×
10.05.2016
216.015.3afb

Результат интеллектуальной деятельности: ПОГЛОТИТЕЛЬ И СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ГАЗОНАРКОЗНЫХ СМЕСЕЙ

Вид РИД

Изобретение

Аннотация: Изобретение относится к медицине, а именно к очистке газонаркозных смесей от диоксида углерода в анестезиологии. Описан регенерируемый поглотитель и способ удаления диоксида углерода из газонаркозных смесей в реверсивном дыхательном контуре этим поглотителем при температуре 20-40°С, с последующей регенерацией поглотителя продувкой горячим воздухом с температурой 150-300°С. Технический результат - использование 1 загрузки поглотителя в течение нескольких тысяч циклов наркоз/регенерация (большой ресурс работы), устранение необходимости перезарядки картриджей поглотителя, стерильность поглотителя, экологичность обслуживания наркозного аппарата. 2 н. и 4 з.п. ф-лы, 3 пр., 1 ил.

Изобретение относится к медицине, а именно к очистке газонаркозных смесей от диоксида углерода, и может найти широкое применение в анестезиологии.

Стремление уменьшить потери газов, наркотических веществ при проведении общей анестезии привело к созданию дыхательных контуров, в которых выдыхаемая больным газонаркозная смесь полностью (закрытая, замкнутая система) или частично (полузакрытая, полузамкнутая система) вновь вдыхается больным. При использовании этих систем возникает необходимость удаления высоких концентраций углекислого газа, попадающих в смесь за счет дыхания пациента. Углекислый газ удаляют с помощью адсорберов, содержащих нерегенерируемые химические поглотители углекислоты. Когда выдыхаемая газонаркозная смесь попадает в адсорбер, она очищается от избытка углекислого газа. В качестве нерегенерируемых химических поглотителей CO2 в основном используют натронную известь с различным содержанием гидроксидов калия и натрия. В современной анестезиологической практике наиболее часто применяют нерегенерируемые поглотители следующих марок: ХПИ, Sodasorb, Draeger Sorb, Carbolime и т.д.

Основным недостатком использования нерегенерируемых поглотителей является необходимость регулярной замены отработанного поглотителя свежим. При этом возникают дополнительные трудности, связанные с организацией хранения поглотителей (потеря активности за счет взаимодействия с атмосферным CO2), а также с их утилизацией, поскольку содержимое картриджей опасно для окружающей среды (едкие щелочи).

Существующие методы обратимого удаления CO2 из газовоздушных смесей оказываются непригодными для очистки влажных газонаркозных смесей, поскольку традиционные типы поглотителей (цеолиты, активированные угли) имеют, как правило, значительно большее сродство к воде, нежели к CO2, поэтому резко снижают свою емкость во влажной атмосфере.

Для уменьшения влажности очищаемой газовой смеси и повышения емкости цеолитов по диоксиду углерода в ряде патентов предложено использовать блок предварительной осушки, устанавливаемый перед адсорбером с цеолитом (US 6309445, B01D 53/02, 30.10.2001; US 6106593, B01D 53/04, 22.08.2000). Однако такой метод решения проблемы ведет к существенному усложнению технологической схемы процесса. Аналогичная система разработана и для процесса короткоцикловой безнагревной адсорбции (US 5656064, B01D 53/02, 12.08.1997). Следует отметить также, что многостадийность процесса делает его неприменимым в условиях функционирующего наркозного аппарата.

В патенте (ЕР 1084743, B01D 53/02, 21.03.200)1 для удаления CO2 из газовых смесей предлагают использовать оксид алюминия, допированный небольшими добавками щелочных металлов (до 7,25 мас.% K2O и/или Na2O). Достоинством данного метода удаления CO2 является то, что активное вещество находится в порах матрицы и не вызывает коррозии оборудования, а сам поглотитель может выпускаться в виде гранул любого размера и формы или блоков. В то же время небольшое содержание оксидов щелочных металлов не обеспечивает высокой емкости поглотителя.

