×
10.05.2016
216.015.3c99

Результат интеллектуальной деятельности: СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ

Вид РИД

Изобретение

Аннотация: Использование: для определения свойств многокомпонентных сложнолегированных жаропрочных расплавов, основанного на изучении крутильных колебаний цилиндрического тигля с расплавом. Сущность изобретения заключается в том, что определяют температурные зависимости свойств образца расплава с получением значений в виде электрических сигналов, значения температурных зависимостей подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, затем продифференцированные сигналы подают на один из входов блока сравнения, отличается тем, что используют второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной преобразуют в однополярные сигналы, передним фронтом первого включают счет импульсов, а задним фронтом последнего выключают счет импульсов в диапазоне температур между температурой гистерезиса t и аномальной t, фиксируют количество импульсов, которое соответствует значению изменения измеряемого свойства, в вышеуказанном диапазоне температур Δt, определяют максимум сигналов первого дифференцирующего устройства (Δρ/Δt) посредством их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца при возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры t затем начинают охлаждение образца, продолжают исследовать свойства вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)=К в виде коэффициента структурной перестройки К расплава фиксируют как характеристику расплава. Технический результат: обеспечение возможности получения дополнительной информации о расплаве, получения количественного параметра интенсивности структурной перестройки жаропрочных расплавов. 4 ил.
Основные результаты: Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств образца расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые синхронно со значениями температурных зависимостей свойств образца расплава отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея, отличается тем, что в качестве блока сравнения используют по меньшей мере двухвходовое второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога значений электрического сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной посредством использования буферных узлов преобразуют в однополярные сигналы, передним фронтом первого из них включают счет импульсов, а задним фронтом последнего из них выключают счет импульсов в диапазоне температур Δt=t-t расплава между температурой гистерезиса t и аномальной t температурой, фиксируют количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, например его удельного электросопротивления Δρ, в вышеуказанном диапазоне температур Δt образца расплава, определяют максимальную величину продифференцированных сигналов первого дифференцирующего устройства (Δρ/Δt) посредством процедуры их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца расплава при по меньшей мере трех возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры t, затем начинают стандартную процедуру охлаждения образца расплава, продолжают исследовать свойства этого образца при его охлаждении вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)=К в виде коэффициента структурной перестройки К расплава фиксируют как характеристику данного расплава.

Изобретение относится к технической физике, а именно, к способам контроля и измерения термозависимостей, или политерм, физических свойств веществ, и предназначено для определения свойств многокомпонентных сложнолегированных жаропрочных металлических сплавов, преимущественно на основе никеля, при бесконтактном измерении политерм электросопротивления ρ образцов этих расплавов фотометрическим методом, основанным на изучении крутильных колебаний цилиндрического тигля с расплавом. Дополнительной сферой применения являются металлургические процессы, в частности разработка технологических схем производства сплавов с заданными свойствами.

Изучение термозависимостей свойств образцов металлических сплавов объемом в единицы см3 позволяет определить их структурно-чувствительные характеристики, проводить прогностический анализ и давать рекомендации для получения сплавов с заданными характеристиками, например выделять гистерезисные характеристики цикла нагрева - охлаждения, характерные температуры гистерезиса tг, аномальные tан и критические температурные точки. Для исследований жаропрочных многокомпонентных металлических расплавов, преимущественно на основе никеля, в основном используют бесконтактный фотометрический - на базе измерения траектории отраженного от зеркала светового луча - «зайчика», способ определения параметров расплава, в частности удельного электросопротивления ρ изучаемого образца, методом вращающегося магнитного поля, посредством изучения параметров крутильных колебаний упругой нити с подвешенным на ней в электропечи тиглем с этим образцом - см. патент РФ №2457473 - аналог.

