×
10.05.2016
216.015.3cbf

Результат интеллектуальной деятельности: СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА NiFeGaCo

Вид РИД

Изобретение

Аннотация: Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co. Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава NiFeGaCo включает отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме. Отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ ], в течение 4 часов. После старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001]. Повышаются механические и функциональные свойства материала. 1 табл., 1 пр.
Основные результаты: Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава NiFeGaCo, ат.%, включающий отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме, отличающийся тем, что отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ ], в течение 4 часов, а после старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале развития мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001].

Изобретение относится к области металлургии, а именно к деформационно-термомеханической обработке монокристаллов ферромагнитных сплавов Ni-Fe-Ga-Co, с целью значительного повышения их механических и функциональных свойств, создания на их основе материалов с многократным эффектом памяти формы. Способ может быть использован в машиностроении, авиационной, космической промышленности, медицине, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов, демпфирующих элементов.

Известен способ термической обработки ферромагнитных сплавов Ni49Fe18Ga27Со6 (ат.%) (Е.Ю. Панченко, Ю.И. Чумляков, Е.Е. Тимофеева, Н.Г. Ветошкина, H.Maier. Циклическая стабильность сверхэластичности в состаренных [ ]-монокристаллах Ni49Fe18Ga27Со6 //Известия вузов. Физика. - 2012.- Т.55- №9.- С. 61-65), который заключается в проведении двухступенчатого отжига: 1 - отжиг при 1373 К, 25 мин с последующей закалкой, 2 - старение при 673 К, 4 ч в свободном состоянии с последующим медленным охлаждением. Это приводит к формированию в аустенитной фазе бимодальной гетерофазной структуры: после высокотемпературного отжига выделяются частицы γ-фазы длиной 5÷10 мкм, которые позволяют пластифицировать материал, после низкотемпературного отжига - наноразмерные частицы размером γ'-фазы 5÷30 нм. Частицы γ'-фазы не испытывают мартенситных превращений, наследуются мартенситом и деформируются упруго при развитии мартенситных превращений в матрице, накапливая значительную упругую энергию. Накопленная при прямом мартенситном превращении обратимая энергия способствует развитию обратного превращения при снятии нагрузки и [ ]-монокристаллы Ni49Fe18Ga27Со6 в данном структурном состоянии проявляют высокую циклическую стабильность сверхэластичности, что является существенным моментом для практического использования. При увеличении времени старения происходит изменение характера развития мартенситных превращений под нагрузкой, частицы γ'-фазы увеличиваются до 150-300 нм и приводят к образованию «неориентированного» мартенсита вблизи поверхности раздела «частица-матрица», отличного от основного. В результате происходит релаксация упругой энергии при развитии мартенситных превращений: вблизи частиц образуются дефекты упаковки и дислокации и наблюдается низкая циклическая стабильность.

Однако старение при 673 К, 4 ч в не приводит к проявлению многократного эффекта памяти формы, поскольку в сплаве NiFeGaCo, подвергнутом отжигу в свободном состоянии, формируются несколько вариантов частиц γ'-фазы, и локальные поля напряжений от частиц в данном случае не приводят к возникновению дальнодействующих полей, способствующих самопроизвольной деформации сплавов при охлаждении.

Известен способ обработки сплавов Cu68.73Zn14.55Al16.72 (ат. %) для получения многократного эффекта памяти формы, который включает в себя ступенчатую термообработку (выдержка при 1120 К, 15 мин, охлаждение до 770 К и последующая закалка в воду при Т=273 К) и последующее термомеханическое циклирование через интервал мартенситных превращений под нагрузкой (постоянные напряжения 34 МПа, количество циклов 30). В ходе отжига при 770 К в материале формируются мелкие частицы γ-фазы порядка 10 нм. Поскольку и в данном случае отжиг проводился в свободном состоянии, то сразу после термообработки многократный эффект памяти формы не наблюдается. Последующие 30 циклов термомеханического циклирования приводят к появлению многократного эффекта памяти формы величиной до 5%. Однако данный метод обладает недостатками. В ходе многочисленных тренировок в материале генерируется и копится большое количество дефектов, которые, с одной стороны, могут способствовать проявлению многократного эффекта памяти формы, но с другой стороны, существенно понижают циклическую стабильность свойств материала и способствуют быстрой деградации (Amengual A., Cesari E., Pons J. Characteristics of the two-way memory effect induced by thermomechanical cycling in Cu-Zn-Al single crystals //Journal de Physique IV. V. 5. C8-871-876).