В патенте (US 3865924, B01D 53/02, 11.02.1975) описан регенерируемый поглотитель CO2, представляющий собой механическую смесь порошков оксида алюминия и карбоната калия. Такой поглотитель предлагают применять для удаления диоксида углерода в системах жизнеобеспечения, например, подводных лодок. Поглощение CO2 осуществляется по реакции:

K2CO3+H2O+CO2=2KHCO3

Наиболее близким к предложенному нами способу удаления диоксида углерода из газонаркозных смесей является способ удаления CO2 пористыми материалами (активированный уголь, оксид алюминия, цеолит, кизельгур или их смесь), на которые нанесен гидрат карбоната калия и/или натрия (JP 08040715, A2, 13.02.1996). Регенерацию сорбента производят паром. Активным компонентом поглотителя, обеспечивающим его высокую емкость, является диспергированный в порах матрицы карбонат щелочного металла. В то же время это соединение, способное вступать в необратимые химические взаимодействия с некоторыми носителями. Это приводит к уменьшению сорбционной емкости поглотителя в многоцикловом режиме эксплуатации.

Авторы патента (РФ №2244586, B01D 53/02, 20.01.2005) показали, что предпочтительным носителем для карбоната калия является оксид алюминия. Поглотитель с матрицей из оксида алюминия обладал наиболее высокой скоростью сорбции CO2. Следует отметить, что в процессе использования указанного поглотителя происходит уменьшение количества сорбируемого диоксида углерода от цикла к циклу из-за образования смешанной неактивной фазы состава KAl(ОН)2CO3. Для регенерации этой фазы требуются высокие температуры - 300, 350°С, что ведет к удорожанию используемых материалов и повышает энергозатраты. В патенте (РФ №2493906, B01J 20/30, 27.09.13) в качестве носителя предложен оксид иттрия, однако данный материал обладает высокой стоимостью.

Настоящее изобретение решает задачу очистки газонаркозных смесей от диоксида углерода с использованием многоразового сорбента.

Задача решается способом очистки газонаркозных смесей от диоксида углерода в аппаратах с реверсивным контуром, в котором для удаления CO2 используют термически регенерируемый поглотитель, очистку осуществляют периодически с процессом регенерации сорбента, а также составом используемого поглотителя, представляющим собой карбонат калия, закрепленный в порах волластонита.

Термически регенерируемый поглотитель диоксида углерода имеет состав K2CO3 - 1-50 мас.%., CaSiO3 (волластонит) - остальное. Использоваие волластонита в качестве носителя для карбоната калия позволяет поддерживать высокую скорость сорбции диоксида углерода. Щелочная природа волластонита препятствует образованию неактивной фазы носителя и активного компонента, в результате чего динамическая емкость поглотителя постоянна на протяжении сотен циклов очистки/регенерации. Кроме того, волластонит является относительно дешевым материалом, что увеличивает экономическую целесообразность процесса. Низкая химическая активность карбоната калия по сравнению с компонентами натронной извести делает сорбент инертным по отношению к наркотизирующим компонентам газонаркозной смеси (N2O, галогеналканы и др.). Таким образом, данный поглотитель может быть использован в качестве регенерируемого сорбента в наркозных аппаратах с закрытым или полузакрытым контуром.

Очистку газонаркозной смеси осуществляют при температуре 20-40°С.

Регенерацию сорбента проводят продувкой горячим воздухом с температурой 150-300°С.

Описан регенерируемый поглотитель и способ удаления диоксида углерода из газонаркозных смесей в реверсивном дыхательном контуре этим поглотителем при температуре 20-40°С, с последующей регенерацией поглотителя CO2 продувкой горячим воздухом с температурой 150-300°С.

Технический результат - использование 1 загрузки сорбента в течение нескольких тысяч циклов наркоз/регенерация (большой ресурс работы), устранение необходимости перезарядки картриджей поглотителя, стерильность поглотителя и сорбционного блока, экологичность обслуживания наркозного аппарата.