Вид и характеристики температурных зависимостей отражают различные физико-химические и структурные параметры сплава, в том числе аномалии, скачкообразные структурные изменения или перестройки, происходящие в расплаве, причем такой анализ требует высокой квалификации и опыта экспериментатора. Как правило, образующийся в процессе выплавки расплав является неравновесным. При этом под равновесным состоянием понимают равномерное распределение атомов элементов в расплаве по нанообъемам - кластерам жидкого металла, а однородное состояние достигают при равномерном распределении кластеров различного химического состава по всему объему образца. Уровень равновесности и однородности расплава оказывает влияние на переохлаждение жидкого металла при разливке, характере струи, процессов кристаллизации: диффузии элементов, формировании дендритной структуры, выделении различных фаз и проч. В дальнейшем это отражается на технологических и служебных характеристиках - микротвердости, пластичности, теплопроводности, ковкости, свариваемости, обрабатывании резанием и т.д.

Характер структурных изменений при нагреве жидкого металла не монотонен. В частности, для группы сплавов с высокой легированностью известна - см. фиг. 2, типовая температурная зависимость удельного электросопротивления ρ(t), патент РФ №2299425, фиг. 4. с. 9 - аналог. Для подобных сплавов монотонная зависимость сохраняется лишь до определенных аномальных температур tан, при этом интервал температур от температуры ликвидуса tL до аномальных температур tан отражает термическую устойчивость первичной неравновесной структуры расплава, образующейся после плавления шихты. Интенсивное увеличение удельного электросопротивления ρ(t) начинается от tан и продолжается по сложной кривой до температуры гистерезиса tг, но устойчивое состояние формирующейся равновесной структуры расплава достигается лишь при нагреве до критических температур tкр. Температурный интервал между tан и температурой гистерезиса tг характеризует интенсивность перестройки структуры расплава в равновесное состояние, т.е. Δtип=tг-tан. Поскольку температурный интервал Δtип зависит от качественного и количественного состава сплавов, он может существенно отличаться у различных сплавов, как и удельное электросопротивление ρ(t), причем вид ρ(t) при охлаждении свидетельствует о сохранении равновесного структурного состояния вплоть до температур кристаллизации. Поэтому динамику состояния расплава при различных температурах целесообразно описать последовательностью структурообразования.

Прототипом изобретения является способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые синхронно со значениями температурных зависимостей свойств расплава отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея - см. пат. РФ №2477852.

Недостатками определения интенсивности структурной перестройки расплавов жаропрочных сплавов посредством вышеуказанных аналогов и прототипа являются недостаточность, неоднозначность и субъективность качественной оценки при отсутствии количественной оценки этой перестройки. В конечном итоге, не обеспечена точность оценки интенсивности структурной перестройки расплава посредством изучения термозависимостей свойств жаропрочных металлических расплавов.

Задачей предлагаемого изобретения является обеспечение получения дополнительной информации о расплаве, получение количественного параметра интенсивности структурной перестройки расплавов жаропрочных сплавов, уменьшение субъективности оценки динамики параметров термозависимостей, повышение наглядности и точности оценки этой перестройки, а также обеспечение проведения экспериментов персоналом невысокой квалификации, в том числе студентами.

Для решения поставленной задачи предлагается способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов.

Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например, удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств образца расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые, синхронно со значениями температурных зависимостей свойств образца расплава, отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея, отличается тем, что в качестве блока сравнения используют по меньшей мере двухвходовое второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога значений электрического сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной посредством использования буферных узлов преобразуют в однополярные сигналы, передним фронтом первого из них включают счет импульсов, а задним фронтом последнего из них выключают счет импульсов в диапазоне температур Δt=tг-tан расплава между температурой гистерезиса tг и аномальной tан температурой, фиксируют количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, например его удельного электросопротивления Δρ в вышеуказанном диапазоне температур Δt образца расплава, определяют максимальную величину продифференцированных сигналов первого дифференцирующего устройства (Δρ/Δt)max посредством процедуры их пикового детектирования с последующим запоминанием этой максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца расплава при по меньшей мере трех возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры tкр затем начинают стандартную процедуру охлаждения образца расплава, продолжают исследовать свойства этого образца при его охлаждении вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)maxипс в виде коэффициента структурной перестройки Кипс расплава фиксируют как характеристику данного расплава.

