×
27.04.2016
216.015.39ad

Результат интеллектуальной деятельности: СПОСОБ ФЛУОРИМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ФЛУНИКСИНА

Вид РИД

Изобретение

Аннотация: Изобретение относится к аналитической химии, конкретно к определению флуниксина в лекарственных препаратах. При осуществлении способа в ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации 1·10 М, соль тербия Tbдо концентрации 1·10 М, лекарственный препарат триоктилфосфиноксид до концентрации 1·10 М, облучают раствор электромагнитным излучением с длиной волны λ=347 нм и по наличию флуоресценции на длине волны λ=545 нм судят о наличии флуниксина. Дополнительно измеряют интенсивность флуоресценции, а концентрацию флуниксина в лекарственном препарате определяют по величине интенсивности с использованием заранее полученного градуировочного графика или методом стандартной добавки. Достигается упрощение анализа. 2 з.п. ф-лы, 1 ил., 8 табл., 7 прим.

Изобретение относится к аналитической химии, конкретно к способу флуориметрического определения флуниксина в лекарственных препаратах при определении действующего вещества и его наличии.

Флуниксин (2-[[2-метил-3-(трифторметил)-фенил]-амино]-пиридин-3-карбоновая кислота)

относится к нестероидным, противовоспалительным, обезболивающим и жаропонижающим средствам, используемым в ветеринарии. Контроль его содержания осуществляют методами, основанными на принципах хромато-масс-спектрометрии с привлечением газовой, жидкостной хроматографии [Estelle Dubreil-Chéneau, Yvette Pirotais, Mélaine Bessiral, etc. Development and validation of a confirmatory method for the determination of 12 non steroidal anti-inflammatory drugs in milk using liquid chromatography-tandem mass spectrometry.Journal of Chromatography A, 1218 (2011) 6292- 6301; Alessandra Gentili, Fulvia Caretti, Simona Bellante, etc. Development and validation of two multiresidue liquid chromatography tandem mass spectrometry methods based on a versatile extraction procedure for isolating non-steroidal anti-inflammatory drugs from bovine milk and muscle tissue.Anal Bioanal Chem (2012) 404:1375-1388; Tao Peng, Ai-Ling Zhu, Yue-Ning Zhou etc. Development of a simple method for simultaneous determination of nine subclasses of non-steroidal anti-inflammatory drugs in milk and dairy products by ultra-performance liquid chromatography with tandem mass spectrometry. Journal of Chromatography B, 933 (2013) 15- 23; Ngaio Richards, Sarah Hall, Karen Scott, etc. First detection of an NSAID flunixin in sheep's wool using GC-MS. Environmental Pollution 159 (2011) 1446-1450]. Хромато-масс-спектрометрия позволяет осуществить разделение определяемых компонентов и их аналитических сигналов, сложных по составу образцов во времени и получить масс-спектры каждого соединения в смеси. Площадь хроматографического пика пропорциональна содержанию вещества в анализируемом образце, что позволяет проводить точный количественный анализ образцов. Преимущество указанного метода заключается в экпрессности и высокой чувствительности, однако он мало подходит для рутинного анализа лекарственных препаратов, так как требует привлечения дорогостоящего оборудования и персонала высокой квалификации.

Наиболее близким по технической сущности является способ определения флуниксина с помощью дифференциальной импульсной вольтамперометрии с использованием портативных миниатюрных одноразовых графитовых электродов [V. Meuccia, M. Vannia, M. Sgorbinia, etc. Determination of phenylbutazone and flunixin meglumine in equine plasma by electrochemical-based sensing coupled to selective extraction with molecularly imprinted polymers. Sensors and Actuators B 179 (2013) 226- 231]. Способ включает предварительную твердофазную экстракцию флуниксина на колонке с последующим восстановлением его на графитовом электроде и предложен в качестве альтернативы к существующим хроматографическим методам. К существенным недостаткам можно отнести использование одноразовых электродов, что повышает стоимость анализа, а также продолжительное время определения. Чаще на практике в анализе лекарственных препаратов используют методы, основанные на измерении собственной флуоресценции, однако флуниксин не обладает флуоресцентными свойствами, и в этом состоит ограничение возможностей флуориметрии. Нами впервые предложен флуориметрический метод определения флуниксина, основанный на измерении сенсибилизированной флуоресценции комплекса тербия с флуниксином в присутствии триоктилфосфиноксида.

