×
27.04.2016
216.015.3813

Результат интеллектуальной деятельности: СПОСОБ ИНТЕНСИФИКАЦИИ СОРБЦИИ БЛАГОРОДНЫХ МЕТАЛЛОВ С ПОМОЩЬЮ НАНОДИСПЕРСНОГО СОРБЕНТА

Вид РИД

Изобретение

Аннотация: Изобретение относится к получению нанодисперсного сорбента металлов и к использованию полученного сорбента для интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов. Способ извлечения благородных металлов из растворов включает сорбцию на органическом сорбенте [пергидро(1,3,5-дитиазин)-5-ил]-гексане общей формулы CHSN. При этом сорбцию ведут с использованием сорбента в виде эмульсии частиц наноразмеров, полученной облучением сорбента ультразвуком в водной среде. Техническим результатом является применение сорбента в максимально измельченном состоянии (коллоидном), позволяющем достичь равномерного и стабильного распределения сорбента в водном растворе. 6 пр.
Основные результаты: Способ извлечения благородных металлов из растворов, включающий сорбцию на органическом сорбенте [пергидро(1,3,5-дитиазин)-5-ил]-гексане общей формулы CHSN, отличающийся тем, что сорбцию ведут с использованием сорбента в виде водной эмульсии наночастиц, полученной облучением указанного сорбента ультразвуком в водной среде.

Изобретение относится к получению нанодисперсного сорбента металлов и к применению полученного сорбента в целях интенсификации процесса сорбции и может быть применено в гидрометаллургии благородных металлов.

Известны сорбенты аминотиофирного строения, обладающие способностью сорбировать из водных растворов ионы благородных металлов [1. Патент РФ №2205237, кл. С22В 3/24, С 22 В 11/00]. В ряду соединений указанного строения известен сорбент-1-[пергидро(1,3,5-дитиазин)-5-ил]-гексан. Названный сорбент представляет собой вязкую смолу, не смешивающуюся с водой.

Сорбцию ионов благородных металлов указанным сорбентом производят в статических условиях. Поскольку сорбент находится в водном растворе извлекаемых металлов в виде отдельной фазы на дне реакционного сосуда, для повышения интенсивности сорбции применяют многократный избыток сорбента и энергичное перемешивание. Отсутствие перемешивания ведет к оседанию частиц сорбента (расслоению фаз) и резкому замедлению процесса сорбции, что является недостатком. Избыток вязкого непрореагировавшего сорбента после окончания процесса сорбции смешивается с продуктом взаимодействия и затрудняет отделение конечного продукта, что также является недостатком.

Известен способ интенсификации сорбции на сорбентах аминотиоэфирного ряда [2. Патент РФ №2205239], заключающийся в добавлении иодид-ионов к раствору извлекаемой платины. Достоинством указанного способа является достижение высоких степеней извлечения платины за более короткий интервал времени контакта сорбента с раствором извлекаемого элемента. Недостатком данного способа является неприменимость его в случае присутствия в растворе металлов, образующих нерастворимые осадки с иодид-ионом, в частности палладия.

Указанных недостатков лишен заявляемый способ, позволяющий увеличить интенсивность сорбции, исключить необходимость перемешивания, избежать избыточного расхода сорбента.

Заявляемый способ состоит в предварительной обработке сорбента ультразвуком с целью измельчения частиц сорбента до состояния устойчивой эмульсии.

Известно [3. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред. - М.: Наука, 1982], что химические реакции в среде мелкоизмельченных частиц сырья протекают интенсивнее (быстрее, с большей конверсией), чем в среде крупноагломерированных объектов

Очевидно, что уменьшение частиц сорбента при равном объеме способствует повышению эффективности сорбции за счет более плотного и равномерного расположения сорбирующих частиц в объеме раствора и, соответственно, повышения вероятности контакта сорбирующих частиц с частицами сорбируемого элемента. Максимальное измельчение органической фазы в воде без изменения структуры вещества представляет собой суспензию или эмульсию, в которой частицы суспендированной (эмульгированной) фазы равномерно распределены во всем объеме раствора. Размеры частиц сорбента в эмульсии или стабильной суспензии составляют десятки-сотни нанометров, т.е. сорбент находится в виде наночастиц, что и обеспечивает интенсификацию взаимодействия частиц, участвующих в сорбционном процессе.