Отличительные признаки предлагаемого способа обеспечивают технический результат - получение количественного параметра интенсивности структурной перестройки расплавов жаропрочных сплавов в виде коэффициента структурной перестройки Кипс расплава, уменьшение субъективности оценки этой перестройки, повышение наглядности и точности оценки интенсивности вышеуказанной структурной перестройки, а также обеспечение возможности проведения экспериментов персоналом невысокой квалификации, в том числе студентами.

Изобретение поясняется чертежами, где:

фиг. 1 - блок-схема измерительного комплекса;

фиг. 2 - типовая зависимость удельного электросопротивления ρ от температуры t при нагреве и охлаждении высоколегированного многокомпонентного жаропрочного сплава;

фиг. 3 - температурная зависимость, первая и вторая производные удельного электросопротивления ρ жаропрочного сплава ЖС-36(0,002 С);

фиг. 4 - температурная зависимость, первая и вторая производные удельного электросопротивления р жаропрочного сплава ЖС-36(0,006 С);

Предлагаемый способ осуществляют посредством комплекса, который содержит лабораторную установку 1, компьютер 2 с дисплеем, связанный шиной данных и управляющих сигналов 3 с установкой 1, первое дифференцирующее устройство 4, второе дифференцирующее устройство 5, буферный блок 6, счетчик импульсов 7, пиковый детектор 8. Установка 1 предназначена для измерения удельного электросопротивления ρ металлических расплавов фотометрическим методом путем определения параметров крутильных колебаний упругой нити с подвешенным на ней внутри изотермической зоны в области вращающегося 50-Гц магнитного поля в 30-кВт вакуумной электропечи керамическим тиглем с образцом расплава объемом в единицы см3. Дисплей компьютера 2 используют в том числе как устройство отображения информации в виде многоканального дисплея. Первое и второе дифференцирующие устройства 4 и 5, буферный блок 6, счетчик импульсов 7, пиковый детектор 8 предпочтительно реализуют программно в виде виртуальных компьютерных блоков в составе компьютера 2 или в виде нижеперечисленных устройств. Оба дифференцирующих устройства 4 и 5 реализуют в виде дифференциатора на операционном усилителе (ОУ) с RC-цепью - см. Дж. Рутковски. Интегральные операционные усилители. - М.: Мир, 1978, с. 295. На один из входов ОУ как первого, так и второго дифференцирующего устройства 4 и 5 подают опорное напряжение (уровень) U4оп и U5оп с раздельно регулируемой от нуля до +/- Umax величиной для каждого из дифференцирующих устройств 4 и 5, в соответствии с опытом, накопленным за некоторое количество экспериментов либо заранее заданной величиной. Буферный блок 6 реализуют в виде повторителя и инвертора КМОП-логики, например CD4041A - см. В.Л. Шило. Популярные цифровые микросхемы, Справочник. - М.: Радио и связь, 1987, с. 213. Счетчик импульсов 7 собран на асинхронном 14-разрядном КМОП-счетчике пульсаций К561ИЕ16 - см. вышеотмеченный В.Л. Шило … с. 246. Пиковый детектор 8 собран на диоде КД 503 с ОУ - см. Б.И. Горошков. Элементы радиоэлектронных устройств. - М.: Радио и связь, 1989, с. 98. Выходные сигналы обоих дифференцирующих устройств 4 и 5, а также пикового детектора 8 вводят через вход многоканального АЦП или через СОМ-порт в компьютер 2 и выводят на дисплей компьютера 2.