В качестве наиболее близкого аналога-прототипа выбран способ получения нанокомпозитов с двойным эффектом памяти формы на основе монокристаллов CoNiAl, что достигается посредством термомеханической обработки: отжиг 1613 К в течение 8,5 ч, закалка и последующее старение в вакууме при 673 К, 0,5 ч под действием сжимающей нагрузки 100-120 МПа вдоль [011] направления. Последнее приводит к ориентированному росту неравноосных дисперсных частиц ε-Co размером 10-20 нм и созданию дальнодействующих внутренних полей напряжений, способствующих появлению многократного эффекта памяти формы (патент РФ 2495947, опубл. 20.10.2013, МПК C22F1/10).

Способ-прототип, включающий старение под нагрузкой, имеет недостатки в отношении ферромагнитных сплавов на основе NiFeGaCo. Во-первых, кристаллические структуры фаз в сплавах NiFeGaCo и CoNiAl различны. После обработки при 673 К 0,5 ч в сплавах CoNiAl выделяются частицы размером до 20 нм трех типов: ε-Co с ГПУ решеткой, α-Co с ГЦК решеткой и со сверхструктурой типа Ni2Al (общая объемная доля частиц f ~ 20 %). В сплавах на основе NiFeGaCo при старении 673 К выделяется только γ′-фаза, объемная доля их меньше и частицы имеют другую форму. Для выделения достаточной объемной доли γ′-фазы и созданию дальнодействующих полей напряжений необходим другой режим старения/большее количество времени. Во-вторых, поскольку частицы в NiFeGaCo вытянуты вдоль<111>направлений, то термообработка под нагрузкой вдоль [011] направления не приведет к образованию одного варианта частиц, поскольку существуют 2 направления<111>, эквивалентные по отношению к [011]. Поэтому необходима другая ориентация приложения нагрузки в процессе старения для ориентированного роста частиц. В-третьих, для получения максимальной обратимой деформации при многократном эффекте памяти формы необходим выбор определенной кристаллографической ориентации после проведения двухступенчатой термообработки.

Задачей настоящего изобретения является разработка способа получения многократного эффекта памяти формы в монокристаллах сплавов на основе Ni49Fe18Ga27Co6, с целью проявления многократного эффекта памяти формы при охлаждении в свободном состоянии с величиной, обратимой деформации до 4,5%.

Поставленная задача достигается посредством термомеханической обработки монокристаллов сплавов Ni49Fe18Ga27Co6, включающей первичный нагрев до 1373 К, выдержку в течение 25 мин, закалку и вторичную термомеханическую обработку - старение при 673 К под действием сжимающей нагрузки 100 МПа, которую в отличие от прототипа проводят в течение 4 ч вдоль [ ] направления для ориентированного роста неравноосных дисперсных частиц.

Необходимо подчеркнуть, что в способе-прототипе, после термомеханической обработки образцы вырезались вдоль той же ориентации, вдоль которой проводилось старение - [011]. Первая основная отличительная особенность предложенного способа - это выбор другой ориентации после проведения термомеханической обработки - [001]. При сжатии вдоль этого направления в монокристаллах NiFeGaCo реализуется максимальный ресурс деформации решетки при L21-14М мартенситном превращении - 6,2%.

Второй особенностью является проведение термомеханического циклирования, которое заключается в циклическом изменении температуры в интервале развития мартенситных превращений (от 220 К до 420 К) под действием постоянной сжимающей нагрузки, приложенной вдоль направления [001]. Рекомендуется проводить термомеханическое циклирование при напряжениях от 30 до 80 МПа в течение одного-двух циклов во избежание появления большого количества дефектов.

Пример конкретного выполнения.

Исходным материалом является монокристалл Ni49Fe18Ga27Co6 (ат. %), из которого методом электроискровой резки вырезаны образцы в форме параллелепипеда с ориентацией одного из ребер вдоль [ ] направления. Образцы отжигали в среде He при 1373 К в течение 25 мин и закаливали в воде комнатной температуры. На следующем этапе проводили термомеханическую обработку по описанному выше способу - старение в вакууме при 673 К, 4 ч под нагрузкой 100 МПа, приложенной вдоль [ ] направления, медленное охлаждение и старение в свободном состоянии при 673 К, 4 ч.

После термообработки образцы вырезали вдоль двух направлений - [ ] и [001].

После старения в свободном состоянии многократный эффект памяти формы не возникает независимо от ориентации образцов. Однако проведение термомеханического циклирования в интервале мартенситных превращений (охлаждение до 220 К и нагрев до 420 К) под нагрузкой 40-80 МПа, приложенной вдоль [001] направления, приводит к возникновению многократного эффекта памяти формы величиной до 1,4% (при максимальной обратимой деформации 4,3%). Это значит, что образец при последующем охлаждении под действием минимальных сжимающих напряжений 0,7 МПа, которые позволяют фиксировать изменение размеров образца, испытывает деформацию за счет внутренних дальнодействующих полей напряжений. Деформация является обратимой при нагреве.

