×
27.05.2016
216.015.426a

СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ

Вид РИД

Изобретение

Юридическая информация Свернуть Развернуть
№ охранного документа
0002585634
Дата охранного документа
27.05.2016
Краткое описание РИД Свернуть Развернуть
Аннотация: Изобретение относится к области получения синтетических алмазов и может быть использовано в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле. Способ включает осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана. Технический результат заключается в существенном увеличении исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла. 2 ил., 1 пр.
Основные результаты: Способ увеличения размеров алмазов, включающий осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, отличающийся тем, что затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.
Реферат Свернуть Развернуть

Изобретение относится к области получения синтетических алмазов и может быть использовано для увеличения размеров исходных кристаллов алмаза с целью применения их для различных технических нужд, например, в качестве детекторов ядерного излучения в счетчиках быстрых частиц, а также в ювелирном деле.

В настоящее время для синтеза алмазов в промышленности используется метод детонации, что сопряжено с применением высокоактивных взрывчатых веществ (смесь тротила с гексогеном).

Известен способ получения наноалмазов (Патент РФ №2230702, МПК С01В 31/06, опубл. 20.06.2004 г.) [1], основанный на использовании детонации, что сопряжено с применением взрывчатых веществ. Заряд взрывчатого вещества помещают внутрь ледяной бронировки в герметичной взрывной камере и производят его подрыв, затем полученную суспензию наноалмазов в воде сливают в приемную емкость, отделяют наноалмазы и подвергают очистке. Недостатками известного метода являются использование взрывчатых веществ, низкая воспроизводимость и трудность очистки синтезированных алмазов от продуктов распада взрывчатой смеси. Кроме того, по способу [1] возможно получение лишь мелкодисперсных алмазов, непригодных для применения в ювелирных целях.

Известен способ пиролитического выращивания нанокристаллических слоев графита (Патент РФ №2429315, МПК С30В 30/02, B82B 3/00, C30B 29/02, C01B 31/04, опубл. 20.09.2011) [2], включающий нагрев пластин из углеродного материала в герметичной водоохлаждаемой камере прямым пропусканием электрического тока и термическое разложение метана в зазоре между пластинами с осаждением нанокристаллических слоев углерода на подложках из кремния, размещенных в зазоре, причем температуру подложки поддерживают в пределах 1200-1350°C, а давление метана - от 10 до 30 Торр.

Способ [2] позволяет получать алмазы лишь наноразмерного уровня в матрице пирографита, что делает невозможным применение их в ряде технических областей и в ювелирных целях.

Наиболее близким по технической сущности к заявляемому и принятым за прототип является способ эпитаксиального выращивания алмаза, включающий осаждение углерода на затравочный кристалл алмаза (Патент РФ №2008258, МПК С01В 31/06, С30В 23/02, С30В 29/04, опубл. 28.02.1994) [3]. При осуществлении способа на поверхность затравочного кристалла алмаза наносят слой металла-катализатора, помещают его в кварцевую ампулу, содержащую аморфный углерод в форме сажи, вакуумируют и запаивают ампулу, а затем выдерживают ее при температуре 700°С в течение 100 часов.

Недостатками способа [3] являются низкая производительность, а также длительное время изотермической выдержки. Кроме того, маловероятно, что при столь низкой температуре в среде вакуума аморфный углерод способен превращаться в алмаз, поскольку это противоречит данным диаграммы состояния графит-алмаз (возможно, такое превращение может быть объяснено предварительным нанесением на затравочный кристалл хрома в качестве металла-катализатора). Увеличение массы затравочного кристалла после цикла обработки в соответствии с формулой изобретения по данным приведенной в описании патента [3] таблицы крайне незначительно.

Главными отличительными признаками заявляемого способа увеличения размеров алмазов являются использование большого количества затравочных кристаллов алмаза, метана в качестве поставщика углерода и электрического поля, способного ускорять ионы углерода и создавать большое локальное давление при их соударении с затравочными кристаллами, а также поливинилацетата в качестве исходной матрицы для затравочных кристаллов.

Технический результат, на достижение которого направлено заявляемое изобретение, состоит в существенном увеличении размеров исходных кристаллов алмаза в групповом процессе за значительно более короткое время технологического цикла.

Для достижения названного технического результата в известном способе, включающем осаждение углерода на затравочные кристаллы алмазов при их нагреве, при этом затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при низком давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.

