×
27.04.2016
216.015.3822

Результат интеллектуальной деятельности: СПОСОБ ПРЕДПОСЕВНОЙ ОБРАБОТКИ СЕМЯН

Вид РИД

Изобретение

Аннотация: Изобретение относится к сельскохозяйственному производству и может быть использовано для активации произрастания семян в системе выращивания кормовых культур методом аэропоники и гидропоники. Способ осуществляется обработкой семян стабилизированной электрически активированной водной суспензией наночастиц железа. Лабораторные испытания показали высокую эффективность применения таких суспензий при концентрации наночастиц железа 0,035-0,0087. Данный способ обработки семян повышает скорость роста корней и побегов растений. 2 табл.
Основные результаты: Способ предпосевной обработки семян, включающий предпосевную обработку посевного материала водной суспензией наночастиц железа, отличающийся тем, что в качестве посевного материала используют семена пшеницы Triticum aestivum, а в качестве суспензии применяются ультрадисперсные наночастицы железа в концентрации 0,035-0,0087% в электрохимически активированном катодном растворе с рН 8-9 и редокс-потенциалом -350…-400 мВ, стабилизированном желатином в концентрации не менее 0,01 мас. %.

Изобретение относится к сельскохозяйственному производству и может быть использовано для активации произрастания семян в системе выращивания кормовых культур методами аэропоники и гидропоники. Способ осуществляют обработкой семян стабилизированной электрохимически активированной водной суспензией наночастиц железа. Лабораторные испытания показали высокую эффективность таких суспензий при концентрации наночастиц железа 0,035-0,0087%.

Наукой и практикой накоплен значительный опыт по влиянию высокодисперсных частиц металлов на рост и развитие растений. Взаимодействие наночастиц металлов с растениями сопровождается их встраиванием в мембраны, проникновением в клетки и клеточные органеллы, взаимодействием с нуклеиновыми кислотами и белками, что может существенно изменять функции различных биологических структур [1, 4, 5, 6, 8, 11]. При этом на фоне многочисленных токсических эффектов наночастиц [9, 12, 13], некоторые из них находят практическое применение для предпосевной обработки семян, а также в качестве микроудобрений [1, 14, 15].

Одним из перспективных методов активации проращивания семян является обработка зерна электроактивированной (ЭХА) водой-католитом, образующимся в катодной зоне диафрагменного электролизера, который обладает биостимулирующим действием [18, 19, 20].

Известен способ обработки семенного материала активированной водой-католитом, при этом энергия прорастания семян на 3-й день увеличивается в 2,3-3,4 раза, наблюдается увеличение длин проростков и длин корней на 7-й день по сравнению с контролем в среднем на 8,0-14,3%. Масса семян при обработке в католите после суточной выдержки за счет активной проницаемости покровов семян увеличилась на 64,4%, что превышает контроль на 28%. Повреждаемость болезнями при обработке водопроводной водой была 72,1%, а активированной - нулевая [3].

Целью настоящего исследования является сравнительный анализ биологической активности концентрации наночастиц железа в стабилизированной электрохимически активированной водной суспензии в тесте прорастания семян пшеницы Triticum aestivum, рекомендуемом действующим национальным нормативом [16] для медико-биологической оценки безопасности наночастиц.

В качестве стабилизатора использовали пептид, представленный желатином (ТУ 9219-011-99205730-08) в концентрации не менее 0,01 мас.% [2], что гарантирует длительную сохранность свойств водного раствора католита pH 8-9 и Eh=-350…-400 мВ при проведении эксперимента в течение 7 суток, кроме того, раствор демонстрирует противомикробную и противогрибковую активность.

При проведении исследования использованы наночастицы железа, полученные методом высокотемпературной конденсации на установке «МиГен» [7, 17]. Предварительное изучение морфологии данных частиц на сканирующем электронном микроскопе JSM 7401F («JEOL», Япония) характеризовало их как сферические образования размером 80±15 нм. В свою очередь, использование методов рентгеновской дифрактометрии и мессбауровской спектроскопии идентифицировало на поверхности наночастиц оксидную пленку из Fe3O4; α-Fe2O3 и γ-Fe2O3, составляющую 15% от их массы.