Известно, что диспергирование водонерастворимого органического вещества в воде достигается традиционно механическими либо химическими (с добавлением ПАВ) способами. Недостатком механических способов является невозможность глубокого измельчения (до наночастиц) веществ. Недостатком химических методов является введение в систему диспергируемое вещество-вода посторонних веществ (ПАВов), что не всегда допустимо.

Известно, что эффективное измельчение частиц при сохранении их молекулярной структуры доступно при ультразвуковой обработке материалов, при этом возможно достижение наноразмеров частиц [4. А. Geganken. Using sonochemistry for the fabrication of nanomaterials // Ultrasonics Sonochemistry, 2004. - vol. 11. - 47].

О применении ультразвуковой обработки для измельчения сорбентов до наносостояния в целях повышения интенсивности сорбции сведений в литературе нет.

Сущность изобретения состоит в повышении интенсивности действия известного сорбента металлов - [пергидро(1,3,5-дитиазин)-5-ил]-гексана /4/ - за счет переведения сорбента в стабильное мелкодисперсное состояние. Органический сорбент аминотиоэфирного ряда [пергидро(1,3,5-дитиазин)-5-ил]-гексан в обычном состоянии - жидкость, не смешивающаяся с водой. Для осуществления эффективной сорбции ионов металлов при низких концентрациях последних в растворе необходимо добиться контакта рассеянных в объеме раствора ионов металлов с частицами сорбента. Чем выше степень измельчения сорбента и чем меньше расстояние между взаимодействующими частицами, тем эффективнее происходит процесс сорбции.

Техническим результатом является применение сорбента в максимально измельченном состоянии (коллоидном), позволяющем достичь равномерного и стабильного распределения сорбента в водном растворе, а также повышение степени извлечения благородных металлов.

Технический результат достигается использованием сорбента в виде частиц наноразмеров, полученных ультразвуковым диспергированием.

Сорбент вносят в небольшое количество воды (или рабочего раствора) и помещают в прибор, создающий ультразвуковые колебания частотой 20 кГц на некоторое время. Готовый продукт - эмульсия. При внесении такого сорбента в рабочий раствор эмульсия равномерно распределяется во всем объеме раствора, обеспечивает максимальное сближение с ионами извлекаемого вещества для контакта, при этом сорбент не выделяется в отдельную фазу, а находится в стабильно взвешенном состоянии до момента взаимодействия с извлекаемыми частицами. После сорбции частицы сорбента увеличиваются в размере за счет присоединения сорбируемого элемента и выделяются в осадок, легко отделяющийся от раствора обычными приемами.

Повышение интенсивности сорбции по заявляемому способу определяется следующими характеристиками:

- увеличение степени извлечения металла по сравнению со степенью извлечения того же металла без применения заявляемого способа;

- расширение ряда элементов, извлекаемых заявляемым способом;

- возможность сорбции веществ, находящихся не только в ионной форме, но и в виде взвешенных нульвалентных частиц металла.

Изобретение иллюстрируется примерами.

Пример 1

В колбу, содержащую 100 мл раствора платинохлористоводородной кислоты с концентрацией 10 мкг/л платины, вносили 1 мл эмульсии сорбента [пергидро(1,3,5-дитиазин)-5-ил-]гексана, приготовленной ультразвуковой обработкой 10 мг сорбента в 10 мл воды при частоте ультразвука 20 кГц в течение 4 минут, и выдерживали при комнатной температуре без перемешивания в течение 15 минут. Выделившийся осадок отфильтровывали, в осадке и фильтрате определяли содержание платины. По результатам определения вычисляли степень извлечения платины. Степень извлечения платины в описанном примере - 98,3%.

Пример 2

Выполняли аналогично примеру 1, но в качестве сорбента использовали [пергидро(1,3,5-дитиазин)-5-ил-]гексан в количестве 1 мг без предварительной обработки ультразвуком. Степень извлечения платины в описываемом примере - 64,5%.

Пример 3

В колбу, содержащую 100 мл стабильного коллоидного раствора (золя) золота с концентрацией золота 20 мкг/л, вносили 1 мл эмульсии сорбента [пергидро(1,3,5-дитиазин)-5-ил-]гексана, приготовленной ультразвуковой обработкой 10 мг сорбента в 10 мл воды при частоте ультразвука 20 кГц в течение 4 минут, и выдерживали при комнатной температуре без перемешивания в течение 15 минут. Выделившийся осадок отфильтровывали, в осадке и фильтрате определяли содержание золота. По результатам определения вычисляли степень извлечения золота. Степень извлечения золота в описанном примере - 99,2%.