Задачей изобретения является разработка простого флуориметрического экспресс-метода определения флуниксина с помощью аналитической формы, обеспечивающего возможность определения флуниксина в лекарственных препаратах, позволяющего исключить использование дорогостоящего оборудования и привлечение высококвалифицированных специалистов.

Технический результат заключается в упрощении способа определения флуниксина за счет применения флуориметрического метода анализа, возможного в результате взаимодействия флуниксина с ионом тербия (III) и триоктилфосфиноксидом (ТОФО) в мицеллярных растворах Твин-80.

Указанный технический результат достигается тем, что согласно заявляемому способу определения наличия флуниксина в лекарственном препарате ацетатно-аммиачный буферный раствор с рН 7.0-7.8 добавляют Твин-80 до концентрации в конечном растворе 1·10-2 М, соль тербия Tb3+до концентрации в конечном растворе 1·10-3 М, лекарственный препарат триоктилфосфиноксид до концентрации в конечном растворе 1·10-4 М, облучают раствор электромагнитным излучением с длиной волны λвозб=347 нм и по наличию флуоресценции на длине волны λфл=545 нм судят о наличии флуниксина. Дополнительно измеряют интенсивность флуоресценции, а концентрацию флуниксина в лекарственном препарате определяют по величине интенсивности с использованием заранее полученного градуировочного графика или методом стандартной добавки.

Изобретение поясняется чертежом, на котором приведен градуировочный график определения флуниксина, где по оси абсцисс указан отрицательный десятичный логарифм концентрации лекарственного препарата рС (M), а по оси ординат - десятичный логарифм интенсивности сигнала флуоресценции lgI.

Использование флуориметрического метода определения флуниксина на основании измерения собственной флуоресценции невозможно, так как аналит не обладает флуоресцирующими свойствами. Однако в результате его взаимодействия с солью тербия (III) и триоктилфосфиноксидом (ТОФО) в мицеллярном растворе Твин-80 образуется комплекс, характеризующийся эмиссией тербия (λвозб=347 нм, λфл=545 нм), которая может быть использована в качестве аналитического сигнала при определении нестероидного противовоспалительного препарата.

Способ реализуется следующим образом.

В пробирку с буферным раствором (рН 7.0 - 7.8) строго по порядку добавляют раствор Твин-80 до его концентрации в конечном растворе 1·10-2 М, соль тербия Tb3+до ее концентрации в конечном растворе 1·10-3 М, лекарственный препарат (либо другой анализируемый раствор), триоктилфосфиноксид до его концентрации в конечном растворе 1·10-4 М. На полученный конечный раствор воздействуют электромагнитным излучением с длиной волны возбуждения λ=347 нм, и измеряют интенсивность сигнала флуоресценции на длине волны флуоресценции λфл=545 нм, которая зависит от концентрации флуниксина в растворе. С помощью заявляемого способа по наличию флуоресценции возможно обнаружение флунексина в диапазоне концентраций от 1·10-7 до 1·10-4 М.

Для определения концентрации флуниксина возможно использовать градуировочный график, постороенный в аналогичных условиях для стандартных растворов флуниксина в координатах логарифм интенсивности (lgI) - отрицательный логарифм концентрации (рС) флуниксина, М. Для измерения сигнала флуоресценции используют способ разрешенной во времени флуоресценции (время задержки составляет 0,3 мс). Определяют интенсивность I флуоресценции раствора, затем рассчитывают логарифм этой величины по основанию 10 lgI и с помощью градуировочного графика находят рС и соответствующую концентрацию флуниксина как антилогарифм полученного значения (см. чертеж).