Для создания суспензий наночастиц железа их навески согласно концентрации (5 вариантов табл.1) помещали в стеклянные емкости, куда вносили по 10 мл электрохимически активированной катодной воды с pH 8-9 и редокспотенциалом Еh=-350…-400 мВ [3, 10], стабилизированной желатином в концентрации не менее 0,01 мас.% [2]. Контролем служили семена, обработанные чистой дистиллированной водой - 1 контроль, и электрохимически активированной стабилизированной водой - 2 контроль, без включения наночастиц железа, после чего все образцы диспергировали ультразвуком частотой 35 кГц в источнике ванного типа «Сапфир ТТЦ» (ЗАО ПКФ «Сапфир», Россия) в течение 30 минут. Объектом воздействия стабилизированной электрохимически активированной водной суспензии наночастиц железа явились семена яровой мягкой пшеницы Triticum aestivum сорт «Учитель», соответствующие 1 классу, не обработанные протравителями и удостоверенные соответствующими документами. В качестве субстрата для биотестирования использовали кварцевый песок, который просеивали для получения фракции 0,5-2,0 мм. С целью удаления примесных элементов песок замачивали в 10% растворе НСl в течение 24 ч, после чего 20-кратно промывали дистиллированной водой до достижения нейтрального значения pH, контролируемого с использованием анализатора «Эксперт-001» (ООО «Эконикс-зксперт», Россия). Подготовленный подобным образом субстрат прокаливали в сушильном шкафу при температуре 130°C в течение 1 часа.

При проведении работы, для одной пробы, песок (60 г) увлажняли стабилизированной электрохимически активированной водной суспензией наночастиц железа в концентрациях от 0,56 до 0,0022% и контрольные образцы - соответственно дистиллированной водой и стабилизированной электрохимически активированной водой до полной влагоемкости, определяемой по ГОСТ 12038-84.

На поверхность песка в трех повторностях помещали по 30 семян на каждый анализируемый образец и заглубляли их так, чтобы поверхность семян была на одном уровне с поверхностью субстрата. Подготовленные опытные и контрольные пробы помещали в термостат 20±2°C в отсутствии освещенности при относительной влажности воздуха 80±5%. Через 7 суток (168 часов) инкубации семена извлекали и оценивали их всхожесть, а также длину сформировавшихся корней и побегов, рассчитывая средние значения для каждой пробы.

При анализе поступления и распределения железа в тканях Triticum aestivum навески концевых отрезков корней и проростков высушивали до постоянной массы, после чего проводили пробоподготовку с использованием концентрированной азотной, серной и соляной кислот. Количественное определение содержания железа выполняли с использованием атомно-абсорбционного спектрометра с электротермической атомизацией «Люмекс» МГА-915 (Россия) на длине волны 248,3 нм при температуре 2400°C и времени атомизации 1,7 с. Полученные значения пересчитывали на сухую массу исследуемых образцов.

Все эксперименты выполнены в трех повторностях и обработаны методами вариационной статистики с использованием пакета компьютерных программ «Statistica» V8 («StatSoft Inc.», США).

Инкубация семян Triticum aestivum в контакте с наночастицами железа не изменила частоту прорастания и оказывало на их развитие стимулирующее воздействие, которое, однако, нелинейно зависело от концентрации в среде культивирования (табл. 1). Так, значимое увеличение скорости роста побегов на 0,11-0,15 мм/ч выше контрольных значений (Р<0,05) было зафиксировано в диапазоне воздействующих концентраций наночастиц железа от 0,56 до 0,0022%. Для данного диапазона концентраций было характерно и увеличение скорости роста корневой системы до 1,59-1,98 мм/ч против 1,32-1,40 мм/ч в контроле (Р<0,01). При этом отдельным аспектом подученного результата являлось наиболее выраженная стимуляция роста боковых корней, по своей длине становящихся сопоставимыми с длиной первичного корня (табл. 1).

