×
10.05.2016
216.015.3b48

Результат интеллектуальной деятельности: МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ

Вид РИД

Изобретение

№ охранного документа
0002583838
Дата охранного документа
10.05.2016
Аннотация: Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C. Согласно изобретению, материал содержит оксид иттрия, оксид кальция, оксид хрома и оксид кобальта при следующих соотношениях по формуле: YCaCrCoO, где x=0,1; y=0,4. Максимальная электропроводность материала достигается при температуре от 700°C до 1000°C. Повышение электропроводности материала указанного состава, является техническим результатом изобретения. 2 табл.
Основные результаты: Материал для кислородного электрода электрохимических устройств, содержащий оксид редкоземельного элемента, оксид щелочноземельного элемента и оксид хрома, отличающийся тем, что он дополнительно содержит оксид кобальта, при этом в качестве оксида редкоземельного элемента материал содержит оксид иттрия, а в качестве оксида щелочноземельного элемента - оксид кальция в следующих соотношениях по формуле: YCaCrCoO, где x=0,1; y=0,4.

Изобретение относится к электрохимическим устройствам с твердым оксидным электролитом и может быть использовано в качестве кислородного электрода в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Известен материал для кислородного электрода электрохимических устройств (RU 2460178, публ. 27.08.2012) [1]. Этот материал содержит оксид празеодима в качестве оксида редкоземельного элемента, оксид стронция в качестве оксида щелочноземельного элемента, а также никель в следующих соотношениях по формуле: Pr2-xSrxCu1-yNiyO4, где x=0,16; y=0,9.

Данный материал относится к слоистым перовскитам A2BO4, преимуществом которых является хорошая проводимость при средних температурах 500-600°C. Этот материал может использоваться в среднетемпературных электрохимических устройствах. Электропроводность данного материала начинает падать при температурах выше 400-500°C.

Наиболее близким к заявляемому материалу является электродный материал для электрохимических датчиков кислорода, полученный из оксида хрома, оксида кальция и оксида самария по SU 1233028, опубл. 23.05.1986 [2]. Данный материал имеет структуру перовскита и относится к системе Sm1-xCr1-yCax+yO3, 0≤x≤0.5 при y=0; 0≤y≤0.1 при x=0. Как известно из источника (Высокотемпературные оксидные электронные проводники для электрохимических устройств // С.Ф. Пальгуев, В.К. Гильдерман, В.И. Земцов. - М.: Наука, 1990. - 197 с. ) [3], электропроводность материала из вышеприведенной системы, такой, например, как Sm1-xCaxCrO3, при температуре 900°С для состава с максимальной проводимостью Sm0,6Ca0,4CrO3, составляет 19,5 Ом-1 см-1.

Задача настоящего изобретения заключается в получении электродного материала для кислородного электрода на основе хромитов со структурой перовскита, обладающего высокой электропроводностью, применяемого в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Поставленная задача решается тем, что материал для кислородного электрода содержит оксид редкоземельного элемента, оксид щелочноземельного элемента и оксид хрома, при этом материал дополнительно содержит оксид кобальта, в качестве оксида редкоземельного элемента - оксид иттрия, а в качестве оксида щелочноземельного элемента - оксид кальция в следующих соотношениях по формуле: Y1-xCaxCr1-yCoyO3, где x=0,1; y=0,4.

Сущность заявленного решения заключается в том, что в подрешетку хрома перовскита дополнительно введены атомы кобальта, а в подрешетку иттрия - атомы кальция. Рентгенофазовый анализ образцов системы Y1-xCaxCr1-yCoyO3 показал, что в ней образуются высокопроводящие твердые растворы со структурой перовскита АВО3 при высоких температурах. Состав этих твердых растворов можно представить следующей формулой Y1-xCaxCr1-yCoyO3. Иттрий и кальций находятся в позициях А, а хром и кобальт в позициях В. При замещении иттрия кальцием в соединении образуется Cr4+, так иттрий и кальций проявляют стабильную валентность 3+ и 2+ соответственно, а хром является поливалентным элементом и легко переходит в четырехвалентное состояние. В результате чего реализуется перескоковый механизм по хрому, т.е. электронная дырка перескакивает от Cr4+ на Cr3+. При замещении хрома на кобальт, который также является поливалентным элементом и может проявлять валентность Co3+ и Co2+, образуется дефектность .

Рентгенофазовый анализ показал, что твердые растворы существуют при соотношениях x=0,1, y=0,0-0,4. При у>0,4 образуются плохопроводящие фазы CoO и Y2O3. При малых содержаниях кобальта электропроводность мала, так как концентрация Cr4+. Исследования электропроводности показали также, что при температурах выше 600°C, кроме механизма электропроводности по хрому дополнительно осуществляется механизм электропроводимости по кобальту, т.е. как перескок электронной дырки от Со3+ на кобальт Со2+. При этом максимальная электропроводность материала достигается при температуре от 700°C до 1000°C.

Новый технический результат, достигаемый заявляемым изобретением, заключается в достижении высокой электропроводности материала для кислородного датчика, работающего в интервале температур 700-1000°C.