Для построения градуировочного графика готовят стандартный водный раствор флуниксина концентрации 1·10-4М ("Sigma-aldrich", основного вещества не менее 98%), водный раствор Твин-80 (фирмы «Sigma», основного вещества не менее 99%) концентрации 1·10-1 М, раствор в этиловом спирте триоктилфосфиноксида (фирмы «Sigma», основного вещества не менее 99%) концентрации 1·10-2 М, водный раствор соли хлорида тербия (III) шестиводного («AcrosOrganics», 99,9% основного вещества), концентрации 1·10-2 М, ацетатно-аммиачный буферный раствор (рН 7.0-7.8). В семь-десять пробирок (или более для повышения точности) вносят 1 мл буферного раствора с рН 7.0 - 7.8, затем последовательно добавляют 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2 М. После этого в каждую пробирку добавляют стандартный раствор флуниксина так, чтобы конечные концентрации варьировались от 1·10-7 до 1·10-4 М. Затем в каждую пробирку добавляют 0.4 мл ТОФО 10-3 М и добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность I флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции (время задержки сигнала составляет 0,3 мс). Для каждого раствора измеряют интенсивность флуоресценции и рассчитывают логарифм этой величины по основанию 10. Градуировочный график (см. чертеж) строят в координатах lgI - pC, где С - содержание флуниксина в стандартном растворе, М.

Из градуировочного графика видно, что диапазон определяемых концентраций составляет 1·10-7 - 1·10-4 М. Предел обнаружения рассчитан по способу 3δ (Основы аналитической химии» в 2 кн. Книга 1. Методы химического анализа: учебн. для вузов /Ю.А. Золотов, Е.Н. Дорохова и др. Под редакцией Ю.А. Золотова. - М.: Высшая школа. 2004, 494 с.) и составляет 8·10-8 М.

Для определения концентрации флуниксина возможно использовать метод стандартных добавок (Гришаева Т.И. Методы люминесцентного анализа.- СПб.: АНО НПО «Профессионал», 2003, с.107). Добавка стандартного раствора флуниксина должна характеризоваться интенсивностью флуоресценции, близкой по значению к анализируемому раствору. Методика: 1.5 мл анализируемого раствора помещают в мерную колбу, емкостью 25 мл, добавляют бидистиллированную воду до метки, перемешивают. В пробирку вносят 1 мл буферного раствора (рН 7.0-7.8), 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия(III) 1·10-2 М и 0.2 - 0.5 мл разбавленного раствора «Флунекс», 0.2 - 0.4 мл стандартного раствора флуниксина концентрацией 1·10-4 М, добавляют 0.4 мл ТОФО 10-3 М и буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (задержка - 0.3 мс). Концентрацию флуниксина определяют по формуле:

Сх=Ix·Cа/Ix+а- Ix, где

Ix - флуоресценция исследуемого раствора;

Ix+ст - флуоресценция исследуемого раствора, содержащего добавку;

Сх - определяемая концентрация, (%);

Cа - концентрация добавки в исследуемом растворе (%).

Результаты определения представлены в таблице 1. Правильность контролировали методом «введено-найдено».

Таблица 1
Результаты определения флуниксина в препарате «Флунекс» (n=3, P=0.95, tтабл=4,3)
Заявленное содержание, % Найдено, %
х±Δх Sr
8,3 8,45±0,08 0,04

Таблица 2
Контроль правильности определение флуниксина в препарате «Флунекс» методом «введено-найдено» (n=3, Р=0.95, tтабл=4,3)
№ пробы Введено,
мг/л
Найдено,
мг/л
Sr tэкспер
1 1,48 1,51±0,01 0,01 2,27
2 3,65 3,69±0,10 0,04 1,53
3 2,96 3,17±0,04 0,02 2,32

Sr - относительное стандартное отклонение, Sr=S/χ, где S - стандартное отклонение, равное S=∑(χi-χ)2/n-1)1/2, χi - единичный результат определения, χ - средний результат, n - число определений, р - доверительная вероятность, tэкспер - коэффициент Стьюдента.