Присутствие наночастиц железа в среде культивирования сопровождалось интенсивным поступлением и существенным накоплением данного металла в тканях Triticum aestivum, по своим абсолютным значениям превышающим аналогичные значения в тканях контрольных растений, выращенных на деминерализованном песочном субстрате (табл. 2). При этом значимым результатом являлось преимущественное накопление железа в корневой системе модельных растений, в идентичных образцах в 3,47; 1,44 и 1,88 раз превышающее аналогичные значения в тканях побегов соответственно образцов при концентрации Fe 0,56; 0,14 и 0,035%, тем самым подтверждая представления о корневой системе растений как основной «мишени» для воздействия металлических наночастиц. Второй важный аспект полученного результата определялся дозозависимым характером накопления использованного металла, вновь нелинейно зависящим от концентрации наночастиц железа в среде культивирования. Так, эффективность извлечения железа из среды культивирования оказывалась максимальной в присутствии минимальной использованной концентрации наночастиц, после чего прогрессивно снижалась с 79,59% до 4,6% при увеличении их концентрации с ограничений поступления и распространения наночастиц железа в тканях модельных растений, предположительно вовлеченных в систему их адаптивных реакций при проращивании в условиях интенсивного контакта с наночастицами.

При содержании в сухой биомассе исследуемых частях Triticum aestivum наночастиц железа в количестве 126,5 мкг/г (концентрация 0,035%) и эффективности их извлечения из среды культивирования - 36,23% достигаются максимальные скорости роста побегов и корней. Результаты проведенного исследования свидетельствуют о выраженных различиях в концентрациях железа на рост и развитие растений, продемонстрированных в тесте проращивания семян Triticum aestivum. В свою очередь, наночастицы железа не проявляют выраженного токсического действия, но, напротив, в исследуемых диапазонах концентраций стимулируют рост и развитие проростков Triticum aestivum, что сопровождается накоплением в тканях модельных растений значительных количеств воздействующего металла.

Подобный результат определяет перспективу использования наночастиц железа при предпосевной обработке семян, а также в системе выращивания кормовых и сельскохозяйственных растений методами аэропоники или гидропоники, ожидаемым следствием чего явится не только повышение выхода биомассы, но и ее обогащение биологически доступным железом, востребованным при коррекции микронутриентной обеспеченности животных.

Таким образом, способ предпосевной обработки семян пшеницы Triticum aestivum, стабилизированной электрохимически активированной водной суспензией дисперсных наночастиц железа в концентрации 0,035-0,0087%, повышает скорость роста корней и побегов на 30-40%, при этом эффективность извлечения растением железа из среды культивирования варьирует от 36,23 до 79,59%.

Список использованной литературы

1. Виноградова Д.Л., Малышев Р.А., Фолманис Г.Э. Экономические аспекты применения нанотехнологий в земледелии / под общ. Редакцией Г.В. Павлова. - М.: Исследовательский центр проблем качества подготовки специалистов, 2005. С. 8-34.

2. Патент на изобретение РФ №2234945. Стабилизатор водного раствора и водосодержащего сырья с самопроизвольно изменяющимися окислительно-восстановительными свойствами / В.М. Дворников: опубликовано 27.08.2004.

3. Патент на изобретение РФ №2429592. Способ выращивания гидропонных кормов / С.А. Мирошников, Т.Д. Дерябина и др.: опубликовано 27.09.2010.

4. Коваленко Л.В., Фолманис Г.Э. Активация прорастания семян ультрадисперсными порошками железа // Достижения науки и техники АПК. 2001. №9. - С. 7-8.

5. Патент на изобретение РФ №2056084. Способ предпосевной обработки семян / Г.Э. Фолманис: бюллетень №8, 1996.

6. Селиванов В.Н., Зорин Е.В., Сидорова Е.Н., Дзидзигури Э.Л., Фолманис Г.Э. Пролонгированное воздействие ультрадисперсных порошков металлов на семена злаковых культур // Перспективные материалы. 2001. №4. С. 66-69.