Пример 4

Выполняли аналогично примеру 3, но в качестве сорбента использовали [пергидро(1,3,5-дитиазин)-5-ил-]гексан количестве 1 мг без предварительной обработки ультразвуком. Степень извлечения золота в описываемом примере - 20,5%.

Пример 5

В колбу, содержащую 100 мл раствора хлорида палладия с концентрацией 10 мкг/л палладия, вносили 1 мл эмульсии сорбента [пергидро(1,3,5-дитиазин)-5-ил-]гексана, приготовленной ультразвуковой обработкой 10 мг сорбента в 10 мл воды при частоте ультразвука 20 кГц в течение 4 минут, и выдерживали при комнатной температуре без перемешивания в течение 15 минут. Выделившийся осадок отфильтровывали, в осадке и фильтрате определяли содержание палладия. По результатам определения вычисляли степень извлечения палладия. Степень извлечения палладия в описанном примере - 99,8%.

Пример 6

В колбу, содержащую 100 мл раствора хлорида палладия с концентрацией 10 мкг/л палладия, вносили 1 мг [пергидро(1,3,5-дитиазин)-5-ил-]гексана и выдерживали при комнатной температуре без перемешивания в течение 15 минут. Выделившийся осадок отфильтровывали, в осадке и фильтрате определяли содержание палладия. По результатам определения вычисляли степень извлечения палладия. Степень извлечения палладия в описанном примере - 68,5%.

Способ извлечения благородных металлов из растворов, включающий сорбцию на органическом сорбенте [пергидро(1,3,5-дитиазин)-5-ил]-гексане общей формулы CHSN, отличающийся тем, что сорбцию ведут с использованием сорбента в виде водной эмульсии наночастиц, полученной облучением указанного сорбента ультразвуком в водной среде.
Источник поступления информации: Роспатент

Показаны записи 201-210 из 326.
09.06.2018
№218.016.5f84

Способ получения модифицированных кристаллов магнетита

Изобретение относится к области неорганической химии и касается способа получения модифицированных кристаллов магнетита FeO, содержащих на поверхности флуоресцентный краситель, что дает возможность визуализировать и отслеживать их поведение как в живой клетке, так и в живом организме in vivo....
Тип: Изобретение
Номер охранного документа: 0002656667
Дата охранного документа: 06.06.2018
14.06.2018
№218.016.61b1

Способ выбора мест размещения углепородных отвалов

Изобретение относится к горной промышленности, может быть использовано при выборе мест для расположения углепородных отвалов и предназначено для предотвращения самовозгорания складируемой горной массы. Техническим результатом изобретения является предотвращение самовозгорания складируемой...
Тип: Изобретение
Номер охранного документа: 0002657302
Дата охранного документа: 13.06.2018
16.06.2018
№218.016.6249

Конструкционная криогенная аустенитная высокопрочная коррозионно-стойкая свариваемая сталь и способ ее обработки

Изобретение относится к области металлургии, а именно к получению слитков из конструкционной криогенной аустенитной высокопрочной коррозионно-стойкой свариваемой стали, для изготовления криогенных высокопрочных сварных конструкций, используемых при транспортировке и хранении сжиженных газов....
Тип: Изобретение
Номер охранного документа: 0002657741
Дата охранного документа: 15.06.2018
16.06.2018
№218.016.62ab

Способ получения системы для доставки противоопухолевого препарата в клетки опухоли

Изобретение относится к химико-фармацевтической промышленности и представляет собой способ получения системы для доставки противоопухолевого препарата в клетки опухоли, включающий смешение в присутствии воды модифицированных полимером наночастиц магнетита, эпитаксиально выращенных на...
Тип: Изобретение
Номер охранного документа: 0002657835
Дата охранного документа: 15.06.2018
20.06.2018
№218.016.63cf

Порошковый сплав для изготовления объемных изделий методом селективного спекания

Изобретение относится к порошковым сплавам для изготовления объемных изделий селективным спеканием. Сплав содержит 0,4-0,6 мас.% углерода, 11,0-13,2 мас.% хрома; 0,1-0,4 мас.% кремния; 0,4-0,9 мас.% марганца, 0,08-0,12 мас.% алюминия, 0,4-0,8 мас.% азота; 0,03-0,1 мас.% молибдена и остальное...
Тип: Изобретение
Номер охранного документа: 0002657968
Дата охранного документа: 18.06.2018
01.07.2018
№218.016.6946