Термическое разложение метана в зазоре между углеродными плоскими электродами с осаждением атомов углерода на затравочных кристаллах алмаза, приводит к увеличению их размеров и объединению в крупные агрегаты. При термическом разложении метана в возникшем электрическом поле ионы углерода приобретают кинетическую энергию, позволяющую им создавать при контакте с растущим слоем давление до 20 ГПа, что сопоставимо, а по некоторым данным и превышает давление, достигаемое при подрыве тротила. Температуру подложек поддерживают в пределах 1170±20°С, а давление метана - от 10 до 30 Торр.

Атомарный водород эффективно травит растущий пиролитический углерод с образованием в газовой фазе комплексов C2H2 и CH3, но практически не взаимодействует с алмазом, что обеспечивает преимущество росту именно алмазов. Поливинилацетат [-СН2-СН(ОСОСН3)-]n, окружающий затравочные кристаллы алмаза, при указанной выше температуре также является источником углерода.

В реакционной камере в зазоре между двумя плоскими электродами расположена пластина кремния с нанесенными на ее поверхность с помощью поливинилацетата кристаллами (порошком синтетических алмазов). После герметизации и откачки реакционной камеры, включили нагрев нижнего плоского электрода до получения температуры кремниевой пластины 1170±20°С, напустили метан квалификации ВЧ до давления 25 Торр. Затем подали напряжение 80 В между плоскими электродами. Периодически с частотой 30 минут проводили откачку реакционных продуктов и напуск свежего метана. Общая длительность операционного цикла составила 3,5 часа. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм.

Микрофотография исходных алмазов, полученная с помощью оптического микроскопа, приведена на Фиг. 1.

Оптическая микрофотография поверхности материала приведена на Фиг. 2.

Пример использования способа

В зазоре между двумя лентами: нижней (выполненной из 2-х слоев гибкой углеродной фольги и подключенной к выходным шинам силового трансформатора) и верхней (выполненной из 1-го слоя гибкой углеродной фольги, изолированной от нижней ленты и соединенной с регулируемым источником электрического напряжения) шириной 120 мм и длиной 230 мм каждая, установили пластину из монокристаллического кремния диаметром 100 мм. Предварительно полированная верхняя плоскость пластины была покрыта слоем поливинилацетата, на который нанесли порошок синтетических алмазов АСМ 28/20. После герметизации и откачки реакционной камеры включили нагрев путем пропускания тока через нижнюю ленту, затем в нее напустили метан квалификации ВЧ до давления 25 Торр. Температура пластины кремния достигла значения 1170±20°C. Затем подали напряжение 80 В между верхней и нижней лентами. Общая длительность операционного цикла составила 3,5 часа. При этом циклически проводили откачку реакционных продуктов и напуск свежего метана. После извлечения кремниевой пластины на ее верхней плоскости обнаружен светлый слой пирографита толщиной 400±50 мкм с характерным металлическим блеском, содержащий большое количество выступающих над его поверхностью блестящих включений размерами от 1,5 до 3,5 мм. При микроскопическом исследовании выявлены агрегаты увеличенных в размере исходных затравочных алмазов, соединенных слоями синтезированной в ходе проведения термообработки в среде метана и использовании электрического поля алмазоподобной фазы. Размеры исходных затравочных алмазов (в среднем 20 мкм) увеличились после проведенных обработок в 2-3 раза.

Способ увеличения размеров алмазов, включающий осаждение углерода на затравочные кристаллы алмазов при их нагреве в вакууме, отличающийся тем, что затравочные кристаллы предварительно фиксируют на поверхности полированной пластины монокристаллического кремния, покрытой слоем поливинилацетата, после чего нагревают пластины кремния при электрическом потенциале смещения 80 В в вакууме, затем напускают метан при давлении 10-30 Торр и проводят изотермическую выдержку при температуре 1170±20°С с циклической откачкой реакционных продуктов и напуском свежего метана.
СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ
СПОСОБ УВЕЛИЧЕНИЯ РАЗМЕРОВ АЛМАЗОВ
Источник поступления информации: Роспатент

Показаны записи 31-40 из 92.
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
12.07.2018
№218.016.6fa1

Способ изготовления смесей для калибровки газоаналитического оборудования с использованием твердотельного электролизера

Изобретение относится к исследованию и анализу газов. Способ изготовления смесей для калибровки газоаналитического оборудования, включает: электролиз поступающих в электролизер газовых компонентов с контролируемым выходом продуктов, их смешивание с известным потоком инертного газа и получение...
Тип: Изобретение
Номер охранного документа: 0002661074
Дата охранного документа: 11.07.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
Показаны записи 31-40 из 65.
25.08.2017
№217.015.bfac

