×
10.05.2016
216.015.3b23

Результат интеллектуальной деятельности: СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V

Вид РИД

Изобретение

№ охранного документа
0002583566
Дата охранного документа
10.05.2016
Аннотация: Изобретение относится к области металлургии, а именно к изготовлению холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V. Способ включает производство слитков, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях. Заготовку механически обрабатывают, прессуют пруток, высверливают, прессуют трубную заготовку, производят правку и механическую обработку поверхности. Трубную заготовку подвергают окислительному отжигу, далее подвергают холодной прокатке путем по меньшей мере двух проходов со степенью деформации 45-60% при осуществлении промежуточных и конечной термообработки. Проводят адъюстажную обработку и ультразвуковой контроль. Трубную заготовку подвергают холодной прокатке путем по меньшей мере трех проходов со степенью деформации 45-75% для получения трубы. Осуществляют конечную термообработку. Полученные трубы подвергают адъюстажной обработке и ультразвуковому контролю. Изготовленные трубы малого диаметра характеризуются высокими механическими свойствами. 1 ил., 1 табл., 1 пр.
Основные результаты: Способ изготовления холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V, включающий производство слитков посредством не менее двух вакуумных переплавов с использованием расходуемых электродов на каждом цикле выплавки, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях и финишную ковку с уковом не менее 1,3 после нагревов в (α+β)-области, причем полученную заготовку механически обрабатывают, прессуют при температуре на 50-90°C ниже температуры полиморфного α↔β-превращения T со степенью деформации 65-80%, полученный пруток высверливают и прессуют трубную заготовку при температуре T - 50-90°C со степенью деформации 55-95%, затем производят правку, механическую обработку поверхности на толщину 0,2-0,7 мм, после чего трубную заготовку подвергают окислительному отжигу при температуре 700-740°C, полученную трубную заготовку дополнительно подвергают холодной прокатке путем по меньшей мере двух проходов со степенью деформации 45-60% при осуществлении промежуточных и конечной термообработок при температуре 690-750°C, проводят адъюстажную обработку и ультразвуковой контроль, полученную трубную заготовку подвергают холодной прокатке путем по меньшей мере трех проходов со степенью деформации 45-75% для получения трубы при осуществлении промежуточных термообработок при температуре 650-750°C, осуществляют конечную термообработку в вакууме при температуре 370-600°C, при этом после каждой прокатки трубы осуществляют механическую обработку поверхности на глубину не менее 0,02 мм, а полученные трубы подвергают адъюстажной обработке и ультразвуковому контролю.

Изобретение относится к трубопрокатному производству, а именно к способу производства холоднодеформируемых бесшовных труб из титанового сплава Ti-3Al-2,5V. Изобретение может быть использовано для изготовления изделий ответственного назначения, предназначенных для эксплуатации в различных областях народного хозяйства, например атомной энергетике, судостроение, авиации, машиностроении, химической промышленности и пр.

Холодная прокатка труб обладает рядом преимуществ по сравнению с прессованием и горячей прокаткой, важнейшими из которых являются:

а) получение труб с точными геометрическими размерами и, особенно, с малой эксцентричностью наружного диаметра относительно внутреннего;

б) высокая чистота поверхности труб;

в) высокий коэффициент выхода годного;

г) получение труб с отношением диаметра к толщине стенки 150:1 и более;

д) высокая степень деформации металла за проход (до 50-60%);

е) достижение значительного упрочнения металла трубы при прокатке благодаря обжатию как по диаметру, так и по толщине стенки, и пр.

Заготовкой для холодной прокатки труб служат горячедеформированные трубные заготовки.

Известен псевдо-α-титановый сплав Grade 9 (Ti-3Al-2,5V), как сплав, обладающий высокой способностью к холодной деформации Калачев Б.А., Полькин И.С. и Талалаев В.Д. Титановые сплавы разных стран. - Справочник. М.: ВИЛС, 2000, с. 44-45) - [1]. Обладает промежуточной прочностью сплава Ti-6Al-4V и титана (600-800 МПа). Применяется в нагартованном состоянии и после отжига для снятия напряжений; обладает высокой коррозионной стойкостью во многих средах, включая морскую воду. Используется для изготовления труб гидравлической и топливной систем, в частности самолетов, ракет, подводных лодок.