7. Авторское свидетельство СССР №814432. Способ получения аэрозолей металлов / М.Я. Ген, А.В. Миллф: бюллетень №11, 1981.

8. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. - М.: Наука, 2006. 124 с.

9. Дерябина Т.Д. Оценка безопасности ионов, нано- и микрочастиц железа и меди в тесте прорастания семян Triticum aestivum // Вестник Оренбургского государственного университета. 2011, №12 (131). - С. 386-389.

10. Патент на изобретение РФ №2477942. Способ предпосевной обработки семян нута / С.А. Мирошников, А.В. Малышева, Т.Д. Дерябина и др.: бюллетень №9.

11. Nel А.Е., Madler L., Velegol D., Xia T., Hoek E.M., Somasundaran P., Klaessig F., Castranova V., Thompson M. Understanding biophysicochemical interactions at the nano-bio interface // Nat. Mater. 2009. Vol. 8. P.543-557.

12. Soenen S.J., Himmelreich U., Nuytten N., De Cuyper M. Cytotoxic effects of iron oxide nanoparticles and implications for safety in cell labeling // Biomaterials. 2011. Vol. 32(1). P. 195-205.

13. Mahmoudi M., Hofmann H., Rothen-Rutishauser В., Petri-Fink A. Assessing the in vitro and in vivo toxicity of superparamagnetic iron oxide nanoparticles // Chem. Rev. 2012. Vol. 112(4). P. 2323-2338.

14. Коваленко Л.В., Фолманис Г.Э. Биологически активные нанопорошки железа. - М.: Наука, 2006, 124 с.

15. Райкова А.П., Паничкин Л.А., Райкова Н.Н. Исследования влияния ультрадисперсных порошков металлов, полученные различными способами, на рост и развитие растений // Материалы Международной научно-технической конференции «Нанотехнологии и информационные технологии - технологии 21 века». - М., 2006. С. 118-123.

16. Методические указания 1.2.2635-10 // Медико-биологическая оценка безопасности наноматериалов. - М.: Федеральный центр гигиены и эпидемиологии Роспотребнадзора. 2010, 123 с.

17. Жигач А.Н., Кусков М.Л., Лейпунский И.О., Стоенко Н.И., Сторожев В.Б. Получение ультрадисперсных порошков металлов, сплавов, соединений металлов методом Гена-Миллера: история, современное состояние, перспективы // Российские нанотехнологии. 2012. Т.7 (№3-4). С. 28-37.

18. Бутко М.П., Фролов B.C., Тиганов B.C. Применение электрохимически активированных растворов хлорида натрия для санации объектов АПК. - Веткорм, №1, 2007 г. - С. 25-27.

19. Джурабов М. Применение электроактивированной воды в сельском хозяйстве. - Механизация и электрификация сельского хозяйства, №11, 1986 г. - С. 51-53.

20. Калунянц К.А., Кочеткова А.А., Сушенкова О.А., Садова А.И., Филатова Т.В. Интенсификация технологических процессов обработки зерна электрохимическим воздействием // Совещание по электрохимической активации сред. Тезисы докладов. - Всесоюзное химическое общество им. Д.И. Менделеева, 1987. - С. 83.

Способ предпосевной обработки семян, включающий предпосевную обработку посевного материала водной суспензией наночастиц железа, отличающийся тем, что в качестве посевного материала используют семена пшеницы Triticum aestivum, а в качестве суспензии применяются ультрадисперсные наночастицы железа в концентрации 0,035-0,0087% в электрохимически активированном катодном растворе с рН 8-9 и редокс-потенциалом -350…-400 мВ, стабилизированном желатином в концентрации не менее 0,01 мас. %.
Источник поступления информации: Роспатент

Показаны записи 51-56 из 56.
19.01.2018
№218.016.060a

Способ ранней диагностики воспроизводительной способности коров мясного скота

Изобретение относится к животноводству и ветеринарии и может быть использовано при оценке воспроизводительной способности коров мясных пород. Определяют воспроизводительные качества маток крупного рогатого скота мясного направления продуктивности по элементному составу шерсти. Проводят...
Тип: Изобретение
Номер охранного документа: 0002630986
Дата охранного документа: 15.09.2017
19.01.2018
№218.016.0617

