07.09.2019
№219.017.c840

Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации

Изобретение относится к технологии электрополирования деталей сложной формы и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин. Способ...
Тип: Изобретение
Номер охранного документа: 0002699495
Дата охранного документа: 05.09.2019
02.10.2019
№219.017.cce0

Способ изготовления огнестойкого шланга

Изобретение относится к изготовлению огнестойкого шланга. Осуществляют одевание на дорн оплетки из огнестойкого материала, заливку в цилиндрическую форму, соответствующую внешней поверхности шланга, пасты из кремнийорганического каучука. Осуществляют погружение в упомянутую форму с пастой дорна...
Тип: Изобретение
Номер охранного документа: 0002701235
Дата охранного документа: 25.09.2019
02.10.2019
№219.017.cf37

Способ электрополирования металлической детали

Изобретение относится к области электрополирования металлических деталей, в частности лопаток турбомашин из титановых сплавов, и может быть использовано в турбомашиностроении при полировании лопаток паровых турбин, газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ...
Тип: Изобретение
Номер охранного документа: 0002700226
Дата охранного документа: 13.09.2019
02.10.2019
№219.017.cfbb

Способ электрополирования лопаток блиска

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве...
Тип: Изобретение
Номер охранного документа: 0002700229
Дата охранного документа: 13.09.2019
12.10.2019
№219.017.d492

Способ формирования нанокристаллического поверхностного слоя на детали из сплава на никелевой основе (варианты)

Изобретение относится к способу формирования нанокристаллического поверхностного слоя на детали из сплава на никелевой основе(варианты) и может быть использовано для обработки лопаток газотурбинных двигателей и установок для улучшения их эксплуатационных характеристик. Осуществляют ионную...
Тип: Изобретение
Номер охранного документа: 0002702516
Дата охранного документа: 08.10.2019
12.10.2019
№219.017.d4a0

Способ фрикционной сварки листовых заготовок

Изобретение может быть использовано для соединения сваркой трением стыков большой протяженности, преимущественно, листовых элементов и узлов конструкций из алюминиевых или магниевых сплавов. Способ включает подготовку заготовок, их фиксацию и сварку вращающимся инструментом при его перемещении...
Тип: Изобретение
Номер охранного документа: 0002702536
Дата охранного документа: 08.10.2019
+ добавить свой РИД