Недостатком известного сплава является его низкая универсальность, связанная с тем, что при изготовлении конструкционных изделий обязательным является снятие внутренних напряжений. С этой целью изделия проходят отжиг, при этом возможно снижение прочностных характеристик сплава Grade 9 до 400-500 МПа.

Известен способ изготовления холоднодеформированных труб из двухфазных сплавов на основе титана, включающий выплавку слитка, ковку слитка в β-области или β- и α+β-области с окончанием ковки в β- и α+β-области в промежуточную заготовку с заданным уковом, промежуточную заготовку получают с уковом не менее 1,35, из промежуточной заготовки изготавливают шашку, после чего трубную заготовку термообрабатывают при температуре на 30-40°С ниже температуры ТПП, а затем осуществляют прокатку трубной заготовки с промежуточными обработкой поверхности, травлением и термообработкой, при этом прессование заготовки и вытяжку труб при прокатке определяют расчетным путем по формулам (патент РФ №2463376, МПК C22F 1/18, публ. 10.10.2012.) - прототип.

Данный способ изготовления труб нестабилен и отличается тем, что необходим трудоемкий и индивидуальный подбор по формулам режимов прессования и прокатки каждого типа размера изделий с учетом большого количества механических свойств конкретного сплава, которые могут колебаться в значительных интервалах.

Задачей данного изобретения является создание способа изготовления холоднодеформированных тонкостенных бесшовных труб малого диаметра из титанового сплава Ti-3Al-2,5V с высокими регламентированными конструкционными свойствами.

Техническим результатом, достигаемым при осуществлении изобретения, является изготовление труб диаметром ≥5,0 мм, толщиной стенки ≥0,4 мм, предел прочности σв≥870 МПа, предел текучести σ0,2≥730 МПа, относительное удлинение δ≥10%, отклонение по наружному диаметру +0,10 мм, отклонение по внутреннему диаметру до ±0,05 мм и менее, отклонение по толщине стенки ±5,0%.

Указанный технический результат достигается тем, что способ изготовления холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V включает производство слитков посредством не менее двух вакуумных переплавов с использованием расходуемых электродов на каждом цикле выплавки, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях и заканчивается финишной ковкой с уковом не менее 1,3 после нагревов в (α+β)-области, полученную заготовку механически обрабатывают, прессуют пруток при температуре на 50-90°С ниже температуры полиморфного α↔β-превращения ТПП со степенью деформации 65-80%, пруток высверливают, прессуют трубную заготовку при температуре ТПП - 50-90°С со степенью деформации 55-95%, затем производят правку, механическую обработку поверхности на толщину 0,2-0,7 мм, после чего трубную заготовку подвергают окислительному отжигу при температуре 700-740°С, полученную трубную заготовку дополнительно подвергают холодной прокатке путем по меньшей мере двух проходов со степенью деформации 45-60% при осуществлении промежуточных и конечной термообработки при температуре 690-750°С, проводят адъюстажную обработку и ультразвуковой контроль, полученную трубную заготовку подвергают холодной прокатке путем по меньшей мере трех проходов со степенью деформации 45-75% для получения трубы при осуществлении промежуточных термообработок при температуре 650-750°С, осуществляют конечную термообработку в вакууме при температуре 370-600°С, после каждой прокатки трубы осуществляют механическую обработку поверхности на глубину не менее 0,02 мм, полученные трубы подвергают адъюстажной обработке и ультразвуковому контролю.

Для получения приемлемого качества металла необходимо производить минимум двойную вакуумную переплавку электрода. Это связано с необходимостью обеспечить высокую химическую однородность и максимально уменьшить содержание в металле газов, образующих вредные растворы внедрения, снижающие технологическую пластичность (за один переплав удается удалить только 50-70% содержащихся в металле газов).

Ковку слитка осуществляют за несколько переходов с чередованием ковки в β- и (α+β)-области. Ковкой в β-области уменьшаем размер зерна. При последующей ковке с нагревом металла в (α+β)-области зерно измельчается. Окончательной ковкой в (α+β)-области с уковом не менее 1,3 формируют в металле микроструктуру с глобулярной α-фазой для последующего прессования ее в трубную заготовку.

Кованую заготовку прессуют в пруток после механической обработки, эта операция производится с целью экономичного формирования необходимых геометрических размеров и получения равномерной структуры и механических свойств по всему объему заготовки. Режимы прессования: температура ТПП-50-90°С и степень деформации 65-80%, гарантируют получение приемлемых результатов.