Способ коррекции элементозов коров

Изобретение относится к области ветеринарии и может быть использовано для нормализации минерального обмена в организме коров. Проводят определение элементного состава шерсти методами атомно-эмиссионной и масс-спектрометрии, выявляются животные с содержанием предельно допустимых норм по цинку...
Тип: Изобретение
Номер охранного документа: 0002630987
Дата охранного документа: 15.09.2017
20.01.2018
№218.016.1176

Способ приготовления кормовой добавки для молодняка крупного рогатого скота

Изобретение относится к отрасли сельского хозяйства и может быть использовано для увеличения продуктивности сельскохозяйственных животных. Способ приготовления кормовой добавки для молодняка крупного рогатого скота заключается в смешивании высокодисперсных частиц кобальта с размером не более...
Тип: Изобретение
Номер охранного документа: 0002634052
Дата охранного документа: 23.10.2017
20.01.2018
№218.016.1664

Средство стимулирования роста сельскохозяйственных культур, преимущественно пшеницы

Изобретение относится к области сельского хозяйства. Предложено средство стимулирования роста яровой пшеницы, представляющее собой водный раствор биологически активных веществ. В качестве биологически активных веществ используют наночастицы железа и оксида кремния в весовом соотношении 1:1,...
Тип: Изобретение
Номер охранного документа: 0002635103
Дата охранного документа: 09.11.2017
20.01.2018
№218.016.19ff

Олигонуклеотидный биочип для идентификации генетических детерминант резистентности neisseria gonorrhoeae к антимикробным препаратам, набор олигонуклеотидов, используемых для иммобилизации на биочипе

Группа изобретений относится к биотехнологии. Предложены олигонуклеотидный биочип для идентификации генетических детерминант резистентности N. gonorrhoeae к антимикробным препаратам, включающим фторхинолоны, антибиотики пенициллинового ряда, цефалоспорины, тетрациклины, макролиды,...
Тип: Изобретение
Номер охранного документа: 0002636457
Дата охранного документа: 23.11.2017
20.01.2018
№218.016.1a1f

Способ повышения чувствительности полимеразной цепной реакции в реальном времени при обнаружении днк патогенных бактерий

Изобретение относится к медицине, в том числе к лабораторным методам исследования в микробиологии, а именно - к способам обнаружения ДНК патогенных бактерий (Mycobacterium leprae, Mycobacterium tuberculosis complex (MTBC) и Treponema pallidum) с использованием полимеразной цепной реакции в...
Тип: Изобретение
Номер охранного документа: 0002636458
Дата охранного документа: 23.11.2017
Показаны записи 81-90 из 103.
02.10.2019
№219.017.cf61

Способ выявления днк провируса лейкоза крупного рогатого скота (bovine leukosis virus, blv)

Изобретение относится к области биотехнологии. Изобретение представляет собой способ выявления ДНК провируса лейкоза крупного рогатого скота (Bovine leukosis virus, BLV), включающий выделение ДНК из биологического материала от инфицированных животных сорбционным методом, постановку одноэтапной...
Тип: Изобретение
Номер охранного документа: 0002700245
Дата охранного документа: 13.09.2019
02.10.2019
№219.017.cf62

Способ повышения продуктивности цыплят-бройлеров путем снижения патогенной микрофлоры в кишечнике птицы

Изобретение относится к сельскохозяйственной отрасли, в частности к способу повышения продуктивности цыплят-бройлеров путем снижения патогенной микрофлоры в кишечнике птицы. Способ характеризуется тем, что при непрерывном нормированном поении птицы стабилизированным католитом с рН 8,5 и...
Тип: Изобретение
Номер охранного документа: 0002700500
Дата охранного документа: 17.09.2019
18.10.2019
№219.017.d76c

Способ оценки воспроизводительных качеств жеребцов по элементному составу волос с гривы