Способ получения высокотемпературных адсорбентов co

Изобретение относится к области получения высокотемпературных сорбентов диоксида углерода. Согласно способу активную фазу в виде цирконата или силиката лития формируют на поверхности носителя, представляющего собой карбид металла. Предварительно подвергнутый кислотному травлению носитель...
Тип: Изобретение
Номер охранного документа: 0002659256
Дата охранного документа: 29.06.2018
01.07.2018
№218.016.6977

Способ двухлучевых термолинзовых измерений с одновременной регистрацией пропускания испытуемого образца

Изобретение относится к области прикладной спектроскопии и аналитической химии, а именно к спектрометрии, спектроскопии и спектрофотометрии в ближней УФ-, видимой и ближней ИК-областях, а также к исследованию и анализу материалов с помощью оптической спектроскопии. Способ двухлучевых...
Тип: Изобретение
Номер охранного документа: 0002659327
Дата охранного документа: 29.06.2018
01.07.2018
№218.016.69aa

Способ подготовки газоносного угольного пласта к отработке

Изобретение относится к горной промышленности и предназначено для обеспечения безопасности очистных работ при подземной отработке газоносных угольных пластов при столбовой системе разработки. Техническим результатом является повышение безопасности отработки газоносного угольного пласта....
Тип: Изобретение
Номер охранного документа: 0002659298
Дата охранного документа: 29.06.2018
03.07.2018
№218.016.69f3

Способ получения окислителя для выщелачивания металлов из сульфидного минерального сырья

Изобретение относится к получению окислителя сульфидов из сернокислых растворов железа (II) с использованием микроорганизмов и может быть использовано для растворения сульфидов меди, никеля, цинка, кобальта, мышьяка и железа и выщелачивания металлов из сульфидного минерального сырья, в...
Тип: Изобретение
Номер охранного документа: 0002659502
Дата охранного документа: 02.07.2018
04.07.2018
№218.016.6a91

Преобразователь ионизирующих излучений с сетчатой объемной структурой и способ его изготовления

Изобретение относится к области преобразователей энергии ионизирующих излучений изотопных источников в электрическую энергию Э.Д.С. Такие источники отличаются от конденсаторов и аккумуляторов много большей энергией, приходящейся на единицу объема, но малой выделяемой мощностью в единицу...
Тип: Изобретение
Номер охранного документа: 0002659618
Дата охранного документа: 03.07.2018
Показаны записи 181-184 из 184.
04.04.2018
№218.016.35f0

Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала

Изобретение относится к машиностроению и может применяться в узлах трения, работающих в условиях сухого трения и химически агрессивных средах. Металлополимерный подшипник скольжения состоит из металлической втулки, на которую нанесен слой антифрикционного полимерного нанокомпозиционного...
Тип: Изобретение
Номер охранного документа: 0002646205
Дата охранного документа: 01.03.2018
06.07.2018
№218.016.6cf9

Способ получения сорбента для извлечения селена, теллура

Изобретение относится к получению сорбентов для извлечения токсичных компонентов из водных сред, а именно к способу получения сорбента для извлечения селена, теллура. Способ включает в себя сорбцию на гранулированном макропористом анионите сульфид-ионов с последующей конденсацией сорбированных...
Тип: Изобретение
Номер охранного документа: 0002660148
Дата охранного документа: 05.07.2018
29.03.2019
№219.016.f5a8

Двухструйный дуговой плазматрон

Изобретение относится к электротехнике и аналитическому приборостроению, а именно к источникам возбуждения эмиссионных спектров анализируемых проб, и может быть использовано в плазмохимии для получения дисперсных материалов. Двухструйный дуговой плазматрон включает две электродные головки,...
Тип: Изобретение
Номер охранного документа: 0002458489
Дата охранного документа: 10.08.2012
29.04.2019
№219.017.4314

Способ получения концентрата, содержащего рений и платину, из содержащих их кислых растворов

Изобретение относится к гидрометаллургии редких и благородных металлов, в частности к способам получения концентрата, содержащего рений и платину, из содержащих их кислых растворов. Способ включает выделение сульфидов рения и платины путем введения в раствор серосодержащего реагента. После...
Тип: Изобретение
Номер охранного документа: 0002363744
Дата охранного документа: 10.08.2009
+ добавить свой РИД