Способ изготовления изделия с фильтром для агрессивных жидкостей и газов

Изобретение относится к области химической технологии и может быть использовано для изготовления фильтров, способных применяться для очистки агрессивных жидкостей и газов от инородных включений при высоких температурах эксплуатации, в том числе диметилгидразина, используемого в качестве...
Тип: Изобретение
Номер охранного документа: 0002617105
Дата охранного документа: 20.04.2017
25.08.2017
№217.015.cee8

Способ получения полых нагревателей сопротивления на основе углеродкарбидокремниевого материала

Предложен способ получения полых трубчатых нагревателей из композиционного материала на основе углерода, кремния и карбида кремния путем пропитки расплавленным кремнием предварительно сформированной трубы из углеграфитовых тканей. Заготовку перемещают в вакуумной среде относительно капиллярного...
Тип: Изобретение
Номер охранного документа: 0002620688
Дата охранного документа: 29.05.2017
26.08.2017
№217.015.d64a

Устройство квантовой криптографии (варианты)

Устройство квантовой криптографии включает источник излучения, первый волоконный светоделитель, волоконный интерферометр, второй волоконный светоделитель, первый фазовый модулятор, третий волоконный светоделитель, детектор, аттенюатор, линию задержки, поляризационный фильтр, второй фазовый...
Тип: Изобретение
Номер охранного документа: 0002622985
Дата охранного документа: 21.06.2017
26.08.2017
№217.015.d8c0

Способ получения сульфида галлия (ii)

Изобретение относится к неорганической химии, а именно к получению сульфида галлия (II), являющегося перспективным материалом для полупроводниковой оптоэлектронной техники и инфракрасной оптики. Cинтез GaS проводили в замкнутом объеме из элементарных галлия и серы, взятых в стехиометрическом...
Тип: Изобретение
Номер охранного документа: 0002623414
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e440

Модулятор электромагнитного излучения субтерагерцового и терагерцового диапазона для систем высокоскоростной беспроводной связи

Изобретение относится к оптоэлектронике, а именно к модуляторам электромагнитного излучения, в частности, работающим в субтерагерцовом и терагерцовом диапазонах частот (100-10000 ГГц). Изобретение может использоваться в областях науки и техники, использующих данные диапазоны частот, в...
Тип: Изобретение
Номер охранного документа: 0002626220
Дата охранного документа: 24.07.2017
19.01.2018
№218.016.0759

Способ получения кремниевых мишеней для магнетронного распыления

Изобретение относится к литейному производству, в частности к получению кремниевых профильных отливок для мишеней магнетронного распыления. Шихту полупроводникового поликристаллического кремния расплавляют в графитовом тигле, который перемещают вертикально в полости нагревателя. В донном...
Тип: Изобретение
Номер охранного документа: 0002631372
Дата охранного документа: 21.09.2017
10.05.2018
№218.016.4d2f

Способ выращивания кристаллов фуллерена с60

Изобретение может быть использовано в полупроводниковой оптоэлектронике. Навеску порошка исходного фуллерена С60 загружают в кварцевую ампулу, внутренняя поверхность которой покрыта пироуглеродом для защиты исходного порошка от воздействия УФ излучения. Затем проводят низкотемпературную...
Тип: Изобретение
Номер охранного документа: 0002652204
Дата охранного документа: 25.04.2018
09.08.2018
№218.016.78ff

Материал шпонки для высокотемпературных применений

Изобретение относится к области машиностроения и может быть использовано в устройствах, при работе которых возможно выделение большого количества тепла, приводящего к тепловому расширению шпонки и заклиниванию устройства. Композиционный материал шпонки представляет собой матрицу из...
Тип: Изобретение
Номер охранного документа: 0002663146
Дата охранного документа: 01.08.2018
20.02.2019
№219.016.c16c

Способ получения нанопорошка селенотеллурида цинка

Способ получения нанопорошка селенотеллурида цинка состава ZnSeTe относится к области получения сцинтилляционных материалов и может быть использован в нанотехнологиях, связанных с применением нанопорошков. Технический результат - получение нанопорошка селенотеллурида цинка состава ZnSeTe...
Тип: Изобретение
Номер охранного документа: 0002415805
Дата охранного документа: 10.04.2011
14.03.2019
№219.016.dfbb

Способ прочного соединения изделий из графита

Изобретение относится к области химической технологии и может быть использовано для изготовления блоков из графитовых деталей, способных использоваться при высоких температурах. Сначала на торцевые поверхности подлежащих соединению графитовых деталей наносят слои поливинилацетата, в полученный...
Тип: Изобретение
Номер охранного документа: 0002681628
Дата охранного документа: 11.03.2019
+ добавить свой РИД