Примеры осуществления способа.

В качестве анализируемой пробы использовали раствор лекарственного препарата «Флунекс» (ООО НИТА-ФАРМ, г. Саратов).

Пример 1. Выбор оптимального иона металла для получения максимального аналитического сигнала. Сигнал флуоресценции могут давать и другие ионы РЗЭ в присутствии флуниксина, ТОФО в мицеллярном растворе Твин-80. В четыре пробирки вносят последовательно 1 мл буферного раствора (рН 7.0 - 7.8), добавляют 0.4 мл 1·10-1 М Твин-80. В первую пробирку добавляют 0.4 мл раствора соли тербия (III) концентрации 1·10-2М, в другие соответственно - хлорид европия (III), хлорид самария (III) и гадолиния (III) той же концентрации, затем в каждую добавляют 0.4 мл флуниксина, 10-4М, 0.4 мл ТОФО 10-3 М, добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 3.

Таблица 3
Влияние природы иона РЗЭ на интенсивность аналитического сигнала
РЗЭ Тербий (III) Европий (III) Самарий (III) Гадолиний (III)
Интенсивность флуоресценции 250 10 5 6

Для получения максимального сигнала флуоресценции нами использовался в дальнейших исследованиях тербий (III).

Пример 2. Определение оптимальной природы ПАВ для получения максимального аналитического сигнала. Рассмотрено влияние катионных (хлорид цетилпиридиния, ЦПХ), анионных (додецилсульфата натрия, ДДС) и неионогенных (Твин-80, Бридж-35, Тriton X-100) ПАВ на интенсивность флуоресценции комплекса тербия (III). В пять пробирок вносят 1 мл буферного раствора с рН 7.0- 7.8, затем в первую пробирку добавляют 0.4 мл 1·10-1 М ЦПХ, во вторую - ДДС, в третью - Твин-80, в четвертую - Бридж-35, в пятую - Тритон Х-100 и далее во все пробирки вносят 0.4 мл раствора соли тербия 1·10-2М, 0.4 мл флуниксина 10-4 М, 0.4 мл ТОФО 10-3 М, добавляют буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции.

Таблица 4
Влияние природы ПАВ на интенсивность флуоресценции комплекса тербия (III)
п/№ ЦПХ ДДС Твин-80 Бридж-35 ТритонХ-100
Интенсивность флуоресценции 15 100 750 16 15

Как видно из таблицы 4, из всех ПАВ наибольшее увеличение интенсивности флуоресценции наблюдается в присутствии неионогенного Твин-80, который и выбран нами для дальнейших исследований.

Интенсивность флуоресценции хелата Tb3+- флуниксин - триоктилфосфиноксид зависит от концентрации Твин-80 в растворе.

Пример 3. Определение оптимальной концентрации Твин-80 для получения максимального аналитического сигнала. В четыре пробирки вносят 1 мл буферного раствора (рН 7.0 - 7.8), 0.4 мл раствора соли тербия 1·10-2 М, 0.4 мл флуниксина 10-4М, 0.4 мл ТОФО 10-3М, и последовательно добавляют 0.4 мл растворов концентрации 1·10-6 М, 1·10-4 М, 1·10-3 М, 1·10-2 М Твин-80, буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность аналитического сигнала (λвозб=347 нм, λфл=545 нм).