Материал заявленного состава получали следующим образом:

Исходные материалы:

- оксид иттрия Y2O3;

- оксид кальция СаО;

- оксид хрома Cr2O3;

- оксиды кобальта СоО, Со2О3.

Из данных материалов по керамической технологии синтезировали составы Y1-xCaxCr1-yCoyO3 (х=0,1; у=0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 и 1). Составы материала 1-10, а также условия синтеза, такие как длительность и температура обжига образцов Y1-xCaxCr1-yCoyO3 на воздухе, представлены в таблице 1. В таблице 2 приведены результаты измерения электропроводности образцов при различных температурах и давлении PO2=0,21 атм.

Рентгенофазовый анализ, осуществленный после синтеза, показал, что фазу хромита иттрия со структурой перовскита имеют составы 1-5, а составы 6-10, кроме фазы хромита иттрия, содержат фазы СоО и Y2O3. Из составов Y1-xCaxCr1-yCoyO3 (x=0,1; y=0,0; 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8; 0,9 и 1) были приготовлены образцы размера (35×5×5) мм для исследования электропроводности.

Измерения электропроводности осуществляли 4-зондовым методом на постоянном токе в атмосфере воздуха. Из таблицы 2 видно, что образец заявленного состава Y0.9Ca0.1Cr0.6Co0.4O3 обладает наилучшей электропроводностью в широком диапазоне высоких температур (от 700°C до 1000°C) по сравнению с образцами других составов и прототипом.

Таким образом, получен материал для кислородного электрода электрохимических устройств на основе хромита редкоземельного элемента со структурой перовскита, применяемого в электрохимических датчиках кислорода, работающих в окислительных средах в интервале температур 700-1000°C.

Материал для кислородного электрода электрохимических устройств, содержащий оксид редкоземельного элемента, оксид щелочноземельного элемента и оксид хрома, отличающийся тем, что он дополнительно содержит оксид кобальта, при этом в качестве оксида редкоземельного элемента материал содержит оксид иттрия, а в качестве оксида щелочноземельного элемента - оксид кальция в следующих соотношениях по формуле: YCaCrCoO, где x=0,1; y=0,4.
МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
МАТЕРИАЛ ДЛЯ КИСЛОРОДНОГО ЭЛЕКТРОДА ЭЛЕКТРОХИМИЧЕСКИХ УСТРОЙСТВ
Источник поступления информации: Роспатент

Показаны записи 61-70 из 94.
29.05.2018
№218.016.5521

Амперометрический способ измерения концентрации кислорода в газовых смесях

Изобретение относится к области газового анализа и может быть использовано для регистрации и измерения содержания кислорода в газовых смесях, в частности в азоте, с помощью электрохимической ячейки на основе протонпроводящего твердого электролита. Амперометрический способ измерения концентрации...
Тип: Изобретение
Номер охранного документа: 0002654389
Дата охранного документа: 17.05.2018
25.06.2018
№218.016.65c0

Способ получения диффузионного алюминидного покрытия на низкоуглеродистой стали

Изобретение относится к области гальванотехники и может быть использовано для получения изделий, предназначенных для эксплуатации при высоких температурах. Способ включает погружение изделия в алундовый контейнер, содержащий электролит в виде фторидного расплава на основе AlF с добавками NaF...
Тип: Изобретение
Номер охранного документа: 0002658550
Дата охранного документа: 21.06.2018
25.06.2018
№218.016.664b

Способ получения лигатур алюминия с цирконием

Изобретение относится к области цветной металлургии и может быть использовано при получении лигатуры Al-Zr электрохимическим способом, пригодной для промышленного производства. В качестве источника циркония используют оксид циркония, который смешивают с солевой смесью, содержащей оксид...
Тип: Изобретение
Номер охранного документа: 0002658556
Дата охранного документа: 21.06.2018
28.06.2018
№218.016.688a

Электрохимический способ получения порошков гексаборидов стронция и бария

Изобретение относится к способу получения порошков гексаборидов стронция и бария, включающему электролиз солевого расплава, содержащего смесь соли получаемого гексаборида с борсодержащим компонентом. При этом электролиз ведут с использованием молибденового катода и графитового анода. Способ...
Тип: Изобретение
Номер охранного документа: 0002658835
Дата охранного документа: 25.06.2018
25.10.2018
№218.016.9599

Способ модификации электродных материалов

Изобретение относится к области электротехники, а именно к способам модификации материалов для кислородных электродов для повышения их электрохимической активности и может быть использовано при разработке материалов электродов для средне- и высокотемпературных твердооксидных топливных элементов...
Тип: Изобретение
Номер охранного документа: 0002670427
Дата охранного документа: 23.10.2018
01.11.2018
№218.016.9938

Способ получения керамики для извлечения гелия из газовых смесей

Изобретение относится к способам получения функциональной керамики, которая может использоваться для извлечения гелия из газовых смесей, включая природный газ, и разделения его изотопов. Способ включает прессование и обжиг тонкодисперсных порошков прекурсоров, в качестве которых используют...
Тип: Изобретение
Номер охранного документа: 0002671379
Дата охранного документа: 30.10.2018
24.01.2019
№219.016.b305