После старения под нагрузкой образцы без предварительных тренировок обладают многократным эффектом памяти формы с величиной деформации 1±(0,3)% вдоль [ ] направления и ~0,5±(0,3)% вдоль [001] направления.

Для увеличения обратимой деформации проведено термомеханическое циклирование в интервале мартенситных превращений (от 220 К до 420 К) под нагрузкой. Величина обратимой деформации изменяется в зависимости от величины приложенных напряжений во время проведения термомеханического циклирования и увеличивается от 3% при циклировании при 30 МПа до 4,5 % при циклировании при 80 МПа. Максимальная величина обратимой деформации при реализации обычного эффекта памяти формы в данном состоянии при 30-80 МПа составляет 5%. Следовательно, предложенный способ позволяет достичь эффективности многократного эффекта памяти формы 90% за счет проведения двухступенчатой термической обработки, включающей старение под нагрузкой вдоль [ ] направления, и термомеханического циклирования под нагрузкой вдоль [001] направления.

В таблице приведены значения обратимой деформации при обычном эффекте памяти формы (εЭПФ) и многократном эффекте памяти формы (εМЭПФ) для [001]- и [ ]-монокристаллов, прошедших термомеханическую обработку и тренировку.

Таким образом, предложенный способ обработки монокристаллов сплавов на основе NiFeGaCo позволяет получить многократный эффект памяти формы и использовать монокристаллы в качестве инновационных технических решений, например, датчиков, актюаторов, исполнительных механизмов в различных современных технических конструкциях и устройствах.

Способ получения нанокомпозита с двойным эффектом памяти формы на основе монокристаллов ферромагнитного сплава NiFeGaCo, ат.%, включающий отжиг монокристалла в атмосфере инертного газа с последующей закалкой в воду и старение под нагрузкой при 673 K в вакууме, отличающийся тем, что отжиг монокристалла проводят при температуре 1373 K в течение 25 мин, старение проводят под нагрузкой, приложенной вдоль направления [ ], в течение 4 часов, а после старения проводят термомеханическое циклирование путем циклического изменения температуры в интервале развития мартенситных превращений от 220 K до 420 K под действием постоянной сжимающей нагрузки 30-80 МПа, приложенной вдоль направления [001].
СПОСОБ ПОЛУЧЕНИЯ НАНОКОМПОЗИТА С ДВОЙНЫМ ЭФФЕКТОМ ПАМЯТИ ФОРМЫ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ФЕРРОМАГНИТНОГО СПЛАВА NiFeGaCo
Источник поступления информации: Роспатент

Показаны записи 161-170 из 176.
13.12.2019
№219.017.ed20

Способ металлизации сквозных отверстий в полуизолирующих полупроводниковых подложках

Изобретение относится к электронной технике и предназначено для создания дискретных полупроводниковых приборов и интегральных схем с использованием трехмерной 3D-интеграции посредством электрического соединения их металлических конструктивных элементов сквозными металлизированными отверстиями с...
Тип: Изобретение
Номер охранного документа: 0002708677
Дата охранного документа: 11.12.2019
21.12.2019
№219.017.efff

Апоптозиндуцирующие средства и способ их получения

Изобретение относится к способу получения аддуктов пиколиновой либо никотиновой кислоты с аскорбиновой кислотой, характеризующийся тем, что к водному раствору аскорбиновой кислоты добавляют пиколиновую кислоту либо никотиновую кислоту (предварительно обработанную микроволновым излучением) в...
Тип: Изобретение
Номер охранного документа: 0002709498
Дата охранного документа: 18.12.2019
22.12.2019
№219.017.f0d2

Способ измерения параметров магнитного поля

Изобретение относится к измерению направления или напряженности магнитных полей. Способ измерения постоянного магнитного поля путем измерения параметра, возникающего на обкладках конденсатора из диэлектрического материала, снабженного двумя токопроводящими пластинами с выводами, установленными...
Тип: Изобретение
Номер охранного документа: 0002709703
Дата охранного документа: 19.12.2019
16.01.2020
№220.017.f522

Цифровой интегратор

Изобретение относится к областям радиотехники. Технический результат направлен на повышение точности цифрового интегрирования сигнала по выборке отсчетов заданного объема. Цифровой интегратор, содержащий аналого-цифровой преобразователь (АЦП), вход которого является входом интегратора,...
Тип: Изобретение
Номер охранного документа: 0002710990
Дата охранного документа: 14.01.2020
17.01.2020
№220.017.f648