Таблица 5
Определение оптимальной концентрации Твин-80
п/№ 1 2 3 4
Твин-80, концентрация, М 1·10-6 1·10-4 1·10-3 1·10-2
Интенсивность флуоресценции 25 30 30 1000

Ввиду того, что раствор Твин-80 большей концентрации приготовить нельзя по причине ограниченности растворимости реагента в воде, в качестве оптимальной концентрации выступает 1·10-2 М.

Пример 4. Выбор второго лиганда ТОФО для получения максимального аналитического сигнала. В четыре пробирки вносят 1 мл буферного раствора с рН 7.0 - 7.8, добавляют 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2М, 0.4 мл флуниксина 1·10-4 М. В первую пробирку добавляют 0.4 мл ТОФО 10-3 М, во вторую - 0.4 мл натриевой соли этилендиаминтетрауксусной кислоты (ЭДТА) 1·10-3 М, в третью - 0.4 мл теноилтрифторацетона (ТТА) 1·10-4М, в четвертую - 0.4 мл 1,10-фенантролина (Фен) 1·10-4 М, добавляют в каждую пробирку буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 6.

Таблица 6
Выбор оптимального второго лиганда для получения максимального аналитического сигнала
Второй лиганд ТОФО ЭДТА ТТА Фен
Интенсивность флуоресценции 500 25 10 100

В качестве второго лиганда возможно использование ТОФО или Фен, однако оптимальным для получения максимального значения аналитического сигнала является применение ТОФО.

Пример 5. Определение оптимальной кислотности для получения максимального аналитического сигнала. В каждую из пяти пробирок вносят по 1 мл буферного раствора с рН 5.0, 6.0, 7.0, 8.0, 9.0, добавляют в каждую 0.4 мл 1·10-1 М Твин-80, 0.4 мл раствора соли тербия (III) 1·10-2 М, 0.4 мл флуниксина 1·10-4 М, 0.4 мл ТОФО 10-3М, добавляют соответствующий буферный раствор до общего объема 4 мл, перемешивают и измеряют интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты измерений представлены в таблице 7.

Таблица 7
Выбор оптимальной кислотности для получения максимального аналитического сигнала
рН 5.0 6.0 7.0 8.0 9.0
Интенсивность флуоресценции 8 50 100 95 30

Установлено, что интенсивность флуоресценции системы тербий(III) - флуниксин - ТОФО в присутствии Твин-80 значительно зависит от кислотности среды и максимальная интенсивность наблюдается при рН 7-8.

Пример 7. Выбор оптимальных концентраций компонентов системы. Для выбора оптимальной концентрации Tb3+была исследована зависимость интенсивности флуоресценции разнолигандного хелата от различных содержаний ионов Tb3+.

В шесть пробирок вносили 1 мл буферного раствора (рН 7.0 - 7.8), 0.4 мл 1·10-1 М Твин-80, в каждую пробирку добавляли раствор соли тербия в интервале концентрации 5·10-6 - 2·10-3 М, а затем 0.4 мл флуниксина 10-4 М, 0.4 мл 1·10-3 М ТОФО и буферный раствор до общего объема 4 мл, перемешивали и измеряли интенсивность флуоресценции (λвозб=347 нм, λфл=545 нм) в режиме разрешенной во времени флуоресценции. Результаты представлены в таблице 8.

Таблица 8
Выбор оптимальной концентрации соли тербия и второго лиганда для получения максимального аналитического сигнала
Интенсивность флуоресценции, М 2·10-3 1·10-3 5·10-4 1·10-4 5·10-5 1·10-5
Тербий 830 850 750 400 200 100
ТОФО осадки осадки 100 170 100 70

Как видно из таблицы 8, для получения максимального значения интенсивности аналитического сигнала необходимо использовать 1·10-3 М соль тербия(III) и 1·10-4 М раствор ТОФО.

Предлагаемый способ позволяет отказаться от дорогостоящего оборудования и привлечения квалифицированного персонала.