Потенциометрический датчик концентрации кислорода

Изобретение может быть использовано в электрохимии, металлургии, энергетике, автомобилестроении и других отраслях для определения содержания кислорода. Датчик содержит несущий элемент, выполненный в виде трубки из оксида алюминия. Несущий элемент с помощью стеклогерметика герметично соединен с...
Тип: Изобретение
Номер охранного документа: 0002677927
Дата охранного документа: 22.01.2019
14.03.2019
№219.016.df88

Способ получения газоплотного твердооксидного трубчатого электролита для несущей основы тотэ

Изобретение относится к получению газоплотного твердооксидного трубчатого электролита с ионной проводимостью, который может быть использован при изготовлении различных электрохимических устройств, например твердооксидных топливных элементов (ТОТЭ), электролизеров и т.п. Способ включает...
Тип: Изобретение
Номер охранного документа: 0002681771
Дата охранного документа: 12.03.2019
16.03.2019
№219.016.e1d6

Твердооксидный протонпроводящий материал

Изобретение относится к высокоплотным твердооксидным протонпроводящим материалам на основе иттрата лантана, которые могут быть использованы в качестве электролитов для среднетемпературных электрохимических устройств, включая твердооксидные топливные элементы, сенсоры и электролизеры. Материал...
Тип: Изобретение
Номер охранного документа: 0002681947
Дата охранного документа: 14.03.2019
29.03.2019
№219.016.ed71

Твердоэлектролитный потенциометрический датчик для анализа влажности воздуха и малых концентраций водорода

Изобретение относится к аналитической технике и может быть использовано для измерения влажности воздуха и малых концентраций водорода в газовых смесях. Датчик содержит три диска из протонпроводящего твердого электролита, герметично соединенные между собой с образованием двух полостей между...
Тип: Изобретение
Номер охранного документа: 0002683134
Дата охранного документа: 26.03.2019
Показаны записи 51-56 из 56.
26.08.2017
№217.015.d8f3

Способ синтеза металл-графеновых нанокомпозитов

Изобретение относится к нанотехнологии и может быть использовано в авиационной, космической и электротехнической промышленности. Алюминий, магний или алюмо-магниевый сплав, содержащий, мас.%: алюминий 99,9-0,1; магний 0,1-99,9, расплавляют в расплаве галогенидов щелочных и/или щелочноземельных...
Тип: Изобретение
Номер охранного документа: 0002623410
Дата охранного документа: 26.06.2017
26.08.2017
№217.015.e765

Амперометрический способ измерения концентрации закиси азота в газовых смесях

Изобретение направлено на возможность амперометрически измерять концентрацию закиси азота в газовой смеси с помощью простого в изготовлении и эксплуатации измерительного устройства, созданного на основе кислородопроводящего твердого электролита состава 0,9 ZrO + 0,1YO. Способ заключается в том,...
Тип: Изобретение
Номер охранного документа: 0002627174
Дата охранного документа: 03.08.2017
26.08.2017
№217.015.e7d6

Способ исследования кинетики межфазного обмена в системе "газ-электрохимическая ячейка" с использованием изотопного обмена в условиях поляризации электродов

Изобретение относится к электрохимии твердых кислород - ионных электролитов. Способ согласно изобретению заключается в том, что исследуемый образец при комнатной температуре и давлении помещают в кварцевый реактор, через который осуществляют циркуляцию газа по газовому контуру, сообщающемуся с...
Тип: Изобретение
Номер охранного документа: 0002627145
Дата охранного документа: 03.08.2017
19.01.2018
№218.015.ff2d

Способ непрерывного получения алюминиевой лигатуры с 2 мас. % скандия

Изобретение относится к способу получения алюминиевой лигатуры с 2 мас.% скандия. Способ включает электролиз расплава, содержащего фториды калия, натрия, алюминия, загрузку в расплав оксида скандия и проведение электролиза расплавленной смеси с оксидом скандия в электролизере при температуре...
Тип: Изобретение
Номер охранного документа: 0002629418
Дата охранного документа: 29.08.2017
20.01.2018
№218.016.134a

Способ изготовления анодного материала для топливного элемента с расплавленным карбонатным электролитом

Изобретение относится к области электрохимической энергетики, а именно к высокотемпературным топливным элементам с расплавленным карбонатным электролитом. Способ включает обработку порошка металлического никеля или никельсодержащего сплава алюминийсодержащим прекурсором. В качестве...
Тип: Изобретение
Номер охранного документа: 0002634475
Дата охранного документа: 31.10.2017
17.02.2018
№218.016.2bda

Способ получения пленочного твердого электролита

Изобретение относится к получению тонкопленочного твердого электролита в виде газоплотной пленки оксида. На подложку из материала электрода наносят суспензию, приготовленную из раствора 1-8 мас.% оксидообразующих солей в этаноле и порошка–прекурсора, который получают путем термообработки...
Тип: Изобретение
Номер охранного документа: 0002643152
Дата охранного документа: 31.01.2018
+ добавить свой РИД