Предлагаемый способ осуществляют следующим образом. Проводят штатный эксперимент по регистрации температурных зависимостей удельного электросопротивления ρ изучаемого образца жаропрочного сплава на установке 1. При этом сигналы 9, соответствующие значениям ρ(t), т.е. одному из свойств жаропрочных расплавов, которые отображают на одном из каналов многоканального дисплея компьютера 2, подают на вход первого дифференцирующего устройства 4. С его выхода снимают продифференцированные сигналы 10, которые адекватно значениям температурных зависимостей свойств расплава ρ(t) отображают посредством второго канала многоканального дисплея компьютера 2. Кроме того, продифференцированные сигналы 10 подают на вход пикового детектора 8, с выхода которого на вход компьютера 2 поступает электрический сигнал, уровень которого пропорционален текущему максимальному значению продифференцированных сигналов 10, т.е. первой производной (dρ/dt)max. Параметры этого сигнала 14 запоминают в памяти компьютера 2. Опорное напряжение (уровень) 15 U4оп и 16 U5оп с раздельно регулируемой от нуля до +/- Umax величиной для каждого из дифференцирующих устройств 4 и 5 могут быть в соответствии с опытом, накопленным за некоторое количество экспериментов, либо регулируемой экспериментатором, либо заранее заданной величиной. Одновременно продифференцированные сигналы 10 подают на вход второго дифференцирующего устройства 5, выходные сигналы 11 которого в виде второй производной ρ(t), т.е. d2ρ/d(t)2, подают на буферный блок 6, который разнополярные выходные сигналы 11 преобразует в однополярные сигналы, и на третий канал многоканального дисплея компьютера 2. Выходной сигнал 12 счетчика импульсов 7 подают в компьютер 2. Однополярные выходные сигналы с выхода буферного блока 6 передним фронтом первого из них включают счет импульсов 13, подаваемых от внутреннего генератора тактовых импульсов компьютера 2, посредством счетчика импульсов 7, а задним фронтом последнего из них выключают счет импульсов 13 в диапазоне температур Δt=tг-tан расплава между температурой гистерезиса tг и аномальной tан температурой, фиксируют в памяти компьютера 2 количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, т.е. его удельного электросопротивления Δρ в вышеуказанном диапазоне температур Δt образца расплава. Кроме того, при этом визуально оценивают осциллограммы вышеуказанных каналов. Во время экспериментов выделяют штатные характерные параметры на предполагаемых термозависимостях - см. фиг. 2, в частности ρ, при температурах ликвидуса tL, гистерезиса tг, аномалий tан, критической tкр.

В качестве первого примера на фиг. 3 приведены термозависимости удельного электросопротивления ρ(t) при нагреве 17 и охлаждении 18 образца жаропрочного сплава ЖС-36(0,002 С), графики первой производной 10 при нагреве 19 и охлаждении 20, а также второй производной 11 при нагреве 21 и охлаждении 22. При этом могут быть использованы регулируемые пороги 23 и 24, отсекающие из анализа результатов значения вышеотмеченных параметров 10 и 11, не представляющие интереса в конкретном эксперименте. Аналогичные графики термозависимости удельного электросопротивления Δρ при нагреве 25 и охлаждении 26 образца жаропрочного сплава ЖС-36(0,006С) приведены на фиг. 4 вместе с графиками первой производной 10 при нагреве 27 и охлаждении 28, а также второй производной 11 при нагреве 29 и охлаждении 30. При этом аналогично могут быть использованы регулируемые пороги 31 и 32, отсекающие из анализа результатов значения вышеотмеченных параметров 10 и 11, не представляющие интереса в конкретном эксперименте. Различие характеристик этих сплавов определяет прежде всего содержание в них углерода С.

После достижения температуры гистерезиса tг значения как первой 10, так и второй 11 производных становятся практически нулевыми, однако нагрев образца продолжают, как выше отмечено, для получения еще по меньшей мере трех значений ρ(t) вплоть до критической температуры tкр образца жаропрочного сплава. После этого, если значения величин первой 10 и второй 11 производных остаются нулевыми, пренебрежимо малыми или лежащими ниже пороговых значений 23, 24, 31, 32, например, меньше 0,5 максимальной величины первой 10 и второй 11 производных, компьютер 2 начинает процесс охлаждения изучаемого образца, в том числе без участия экспериментатора.

Дополнительной характеристикой динамики происходящих процессов может служить коэффициент интенсивности структурной перестройки Кипс=Δρ/Δt=Δρ/Δtип. При этом Δρ представляет собой разницу величин удельного электросопротивления ρ при аномальной температуре на температурных зависимостях ρ(t) нагрева и охлаждения, в том числе отношением Δρ/Δtип Величина Δtип - это значение температурного интервала между tг и tан, т.е. Δtип=tг-tан.