Полую шашку для горячего прессования получают посредством высверливания центрального отверстия. Горячее прессование ее в трубную заготовку выполняют при температуре на 50-90°С ниже температуры полиморфного α↔β превращения со степенью деформации 55-95%. Температура подобрана опытным путем с учетом минимально возможной температуры на основе физико-механических свойств сплава, при которых обеспечивается технологичность процесса прессования и максимально возможная температура, превышение которой приведет к образованию в исходном β-зерне вторичных α-пластин, затрудняющих холодную деформацию сплава. Горячепрессованную трубную заготовку правят, механически обрабатывают по наружной и внутренней поверхности на глубину 0,2-0,7 мм для удаления дефектов и газонасыщенного слоя после горячей деформации. Далее заготовки подвергают травлению и окислительному отжигу при температуре 700-740°С для обеспечения достаточного уровня пластичности металла, а также образования на поверхности заготовки окисного слоя, который при холодной прокатке выступает в качестве «подсмазочного» слоя, что обеспечивает отсутствие налипания металла на поверхность калибров при холодной прокатке. Холодная прокатка трубной заготовки производится со степенью деформации 45-60% за несколько переходов. Данный диапазон вытяжки обусловлен получением заданных геометрических размеров изделия при выполнении технологических рекомендаций для холодной деформации титановых сплавов без разрушения. В промежутках между холодными прокатками трубы подвергают травлению, при необходимости - пескоструйной обработке (возможно шлифовке) для удаления с поверхности труб дефектов, которые могли образоваться в процессе холодной прокатки, отжигу при температуре 700-740°С. Отжиг между холодными прокатками и на конечном размере необходим для устранения внутренних напряжений, снижения твердости и повышения пластичности металла.

На готовом размере проводят окончательный отжиг в вакуумной печи при температуре 650-750°С. Отжиг проводится в вакуумной печи для того, что бы избежать наводораживания металла и обеспечить требуемый уровень содержания водорода.

После прессования и механической обработки микроструктура трубы в продольном направлении представляют вытянутые вдоль направления прокатки зерна α-фазы.

После отжига рекристаллизация происходит в большем объеме микроструктуры, но присутствуют полосы α-фазы, в которых рекристаллизация не прошла.

После второй прокатки в микроструктуре трубой заготовки наблюдаются менее вытянутые вдоль направления прокатки зерна α-фазы. После окончательной термической обработки происходит полная рекристаллизация. Средний размер зерна в продольном направлении составляет менее 30 мкм. Полученная однородная и достаточно мелкозернистая структура титанового сплава позволяет ограничить уровень структурных шумов в процессе ультразвукового контроля, что позволяет проводить эффективный ультразвуковой контроль, который разрешает обнаружить такие дефекты, как трещины, разрывы и химические неоднородности, которые могут присутствовать в обрабатываемой заготовке. Выявить дефекты небольших размеров в ходе процесса изготовления предпочтительно на как можно более ранней стадии обработки, так что содержащие дефекты обрабатываемые заготовки могут быть удалены из процесса обработки, не вызывая дополнительных затрат, или же исправлены, если это возможно.

Полученную трубную заготовку подвергают холодной прокатке путем по меньшей мере трех проходов со степенью деформации 60-75%, при осуществлении промежуточных термообработок при температуре 650-780°С в вакууме для того, чтобы избежать наводораживания металла и обеспечить требуемый уровень содержания водорода. В процессе прокатки и термообработки формируются геометрические размеры и происходит глубокая проработка структуры (режимы подобраны опытным путем). Для снятия поверхностных дефектов после каждой прокатки трубы осуществляют механическую обработку поверхности на глубину не менее 0,2 мм. Для снятия внутренних напряжений осуществляют конечную термообработку при температуре 370-600°С в вакууме. Для придания товарного вида продукции производится адъюстажная обработка труб известными способами, осуществляется ультразвуковой контроль.

Возможность осуществления изобретения поясняется конкретными примерами изготовления холоднокатаных труб.

Пример 1. Изготовлена холоднокатаная труба размером ⌀9,525×0,813 мм из титанового псевдо-α-сплава Ti-3AL-2,5V на соответствие требованиям AMS 4946, ТПП=900-970°С.