Способ определения массы нефтезагрязнений на единицу площади донных отложений водных объектов

Изобретение относится к области охраны окружающей среды, в частности к аналитическому контролю содержания нефтезагрязнений в минеральных, органогенных и смешанных донных отложениях. Способ может использоваться при экологическом мониторинге загрязненных водных объектов, для оценки ущерба,...
Тип: Изобретение
Номер охранного документа: 0002711119
Дата охранного документа: 15.01.2020
22.01.2020
№220.017.f7e1

Аминопластичные смолы для слоистых пластиков

Изобретение относится к области высокомолекулярных соединений, а именно к конденсационным полимерам альдегидов или кетонов с двумя или более прочими мономерами, и может быть использовано в качестве конструкционного материала как самостоятельно, так и в составе композитов. Аминопластичная смола...
Тип: Изобретение
Номер охранного документа: 0002711592
Дата охранного документа: 17.01.2020
22.01.2020
№220.017.f83e

Способ повышения продуктивности растений картофеля в оптимальных и стрессовых условиях выращивания

Изобретение относится к биотехнологии и может быть использовано в сельском хозяйстве для увеличения выхода оздоровленных миниклубней картофеля в гидропонных условиях или на торфе. Способ включает обработку растений раствором биологически активных веществ. При этом в процессе адаптации к жидкой...
Тип: Изобретение
Номер охранного документа: 0002711577
Дата охранного документа: 17.01.2020
22.01.2020
№220.017.f8a3

Способ лечения кистоза придатка яичка

Изобретение относится к медицине и медицинской техники, а именно к андрологии, и может быть использовано для лечения кистоза придатка яичка. Удаление кисты осуществляют аппликацией охлажденного в жидком азоте с контактными элементами инструмента из проницаемо-пористого никелида титана на место...
Тип: Изобретение
Номер охранного документа: 0002711622
Дата охранного документа: 17.01.2020
19.03.2020
№220.018.0de3

Способ одновременного определения токсичных компонентов в имплантатах из полилактид-гликолида (plga)

Изобретение относится к аналитической химии, а именно к способам количественного определения токсичных компонентов в имплантатах на основе полилактид-гликолида (PLGA) методом газовой хроматографии. Способ одновременного определения в одной пробе количественного определения токсичных компонентов...
Тип: Изобретение
Номер охранного документа: 0002716831
Дата охранного документа: 17.03.2020
21.03.2020
№220.018.0e9b

Комплекс распределенного управления интеллектуальными роботами для борьбы с малогабаритными беспилотными летательными аппаратами

Комплекс распределенного управления интеллектуальными роботами для борьбы с малогабаритными беспилотными летательными аппаратами (БПЛА) содержит БПЛА-охотник, блок поиска БПЛА-нарушителя, средства захвата или ликвидации БПЛА-нарушителя, комплект мобильных наземных роботов высокой проходимости,...
Тип: Изобретение
Номер охранного документа: 0002717047
Дата охранного документа: 18.03.2020
Показаны записи 101-103 из 103.
13.02.2018
№218.016.20fa

Способ обработки монокристаллов ферромагнитного сплава conial с содержанием ni 33-35 ат.% и al 29-30 ат.%

Изобретение относится к области металлургии, а именно к обработке монокристаллов ферромагнитного сплава CoNiAl с эффектом памяти формы, и может быть использовано для создания рабочего тела актуатора. Способ обработки монокристалла ферромагнитного сплава CoNiAl с содержанием Ni 33-35 ат. % и Al...
Тип: Изобретение
Номер охранного документа: 0002641598
Дата охранного документа: 18.01.2018
04.04.2018
№218.016.30d0

Способ обработки заготовок ванадиевых сплавов

Изобретение относится к металлургии, а именно к области радиационного материаловедения, и может быть использовано в технологических циклах получения полуфабрикатов сплавов на основе ванадия, легированных элементами Периодической системы элементов. Способ обработки заготовок ванадиевых сплавов...
Тип: Изобретение
Номер охранного документа: 0002644832
Дата охранного документа: 14.02.2018
07.09.2019
№219.017.c844

Способ термической обработки монокристаллов сплава fe-ni-co-al-ti-nb, ориентированных вдоль направления [001], с двойным эффектом памяти формы

Изобретение относится к области металлургии, а именно к обработке монокристаллов сплава Fe-Ni-Co-Al-Ti-Nb, и может быть использован в машиностроении, авиационной, космической промышленности, механотронике и микросистемной технике для создания исполнительных механизмов, датчиков, актюаторов,...
Тип: Изобретение
Номер охранного документа: 0002699470
Дата охранного документа: 05.09.2019
+ добавить свой РИД