Значение максимального отношения (Δρ/Δt)maxипс max в виде коэффициента структурной перестройки Кипс каждого из сплавов в соответствии с фиг. 3 и фиг. 4, равно Кипс 1 max=0,5 и Кипс 2 max=0,25 и характеризует интенсивность процессов установления равновесного и однородного состоянии каждого расплава. Косвенно это отражает и энерготраты, характеризующие процесс получении данного сплава. При этом, как отмечено выше, равновесное состояние - это равномерное распределение атомов элементов в расплаве по кластерам расплава жидкого металла, а однородное состояние достигают при равномерном распределении кластеров различного химического состава по всему объему образца.

Таким образом, предложенный способ позволяет получить значение Кипс и расширить объем информации об изучаемом сплаве. По мере накопления опыта по групповому использованию сигналов, соответствующих значениям политерм одного из свойств расплава, например ρ(t), совместно с сигналами, отражающими значения его первой и второй производных, у экспериментатора появляется наглядная дополнительная объективная информация о значениях и параметрах динамики политерм, в том числе в количественной форме.

Предложенное техническое решение, содержит вышеуказанную совокупность ограничительных и отличительных признаков, не выявленных в известном уровне техники, что при достижении вышеописанного технического результата позволяет считать предложенное техническое решение имеющим изобретательский уровень.

Способ определения интенсивности структурной перестройки расплавов жаропрочных сплавов, при котором определяют температурные зависимости свойств образца расплава, например удельного электросопротивления ρ, с получением значений свойств в виде электрических сигналов, которые отображают на одном из каналов многоканального дисплея, значения температурных зависимостей свойств образца расплава подают на вход первого дифференцирующего устройства, с его выхода снимают продифференцированные сигналы, которые синхронно со значениями температурных зависимостей свойств образца расплава отображают на втором канале многоканального дисплея, затем продифференцированные сигналы подают на один из входов блока сравнения, выходные сигналы которого подают на третий канал многоканального дисплея, отличается тем, что в качестве блока сравнения используют по меньшей мере двухвходовое второе дифференцирующее устройство, один из входов которого обладает функцией регулировки порога значений электрического сигнала, выходной сигнал этого дифференцирующего устройства в виде второй производной посредством использования буферных узлов преобразуют в однополярные сигналы, передним фронтом первого из них включают счет импульсов, а задним фронтом последнего из них выключают счет импульсов в диапазоне температур Δt=t-t расплава между температурой гистерезиса t и аномальной t температурой, фиксируют количество импульсов, которое соответствует значению изменения величины измеряемого свойства образца расплава, например его удельного электросопротивления Δρ, в вышеуказанном диапазоне температур Δt образца расплава, определяют максимальную величину продифференцированных сигналов первого дифференцирующего устройства (Δρ/Δt) посредством процедуры их пикового детектирования с последующим запоминанием максимальной величины, после выключения счета продолжают увеличивать температуру нагрева образца расплава при по меньшей мере трех возрастающих значениях температуры и определяют величины измеряемого свойства расплава вплоть до значения критической температуры t, затем начинают стандартную процедуру охлаждения образца расплава, продолжают исследовать свойства этого образца при его охлаждении вплоть до кристаллизации, после чего значение запомненного ранее максимального отношения (Δρ/Δt)=К в виде коэффициента структурной перестройки К расплава фиксируют как характеристику данного расплава.
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ
СПОСОБ ОПРЕДЕЛЕНИЯ ИНТЕНСИВНОСТИ СТРУКТУРНОЙ ПЕРЕСТРОЙКИ РАСПЛАВОВ ЖАРОПРОЧНЫХ СПЛАВОВ
Источник поступления информации: Роспатент

Показаны записи 41-50 из 115.
10.01.2015
№216.013.1859

Аккумулятор тепловой энергии периодического действия

Изобретение относится к энергетике и может быть использовано в аккумуляторах тепловой энергии, произведенной за счет использования электрической энергии в периоды ее наименьшей стоимости по ночным тарифам. Сущность изобретения: аккумулятор тепловой энергии периодического действия, содержащий в...
Тип: Изобретение
Номер охранного документа: 0002537661
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1990