Труба изготовлена по следующей технологической схеме.

Получение слитка двойным переплавом в вакуумной дуговой печи → ковка в несколько переходов с чередованием ковки в β- и (α+β)-областях с окончательным уковом в (α+β)-области не менее 1,35 механическая обработка наружной поверхности → нагрев Т=870±10°С → прессование прутка со степенью деформации 65%, правка при температуре 650-750°С, сверление осевого отверстия и механическая обработка → нагрев Т=870±10°С → прессование трубной заготовки со степенью деформации 72% → правка → механическая обработка ультразвуковой контроль → отжиг Т=600-650°С, 60 мин. → 2 прохода холодной прокатки (суммарная степень деформации 85%) → травление-отжиг Т=650-750°С → 3-5 проходов холодной прокатки (степень деформации 55-72%) → правка, травление → отжиг 500-550°С → ультразвуковой контроль.

Механические свойства приведены в таблице 1.

На фиг 1. представлена микроструктура холоднокатаной трубы ⌀9,525×0,813 мм из псевдо-α-сплава Ti-3AL-2,5V в продольном направлении при увеличении ×500.

Статистические данные анализа производимых труб показали, что их геометрия удовлетворяет требованиям спецификации AMS 4946, механические свойства стабильны, а структура равноосная, близка к глобулярной с размером зерен менее 20 мкм, при этом макроструктура в продольном направлении представляет собой вытянутые в направлении прокатки зерна, что характерно для холоднодеформированных труб.

Способ изготовления холоднодеформированных бесшовных труб из титанового сплава Ti-3Al-2,5V, включающий производство слитков посредством не менее двух вакуумных переплавов с использованием расходуемых электродов на каждом цикле выплавки, ковку слитка в цилиндрическую заготовку за несколько переходов с чередованием деформации в β- и (α+β)-областях и финишную ковку с уковом не менее 1,3 после нагревов в (α+β)-области, причем полученную заготовку механически обрабатывают, прессуют при температуре на 50-90°C ниже температуры полиморфного α↔β-превращения T со степенью деформации 65-80%, полученный пруток высверливают и прессуют трубную заготовку при температуре T - 50-90°C со степенью деформации 55-95%, затем производят правку, механическую обработку поверхности на толщину 0,2-0,7 мм, после чего трубную заготовку подвергают окислительному отжигу при температуре 700-740°C, полученную трубную заготовку дополнительно подвергают холодной прокатке путем по меньшей мере двух проходов со степенью деформации 45-60% при осуществлении промежуточных и конечной термообработок при температуре 690-750°C, проводят адъюстажную обработку и ультразвуковой контроль, полученную трубную заготовку подвергают холодной прокатке путем по меньшей мере трех проходов со степенью деформации 45-75% для получения трубы при осуществлении промежуточных термообработок при температуре 650-750°C, осуществляют конечную термообработку в вакууме при температуре 370-600°C, при этом после каждой прокатки трубы осуществляют механическую обработку поверхности на глубину не менее 0,02 мм, а полученные трубы подвергают адъюстажной обработке и ультразвуковому контролю.
СПОСОБ ИЗГОТОВЛЕНИЯ ХОЛОДНОДЕФОРМИРОВАННЫХ БЕСШОВНЫХ ТРУБ ИЗ ТИТАНОВОГО СПЛАВА Ti-3Al-2,5V
Источник поступления информации: Роспатент

Показаны записи 31-40 из 71.
20.02.2019
№219.016.c0dd

Способ определения кристаллографической текстуры осесимметричных заготовок

Использование: для определения кристаллографической текстуры осесимметричных заготовок. Сущность: заключается в том, что проводят подготовительный этап получения тарировочных зависимостей, включающий стадию рентгеновского анализа, состоящую из отбора образцов, съемки трех обратных полюсных...
Тип: Изобретение
Номер охранного документа: 0002366934
Дата охранного документа: 10.09.2009
20.02.2019
№219.016.c2c7

Способ получения флюса для плавки и рафинирования магния или его сплавов

Изобретение относится к цветной металлургии, в частности к способам получения флюсов для плавки и литья магния или его сплавов. В способе осуществляют загрузку твердой соли в обогреваемую емкость, заливку на поверхность твердой соли расплавленного безводного карналлита, перемешивание и нагрев...
Тип: Изобретение
Номер охранного документа: 0002407813
Дата охранного документа: 27.12.2010
08.03.2019
№219.016.d4c5