СПОСОБ ФЛУОРИМЕТРИЧЕСКОГО ОПРЕДЕЛЕНИЯ ФЛУНИКСИНА
Источник поступления информации: Роспатент

Показаны записи 11-20 из 54.
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aabc

Способ скрытой передачи информации

Изобретение относится к радиотехнике и передаче информации и может найти применение в системах связи для помехоустойчивой передачи цифровой информации, в том числе с высокой степенью конфиденциальности. Задачей настоящего изобретения является усовершенствование способа скрытой передачи...
Тип: Изобретение
Номер охранного документа: 0002509423
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b086

Способ оценки фото-, кино- и видеоматериалов, содержащих нежелательное изображение (варианты)

Изобретение относится к средствам анализа содержимого изображений. Техническим результатом является повышение эффективности оценки содержимого изображений. В способе просматривают объект оценки и выявляют признаки нежелательного изображения первой группы - динамические признаки и второй группы...
Тип: Изобретение
Номер охранного документа: 0002510905
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c694

Устройство для ориентации приемника солнечной энергии

Изобретение относится к гелиотехнике и может быть использовано в качестве устройства поворота приемников солнечной энергии (следящей системы) в установках, преобразующих энергию излучения Солнца в другие виды энергии. Устройство для ориентации приемника солнечной энергии содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002516595
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ea

Способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка"

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах...
Тип: Изобретение
Номер охранного документа: 0002517200
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cdec

Способ формирования свинцово-кислотных аккумуляторных батарей импульсным асимметричным током

Изобретение относится к области электротехники, в частности, к технологии производства свинцово-кислотных аккумуляторов и аккумуляторных батарей, а также к обслуживанию аккумуляторных батарей в процессе их эксплуатации. Задачей изобретения является повышение эффективности формирования...
Тип: Изобретение
Номер охранного документа: 0002518487
Дата охранного документа: 10.06.2014
27.06.2014
№216.012.d77f

Способ определения амплитуды нановибраций по спектру частотномодулированного полупроводникового лазерного автодина

Использование: для определения амплитуды нановибраций. Сущность изобретения заключается в том, что освещают вибрирующий на частоте Ω объект лазерным излучением, преобразуют отраженное от объекта излучение в электрический автодинный сигнал, раскладывают сигнал в спектральный ряд, при этом...
Тип: Изобретение
Номер охранного документа: 0002520945
Дата охранного документа: 27.06.2014
20.09.2014
№216.012.f5de

Аккумулирующий материал для насыщения атомарными веществами и способ его получения

Изобретение относится к материаловедению, микро- и наноэлектронике и может быть использовано в технологических процессах получения энергоносителей. В качестве аккумулирующего материала для насыщения атомарными и/или молекулярными веществами использован шаровидный материал микронных размеров,...
Тип: Изобретение
Номер охранного документа: 0002528775
Дата охранного документа: 20.09.2014
Показаны записи 11-20 из 56.
10.09.2013
№216.012.690c

Миниатюрное устройство намагничивания и термостабилизации ферритовых свч резонаторов

Изобретение относится к радиотехнике и может быть использовано в интегральных СВЧ схемах, элементом которых является пленочный ферритовый резонатор. Технический результат состоит в повышении динамической устойчивости частоты резонатора при резких изменениях температуры окружающей среды и...
Тип: Изобретение
Номер охранного документа: 0002492539
Дата охранного документа: 10.09.2013
10.01.2014
№216.012.93aa

Гранулированный модифицированный наноструктурированный сорбент, способ его получения и состав для его получения

Группа изобретений относится к сорбентам, используемым при очистке водных сред от техногенных загрязнителей. Состав для приготовления гранулированного наноструктурированного сорбента включает, мас.%: глауконит - 20-50, интеркалированный графит, представляющий собой бисульфат графита, - 1-5,...
Тип: Изобретение
Номер охранного документа: 0002503496
Дата охранного документа: 10.01.2014
27.01.2014
№216.012.9cdf

Способ моделирования развития мелкоочаговых мозговых геморрагий в коре головного мозга у новорожденных крыс