Таким образом, предложен поглотитель и способ очистки газонаркотических смесей от диоксида углерода, в котором очистка наркозно-дыхателыной смеси осуществляется периодически с процессом регенерации сорбента, что позволяет использовать 1 загрузку поглотителя для проведения нескольких сотен операций с применением наркозного аппарата с реверсивным контуром.

При этом цикл работы адсорбера наркозного аппарата разбивается на две стадии:

1. Очистка воздушно-наркозной смеси от избытка диоксида углерода на выдохе в течение операции (температура адсорбера 20-40°С).

2. Термическая регенерация поглотителя после окончания операции, при этом адсорбер продувается воздухом, а десорбированный CO2 сбрасывается в атмосферу, одновременно достигается обеззараживание поглотителя.

Замена регенерируемого поглотителя производится не каждый раз после проведения наркоза, а после нескольких сотен циклов сорбции/регенерации.

Сущность изобретения иллюстрируется следующими примерами и илл.

Пример 1 (Сравнительный).

В проточный адсорбер-картридж засыпают 1 кг известкового нерегенерируемого поглотителя состава Ca(ОН)2 - 80 мас.%, NaOH - 4 мас.%, H2O - 16 мас.% (марки Sodasorb). В течение 2 ч через адсорбер продувают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, с объемной скоростью подачи 10 л/мин. Концентрация диоксида углерода на выходе из адсорбера не превышает 0,06 об. % CO2. После проведения испытания проводят перезарядку адсорбера новой порцией свежего нерегенерируемого поглотителя CO2, отработанный поглотитель утилизируют.

Пример 2.

Гранулированный волластонит CaSiO3 пропитывают по влагоемкости 40% раствором K2CO3 и высушивают в сушильном шкафу при температуре 200°С в течение 2 ч. Содержание K2CO3 в приготовленном регенерируемом сорбенте составляет ≈27 мас.%.

4 кг полученного регенерируемого сорбента загружают в проточный адсорбер.

Аналогично примеру 1 в течение 2 ч через адсорбер продувают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, с объемной скоростью подачи 10 л/мин. Концентрация диоксида углерода на выходе из адсорбера не превышает 0,08 об. %. Затем проводят регенерацию поглотителя непосредственно в адсорбере. Для этого нагревают адсорбер до 200°С и продувают через него воздух в течение 30 мин (при этом достигается обеззараживание поглотителя). Повторяют циклы «очистка/регенерация» 20-30 раз. В течение последующих циклов уровень концентрации CO2 на выходе из адсорбера на стадии очистки не превышает 0,08 об. %.

Пример 3.

3,6 кг регенерируемого поглотителя, полученного аналогично примеру 2, отличающегося составом (35 мас.% K2CO3), загружают в проточный адсорбер, на вход которого подают воздух, насыщенный парами воды при 30°С, с 4 об. % CO2 с объемной скоростью подачи 15 л/мин в течение 2 ч.

Концентрация диоксида углерода на выходе из адсорбера не превышает 0,08 об. % CO2. После 2 ч очистки продувку прекращают, поглотитель высыпают из адсорбера и регенерируют в течение 30 мин при температуре 300°С в сушильном шкафу. Далее регенерированный поглотитель снова засыпают в адсорбер для проведения дальнейшей очистки смеси. Повторяют описанный эксперимент 20-30 раз. В течение последующих циклов «очистка/регенерация» уровень концентрации CO2 на выходе из адсорбера не превышает 0,08 об. %.

Пример 4.

100 г регенерируемого сорбента, полученного аналогично примеру 2, отличающегося составом (21 мас.% K2CO3), загружают в проточный адсорбер, на вход которого подают смесь насыщенного при 25°С парами воды воздуха с 5 об. % CO2, объемная скорость подачи 150 нсм3/мин. В момент достижения концентрации CO2 0,08 об. % продувку газонаркотической смеси прекращают, затем сорбент регенерируют прокаливанием при 300°С в токе воздуха.

Количество десорбированного диоксида углерода CO2 определяют с помощью капнографа на выходе из адсорбера.