Способ получения губчатого титана и устройство для его осуществления

Изобретение относится к цветной металлургии, в частности к получению губчатого титана металлотермическим восстановлением тетрахлорида титана. Техническим результатом является повышение скорости и часовой производительности аппарата, а также получение стандартных по весу блоков губчатого титана,...
Тип: Изобретение
Номер охранного документа: 0002313592
Дата охранного документа: 27.12.2007
20.03.2019
№219.016.e410

Способ изготовления крупногабаритных полуфабрикатов из алюминиевых сплавов

Изобретение относится к области цветной металлургии и может быть использовано для получения крупногабаритных полуфабрикатов из алюминиевых сплавов, содержащих цирконий, методом прессования. Способ включает отливку слитков, гомогенизацию, охлаждение, нагрев с изотермической выдержкой, деформацию...
Тип: Изобретение
Номер охранного документа: 0002298593
Дата охранного документа: 10.05.2007
29.03.2019
№219.016.f104

Валковый калибр стана для производства сварных прямошовных труб

Изобретение относится к обработке металлов давлением, а именно к производству электросварных труб, и может быть использовано для клетей с закрытыми калибрами трубоформовочных станов. Валковый калибр содержит верхний и нижний составные валки, каждый из которых имеет опорные валки с укрепленными...
Тип: Изобретение
Номер охранного документа: 0002345859
Дата охранного документа: 10.02.2009
29.03.2019
№219.016.f1a0

Способ обезвоживания хлормагниевого сырья и устройство для его осуществления

Изобретение относится к цветной металлургии, в частности к подготовке хлормагниевого сырья, к процессу электролитического получения магния из расплавленных солей. Способ обезвоживания хлормагниевого сырья включает подачу хлормагниевого сырья в многокамерную печь кипящего слоя, сжигание...
Тип: Изобретение
Номер охранного документа: 0002310606
Дата охранного документа: 20.11.2007
29.03.2019
№219.016.f1b0

Способ получения магния электролизом расплавленных солей

Изобретение относится к цветной металлургии, а именно к производству магния и хлора электролизом расплавленных солей. Технический результат направлен на снижение расхода дорогостоящего карналлитового сырья и улучшение технико-экономических показателей электролизера, таких как снижение расхода...
Тип: Изобретение
Номер охранного документа: 0002312935
Дата охранного документа: 20.12.2007
29.03.2019
№219.016.f1be

Способ переработки солевых отходов магниевого производства

Изобретение относится к цветной металлургии, в частности к переработке твердых солевых отходов, получаемых в процессе электролиза, на товарные продукты. Техническим результатом является получение хлорида калия высокого качества из солевых отходов магниевого производства, уменьшив тем самым...
Тип: Изобретение
Номер охранного документа: 0002316604
Дата охранного документа: 10.02.2008
29.03.2019
№219.016.f1c0

Способ получения магния электролизом расплавленных солей

Изобретение относится к цветной металлургии, в частности к способам получения магния электролизом расплавленных солей. Шламо-электролитную смесь периодически удаляют из электролизера, работающего на хлормагниевом сырье, и загружают ее в обогреваемую емкость, в которую также подают твердый...
Тип: Изобретение
Номер охранного документа: 0002316617
Дата охранного документа: 10.02.2008
29.03.2019
№219.016.f206

Способ очистки струйно-абразивной обработкой поверхности изделий из титановых сплавов

Изобретение относится к способам обработки поверхности металлов, в частности к струйно-абразивной очистке поверхности изделий из титановых сплавов. Подают на обрабатываемую поверхность гидроабразивную суспензию. В качестве абразива гидроабразивной суспензии используют мелкодисперсные частицы с...
Тип: Изобретение
Номер охранного документа: 0002381096
Дата охранного документа: 10.02.2010
Показаны записи 31-40 из 42.
29.03.2019
№219.016.f66a

Способ пластической правки профилей из титановых сплавов

Изобретение относится к обработке металлов давлением профильных изделий постоянного сечения из титановых сплавов, преимущественно длинномерных, и может быть использовано в авиастроении, машиностроении, энергетике, судостроении и металлургии. Осуществляют нагрев профиля до температуры выше...
Тип: Изобретение
Номер охранного документа: 0002403114
Дата охранного документа: 10.11.2010
18.05.2019
№219.017.5778