Изобретение относится к экспериментальной медицине и касается моделирования мелкоочаговых мозговых геморрагий у новорожденных крыс. Для этого новорожденных крыс в возрасте 3-х дней помещают в камеру и подвергают воздействию звука силой 70 дБ, частотой 110 Гц, на протяжении 60 минут. Способ...
Тип: Изобретение
Номер охранного документа: 0002505865
Дата охранного документа: 27.01.2014
20.02.2014
№216.012.a32c

Способ определения амплитуды нановибраций по сигналу лазерного автодина

Изобретение относится к измерительной технике и предназначено для измерений вибраций. Способ измерения амплитуды нановибраций ξ заключается в том, что освещают объект лазерным излучением, преобразуют отраженное от него излучение в электрический (автодинный) сигнал, раскладывают сигнал в...
Тип: Изобретение
Номер охранного документа: 0002507487
Дата охранного документа: 20.02.2014
10.03.2014
№216.012.aabc

Способ скрытой передачи информации

Изобретение относится к радиотехнике и передаче информации и может найти применение в системах связи для помехоустойчивой передачи цифровой информации, в том числе с высокой степенью конфиденциальности. Задачей настоящего изобретения является усовершенствование способа скрытой передачи...
Тип: Изобретение
Номер охранного документа: 0002509423
Дата охранного документа: 10.03.2014
10.04.2014
№216.012.b086

Способ оценки фото-, кино- и видеоматериалов, содержащих нежелательное изображение (варианты)

Изобретение относится к средствам анализа содержимого изображений. Техническим результатом является повышение эффективности оценки содержимого изображений. В способе просматривают объект оценки и выявляют признаки нежелательного изображения первой группы - динамические признаки и второй группы...
Тип: Изобретение
Номер охранного документа: 0002510905
Дата охранного документа: 10.04.2014
20.05.2014
№216.012.c52f

Способ определения электропроводности и энергии активации примесных центров полупроводниковых слоев

Изобретение относится к измерительной технике, а именно к способу определения электропроводности и толщины слоя полупроводника на поверхности диэлектрика, и может найти применение в различных отраслях промышленности при контроле свойств полупроводниковых слоев. Предложенный способ включает...
Тип: Изобретение
Номер охранного документа: 0002516238
Дата охранного документа: 20.05.2014
20.05.2014
№216.012.c694

Устройство для ориентации приемника солнечной энергии

Изобретение относится к гелиотехнике и может быть использовано в качестве устройства поворота приемников солнечной энергии (следящей системы) в установках, преобразующих энергию излучения Солнца в другие виды энергии. Устройство для ориентации приемника солнечной энергии содержит механизм...
Тип: Изобретение
Номер охранного документа: 0002516595
Дата охранного документа: 20.05.2014
27.05.2014
№216.012.c8ea

Способ определения электропроводности и толщины полупроводниковых пластин или нанометровых полупроводниковых слоев в структурах "полупроводниковый слой - полупроводниковая подложка"

Изобретение относится к контрольно-измерительной технике. Технический результат - расширение функциональных возможностей одновременного определения электропроводности и толщины полупроводниковых пластин и электропроводности и толщины тонких полупроводниковых эпитаксиальных слоев в структурах...
Тип: Изобретение
Номер охранного документа: 0002517200
Дата охранного документа: 27.05.2014
10.06.2014
№216.012.cdec

Способ формирования свинцово-кислотных аккумуляторных батарей импульсным асимметричным током

Изобретение относится к области электротехники, в частности, к технологии производства свинцово-кислотных аккумуляторов и аккумуляторных батарей, а также к обслуживанию аккумуляторных батарей в процессе их эксплуатации. Задачей изобретения является повышение эффективности формирования...
Тип: Изобретение
Номер охранного документа: 0002518487
Дата охранного документа: 10.06.2014
+ добавить свой РИД