Динамическую емкость определяют как отношение массы десорбированного CO2 к массе сорбента. Проводят 27 адсорбционно-десорбционных циклов. Средняя емкость сорбента составляет около 40 мг/г. Изменение динамической емкости в ходе испытаний показано на Фиг.


ПОГЛОТИТЕЛЬ И СПОСОБ УДАЛЕНИЯ ДИОКСИДА УГЛЕРОДА ИЗ ГАЗОНАРКОЗНЫХ СМЕСЕЙ
Источник поступления информации: Роспатент

Показаны записи 51-60 из 100.
10.02.2016
№216.014.c1ac

Метод пробоподготовки биоорганических образцов

Изобретение относится к методу пробоподготовки биоорганических, в том числе, медицинских образцов для определения в них изотопного соотношения C/C и C/C с помощью ускорительного масс-спектрометра. Метод пробоподготовки биоорганических, в том числе, медицинских образцов включает окисление...
Тип: Изобретение
Номер охранного документа: 0002574738
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c302

Способ получения оптически чистых хиральных пиридилсульфинильных производных бензимидазолов

Изобретение относится к области органической химии, а именно к способу получения оптически чистых хиральных пиридилсульфинильных производных бензимидазолов каталитическим окислением пиридилтиобензимидазолов, отличающемуся тем, что процесс проводят в среде органического растворителя, в качестве...
Тип: Изобретение
Номер охранного документа: 0002574734
Дата охранного документа: 10.02.2016
10.03.2016
№216.014.cb57

Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или...
Тип: Изобретение
Номер охранного документа: 0002577273
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cd18

Катализатор глубокого окисления

Изобретение относится к катализатору глубокого окисления CO и органических веществ. Данный катализатор содержит в качестве активного компонента оксиды переходных металлов или их смеси, нанесенные на оксидный носитель. При этом в качестве оксидного носителя он содержит гранулы пропанта,...
Тип: Изобретение
Номер охранного документа: 0002577253
Дата охранного документа: 10.03.2016
20.06.2016
№217.015.03bf

Способ повышения температурного потенциала источника тепла

Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Предложен способ получения тепловой энергии в замкнутом адсорбционном цикле повышения...
Тип: Изобретение
Номер охранного документа: 0002587737
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.3b0c

Способ получения 5-гидроксиметилфурфурола

Изобретение относится к области органического синтеза, конкретно к способу получению 5-гидроксиметилфурфурола (5-ГМФ) одностадийным гидролизом-дегидратацией целлюлозы в водной среде при температуре не выше 180°С в присутствии катализатора - мезопористого углеродного материала «Сибунит»,...
Тип: Изобретение
Номер охранного документа: 0002583953
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4a75

Способ получения (метилтио)тиофенов

Изобретение относится к способу получения серосодержащих соединений, конкретно к 2-(метилтио)- и 2.5-ди-(метилтио)тиофенам, являющимися добавками к смазочным маслам и полимерам и применяемым в синтезах гербицидов и электропроводящих материалов. Описан способ получения 2- и...
Тип: Изобретение
Номер охранного документа: 0002594481
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4bac

Способ активации катализатора для получения фторсодержащих углеводородов

Изобретение относится к области химической промышленности, к способу активации хромсодержащих катализаторов, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан способ активации катализатора для получения фторсодержащих углеводородов...
Тип: Изобретение
Номер охранного документа: 0002594485
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
Показаны записи 51-60 из 106.
10.02.2016
№216.014.c1ac

Метод пробоподготовки биоорганических образцов

Изобретение относится к методу пробоподготовки биоорганических, в том числе, медицинских образцов для определения в них изотопного соотношения C/C и C/C с помощью ускорительного масс-спектрометра. Метод пробоподготовки биоорганических, в том числе, медицинских образцов включает окисление...
Тип: Изобретение
Номер охранного документа: 0002574738
Дата охранного документа: 10.02.2016
10.02.2016
№216.014.c302

Способ получения оптически чистых хиральных пиридилсульфинильных производных бензимидазолов