Способ передачи данных в полосе частот аналогового тв

Изобретение относится к технике связи и может использоваться для передачи данных в полосе частот аналогового ТВ. Технический результат состоит в обеспечении магнитной совместимости телевизионных операторов в одной полосе частот. Для этого способ основан на выборе в полосе ТВ частотных окон,...
Тип: Изобретение
Номер охранного документа: 0002537972
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1a45

Электрохимический способ иммуноанализа для определения микроорганизмов

Изобретение относится к биотехнологии, в частности к определению содержания микроорганизмов в различных объектах и средах. Способ предусматривает конъюгацию бактерий с электрохимической меткой, в качестве которой используют Fe, MgFeO или FeO, осуществляемую в водной среде при заданных...
Тип: Изобретение
Номер охранного документа: 0002538153
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1df8

Биогазовая установка

Изобретение относится к области переработки и утилизации органических отходов путем сбраживания биомассы для получения биогаза и удобрения, в том числе в зонах с холодным климатом. Биогазовая установка содержит теплоизолированный метантенк, состоящий из экструдера-смесителя, электрических...
Тип: Изобретение
Номер охранного документа: 0002539100
Дата охранного документа: 10.01.2015
10.01.2015
№216.013.1dfc

Способ изготовления безгистерезисного актюатора с линейной пьезоэлектрической характеристикой

Изобретение относится к области изготовления устройств точного позиционирования на основе пьезоэлектрических актюаторов, характеризующихся широким интервалом рабочих температур, в частности для изготовления прецизионных безгистерезисных сканеров сканирующих зондовых микроскопов и устройств...
Тип: Изобретение
Номер охранного документа: 0002539104
Дата охранного документа: 10.01.2015
10.02.2015
№216.013.2254

Сталь для изготовления кованых прокатных валков

Изобретение относится к области металлургии, а именно к инструментальным сталям, используемым для изготовления кованых прокатных валков для горячей прокатки металла, например, профилей и труб. Сталь содержит компоненты при следующем соотношении, мас.%: углерод (С) 1,2-1,4, кремний (Si) 0,2-0,5,...
Тип: Изобретение
Номер охранного документа: 0002540241
Дата охранного документа: 10.02.2015
10.02.2015
№216.013.22a0

Способ переработки алюминиевого шлака

Изобретение относится к вторичной металлургии, в частности, к способу переработки алюминиевого шлака. Способ включает измельчение алюминиевого шлака, выделение металлического алюминия, смешивание остатка после выделения металлического алюминия с компонентом, содержащим окислы железа, спекание,...
Тип: Изобретение
Номер охранного документа: 0002540317
Дата охранного документа: 10.02.2015
20.02.2015
№216.013.2773

Система предотвращения аварий карьерного автомобиля

Изобретение относится к системам повышения безопасности движения карьерных автомобилей. Система предотвращения аварий карьерного автомобиля с антиблокировочной системой тормозов содержит две штанги, установленные на горизонтальном кронштейне кузова с возможностью поворота в вертикальное и...
Тип: Изобретение
Номер охранного документа: 0002541556
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2a0c

Способ получения цилиндрической заготовки в виде прутка из металлического армированного композиционного материала

Изобретение относится к области металлургии, а именно к методам получения заготовок типа прутков из композиционных материалов литейными технологиями. Способ включает размещение в цилиндрической емкости проволоки из упрочняющего металлического материала, расплавление металла матрицы, заполнение...
Тип: Изобретение
Номер охранного документа: 0002542221
Дата охранного документа: 20.02.2015
20.02.2015
№216.013.2b16

Способ определения содержания грамотрицательных патогенных бактерий в анализируемой среде

Изобретение относится к электрохимическим методам анализа, а именно к иммуноанализу, в частности к определению содержания патогенных микроорганизмов в различных объектах и средах. Изобретение может быть использовано в микробиологии, медицине, экологии для мониторинга содержания микроорганизмов...
Тип: Изобретение
Номер охранного документа: 0002542487
Дата охранного документа: 20.02.2015
Показаны записи 41-50 из 168.
20.01.2014
№216.012.97f5

Способ получения люминофора в виде аморфной пленки диоксида кремния с ионами селена на кремниевой подложке