Изобретение относится к области биотехнологии. Изобретение представляет собой способ оценки воспроизводительных качеств жеребцов по элементному составу волос с гривы, включающий настриг требуемого образца волос по массе не менее 0,24 г с участка гривы в области проекции первого шейного...
Тип: Изобретение
Номер охранного документа: 0002703383
Дата охранного документа: 16.10.2019
08.11.2019
№219.017.df0d

Способ оценки молочной продуктивности коров по элементному составу шерсти

Изобретение относится к области биотехнологии. Изобретение представляет собой способ оценки молочной продуктивности коров по элементному составу шерсти, включающий настриг образца шерсти массой не менее 0,4 г с верхней части холки на 30 сутки после отела, дальнейшую оценку концентраций Pb, Zn и...
Тип: Изобретение
Номер охранного документа: 0002705315
Дата охранного документа: 06.11.2019
06.02.2020
№220.017.ff34

Способ прогнозирования андрогенной алопеции у мужчин

Изобретение относится к медицине, а именно к дерматологии и косметологии, и может быть использовано для прогнозирования андрогенной алопеции у мужчин путем исследования генетической предрасположенности к развитию данного заболевания и определения патогенетически значимых негенетических...
Тип: Изобретение
Номер охранного документа: 0002713374
Дата охранного документа: 04.02.2020
23.04.2020
№220.018.1807

Кормовая добавка для крупного рогатого скота

Изобретение относится к области органической химии, а именно к кормовой добавке для крупного рогатого скота, включающей композицию химических веществ в следующих дозировках: 4-(3-гидрокси-1-пропенил)-2-метокси-фенол - 2,1 мг; 3,4,5-триметилгидроскифенол - 0,84 мг; 4-пропил-1,3-бензолдиол - 0,65...
Тип: Изобретение
Номер охранного документа: 0002719621
Дата охранного документа: 21.04.2020
04.05.2020
№220.018.1b6b

Способ снижения концентрации токсических элементов в мышечной ткани цыплят-бройлеров

Изобретение относится к отрасли сельского хозяйства и может быть использовано в кормлении сельскохозяйственной птицы, в частности цыплят-бройлеров. Способ снижения концентрации токсических элементов в мышечной ткани цыплят-бройлеров предусматривает совместное введение в рацион пробиотика на...
Тип: Изобретение
Номер охранного документа: 0002720469
Дата охранного документа: 30.04.2020
04.05.2020
№220.018.1b8f

Кормовая добавка для цыплят-бройлеров

Изобретение относится к отрасли сельского хозяйства и может быть использовано в кормлении сельскохозяйственной птицы, в частности цыплят-бройлеров. Кормовая добавка для цыплят-бройлеров включает пробиотический штамм Bacillus cereus IP 5832 (АЕСС 14893), при этом её выпаивают в дозировке 4 мл/кг...
Тип: Изобретение
Номер охранного документа: 0002720471
Дата охранного документа: 30.04.2020
29.05.2020
№220.018.220a

Способ отбора бычков мясных пород с высоким потенциалом весового роста по элементному составу шерсти

Изобретение относится к области биотехнологии. Изобретение представляет собой способ отбора бычков мясных пород с высоким потенциалом весового роста по элементному составу шерсти, включающий настриг образца шерсти массой не менее 0,4 г с верхней части холки в 8-месячном возрасте с дальнейшей...
Тип: Изобретение
Номер охранного документа: 0002722045
Дата охранного документа: 26.05.2020
05.06.2020
№220.018.2426

Способ повышения переваримости корма при включении в рацион бычков на откорме ультрадисперсных частиц диоксида кремния

Изобретение относится к сельскому хозяйству. Способ повышения переваримости корма включает введение в рацион бычков на откорме ультрадисперсных частиц SiO с гидродинамическим радиусом 388±37 нм в дозе 13 мг/кг корма. Повышается переваримость в эксперименте in vitro на 4,6%, в исследовании in...
Тип: Изобретение
Номер охранного документа: 0002722730
Дата охранного документа: 03.06.2020
+ добавить свой РИД