Изобретение относится к области органической химии, а именно к способу получения оптически чистых хиральных пиридилсульфинильных производных бензимидазолов каталитическим окислением пиридилтиобензимидазолов, отличающемуся тем, что процесс проводят в среде органического растворителя, в качестве...
Тип: Изобретение
Номер охранного документа: 0002574734
Дата охранного документа: 10.02.2016
10.03.2016
№216.014.cb57

Способ получения аэрогелей на основе многослойных углеродных нанотрубок

Изобретение относится к области получения аэрогелей на основе многослойных углеродных нанотрубок в виде изделий с контролируемой формой, в частности шариков, кубиков, пластин, тетраэдров, торов, цилиндров, полиэдров, призм, которые могут использоваться для получения покрытий, поглощающих и/или...
Тип: Изобретение
Номер охранного документа: 0002577273
Дата охранного документа: 10.03.2016
10.03.2016
№216.014.cd18

Катализатор глубокого окисления

Изобретение относится к катализатору глубокого окисления CO и органических веществ. Данный катализатор содержит в качестве активного компонента оксиды переходных металлов или их смеси, нанесенные на оксидный носитель. При этом в качестве оксидного носителя он содержит гранулы пропанта,...
Тип: Изобретение
Номер охранного документа: 0002577253
Дата охранного документа: 10.03.2016
20.06.2016
№217.015.03bf

Способ повышения температурного потенциала источника тепла

Изобретение относится к области энергетики и направлено на энергосбережение путем рационального использования возобновляемых источников тепла и естественного перепада температуры в окружающей среде. Предложен способ получения тепловой энергии в замкнутом адсорбционном цикле повышения...
Тип: Изобретение
Номер охранного документа: 0002587737
Дата охранного документа: 20.06.2016
10.05.2016
№216.015.3b0c

Способ получения 5-гидроксиметилфурфурола

Изобретение относится к области органического синтеза, конкретно к способу получению 5-гидроксиметилфурфурола (5-ГМФ) одностадийным гидролизом-дегидратацией целлюлозы в водной среде при температуре не выше 180°С в присутствии катализатора - мезопористого углеродного материала «Сибунит»,...
Тип: Изобретение
Номер охранного документа: 0002583953
Дата охранного документа: 10.05.2016
20.08.2016
№216.015.4a75

Способ получения (метилтио)тиофенов

Изобретение относится к способу получения серосодержащих соединений, конкретно к 2-(метилтио)- и 2.5-ди-(метилтио)тиофенам, являющимися добавками к смазочным маслам и полимерам и применяемым в синтезах гербицидов и электропроводящих материалов. Описан способ получения 2- и...
Тип: Изобретение
Номер охранного документа: 0002594481
Дата охранного документа: 20.08.2016
20.08.2016
№216.015.4bac

Способ активации катализатора для получения фторсодержащих углеводородов

Изобретение относится к области химической промышленности, к способу активации хромсодержащих катализаторов, которые могут использоваться в реакциях газофазного фторирования галогенированных углеводородов. Описан способ активации катализатора для получения фторсодержащих углеводородов...
Тип: Изобретение
Номер охранного документа: 0002594485
Дата охранного документа: 20.08.2016
13.01.2017
№217.015.6776

Способ приготовления катализатора глубокого окисления

Изобретение относится к области разработки способов приготовления катализаторов глубокого окисления CO и органических веществ. Описан способ приготовления катализатора глубокого окисления. Оксидный носитель пропитывают солями переходных металлов, затем сушат и прокаливают. В качестве носителя...
Тип: Изобретение
Номер охранного документа: 0002591955
Дата охранного документа: 20.07.2016
13.01.2017
№217.015.6872

Способ получения о-алкенилфенолов и катализатор для его осуществления

Изобретение относится к способу получения о-алкенилфенолов, являющихся перспективными исходными соединениями для синтеза лекарственных препаратов и душистых веществ в косметической и пищевой промышленности. Способ заключается во взаимодействии фенола или замещенного фенола с алифатическим...
Тип: Изобретение
Номер охранного документа: 0002591954
Дата охранного документа: 20.07.2016
+ добавить свой РИД