Способ изготовления горячекатаных труб из альфа- и псевдо-альфа- титановых сплавов

Изобретение относится к трубному производству и может применяться при изготовлении бесшовных труб из α- и псевдо-α-титановых сплавов. Слиток куют в заготовку за несколько переходов с чередованием β и (α+β)-области, причем последний переход - в (α+β)-области. В заготовке формируют центральное...
Тип: Изобретение
Номер охранного документа: 0002355489
Дата охранного документа: 20.05.2009
18.05.2019
№219.017.5b4b

Способ изготовления холоднодеформируемых труб из двухфазных сплавов на основе титана

Изобретение относится к области металлургии, а именно к производству высокопрочных труб из двухфазных сплавов на основе титана, преимущественно из псевдо-α и (α+β)-сплавов. Способ изготовления холоднодеформированных труб из двухфазных сплавов на основе титана включает выплавку слитка, ковку...
Тип: Изобретение
Номер охранного документа: 0002463376
Дата охранного документа: 10.10.2012
04.06.2019
№219.017.730a

Сплав на основе титана

Изобретение относится к области металлургии, а именно к титановым сплавам, предназначенным для использования в качестве конструкционного высокопрочного высокотехнологичного материала для изготовления силовых конструкций судостроительной, авиационной и космической техники, энергетических...
Тип: Изобретение
Номер охранного документа: 0002690257
Дата охранного документа: 31.05.2019
14.06.2019
№219.017.82e4

Листовой материал на основе титанового сплава для низкотемпературной сверхпластической деформации

Изобретение относится к области металлургии, а именно к листовым материалам на основе титановых сплавов, которые пригодны для изготовления изделий методом низкотемпературной сверхпластической деформации (СПД) при температуре 775°С, и могут быть использованы как более дешевая альтернатива...
Тип: Изобретение
Номер охранного документа: 0002691434
Дата охранного документа: 13.06.2019
15.06.2019
№219.017.83ae

Способ изготовления листового проката из титанового сплава марки вт8

Изобретение относится к области металлургии титановых сплавов и может быть использовано для получения листового проката из высоколегированного (α+β)-титанового сплава марки ВТ8. Способ включает деформацию слитка в сляб, механическую обработку сляба, многопроходную горячую прокатку и упрочняющую...
Тип: Изобретение
Номер охранного документа: 0002691471
Дата охранного документа: 14.06.2019
23.07.2019
№219.017.b6cb

Способ обрезки облоя штампованных поковок из титановых сплавов

Изобретение относится к способам резки материалов и может быть использовано для обрезки облоя штампованных поковок из титановых сплавов, полученных обработкой металлов давлением. Способ обрезки облоя штампованных поковок из титановых сплавов включает размещение поковки на опорах рабочего стола...
Тип: Изобретение
Номер охранного документа: 0002695092
Дата охранного документа: 19.07.2019
09.10.2019
№219.017.d39d

Высокопрочный титановый сплав для корпусных конструкций атомного реактора с водяным теплоносителем

Изобретение относится к металлургии сплавов на основе титана, предназначенных для изготовления корпусных конструкций атомных энергетических установок с водяным теплоносителем. Высокопрочный сплав на основе титана для изготовления корпусных конструкций атомных энергетических реакторов с водяным...
Тип: Изобретение
Номер охранного документа: 0002702251
Дата охранного документа: 07.10.2019
27.06.2020
№220.018.2b94

Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового сплава, и способ ее изготовления

Настоящее изобретение в целом относится к области металлургии, в частности к материалам из титанового сплава с заданными механическими свойствами для изготовления крепежных изделий авиационной техники. Заготовка для высокопрочных крепежных изделий, выполненная из деформируемого титанового...
Тип: Изобретение
Номер охранного документа: 0002724751
Дата охранного документа: 25.06.2020
12.04.2023
№223.018.4a35

Способ получения материала для высокопрочных крепежных изделий

Изобретение относится к металлургии, в частности к получению материалов на основе титанового сплава с заданными механическими свойствами для изготовления крепежных изделий, использующихся в различных областях промышленности, преимущественно в авиастроительной. Способ получения материала для...
Тип: Изобретение
Номер охранного документа: 0002793901
Дата охранного документа: 07.04.2023
+ добавить свой РИД