Изобретение к способу получения люминофора в виде аморфной пленки диоксида кремния с ионами селена, расположенной на кремниевой подложке. Способ включает имплантацию ионов селена с энергией ионов 300±30 кэВ при флюенсе 4÷6·10 ион/см в указанную пленку и первый отжиг при температуре 900÷1000°C...
Тип: Изобретение
Номер охранного документа: 0002504600
Дата охранного документа: 20.01.2014
20.01.2014
№216.012.98c3

Одномодовый двухслойный кристаллический инфракрасный световод

Изобретение относится к волоконно-оптическим системам связи, а именно к одномодовым двухслойным кристаллическим инфракрасным (ИК) световодам для спектрального диапазона от 2 до 50 мкм. Световод включает сердцевину и оболочку. Сердцевина диаметром 10-250 мкм выполнена из кристаллов на основе...
Тип: Изобретение
Номер охранного документа: 0002504806
Дата охранного документа: 20.01.2014
27.01.2014
№216.012.9b84

Способ получения трифенилена

Изобретение относится к области органического синтеза полиядерных углеводородов. Предлагается способ синтеза трифенилена путем взаимодействия на первой стадии циклогексанона последовательно с NaOH, полифосфосфорной кислотой с получением додекагидротрифенилена, который на второй стадии...
Тип: Изобретение
Номер охранного документа: 0002505518
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b86

Солнечная установка для выработки спирта и сопутствующих материалов

Изобретение относится к установке для выработки спирта и сопутствующих материалов, содержащей источник тепловой энергии, подключенный к бродильному чану с подготовленной биомассой, к брагоперегонному агрегату с ректификационной колонной, соединенным циркуляционным насосом. Установка...
Тип: Изобретение
Номер охранного документа: 0002505520
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9b8c

Способ получения анестезина

Изобретение относится к способу получения этилового эфира n-аминобензойной кислоты (анестезина) формулы который обладает местным анестезирующим действием и является полупродуктом в синтезе новокаина. Способ заключается в восстановлении этилового эфира n-нитробензойной кислоты с последующим...
Тип: Изобретение
Номер охранного документа: 0002505526
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9be4

Способ извлечения благородных металлов из растворов

Изобретение относится к металлургии благородных металлов, в частности к извлечению благородных металлов из растворов. Способ извлечения благородных металлов из растворов включает контактирование раствора с сорбентом, нанесенным на носитель с развитой поверхностью. В качестве сорбента используют...
Тип: Изобретение
Номер охранного документа: 0002505614
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c3e

Термоэнергетическая ветроустановка

Изобретение относится к ветроэнергетике и может быть использовано для получения механической или электрической энергии. Ветроустановка содержит неподвижный несущий корпус, вертикальную ось, соединенную с ротором в верхней части, электрогенератором и побудителем тяги в основании корпуса,...
Тип: Изобретение
Номер охранного документа: 0002505704
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c69

Способ заброски твердого топлива на неподвижную колосниковую решетку для сжигания в плотном слое

Изобретение относится к области сжигания твердого топлива в плотном слое на неподвижной колосниковой решетке с ручным обслуживанием и может быть использовано в топках твердотопливных теплогенераторов, печей, паровых и водогрейных котлов. Сущность предлагаемого способа заброски твердого топлива...
Тип: Изобретение
Номер охранного документа: 0002505747
Дата охранного документа: 27.01.2014
27.01.2014
№216.012.9c9b

Способ определения коэффициента трения при пластической деформации

Изобретение относится к области изучения трения при обработке металлов давлением, предпочтительно в технологиях ковки. Сущность: осуществляют изготовление испытуемого образца, фиксацию его начальных геометрических параметров, осадку с уменьшением толщины образца, фиксацию геометрических...
Тип: Изобретение
Номер охранного документа: 0002505797
Дата охранного документа: 27.01.2014
10.02.2014
№216.012.9de8

Способ изготовления труб

Изобретение относится к области машиностроения и может быть использовано при изготовлении труб из металлических и композиционных материалов. Осуществляют формовку листа пластической деформацией вблизи кромок на оправке с получением загнутых боковых кромок, его обжим в трубу и последующее...
Тип: Изобретение
Номер охранного документа: 0002506132
Дата охранного документа: 10.02.2014
+ добавить свой РИД